
Package: duckdb (via r-universe)
January 30, 2026

Title DBI Package for the DuckDB Database Management System

Version 1.4.4

Description The DuckDB project is an embedded analytical data
management system with support for the Structured Query
Language (SQL). This package includes all of DuckDB and an R
Database Interface (DBI) connector.

License MIT + file LICENSE

URL https://r.duckdb.org/, https://github.com/duckdb/duckdb-r

BugReports https://github.com/duckdb/duckdb-r/issues

Depends DBI, R (>= 4.1.0)

Imports methods, utils

Suggests adbcdrivermanager, arrow (>= 13.0.0), bit64, callr, clock,
DBItest, dbplyr, dplyr, rlang, testthat, tibble, vctrs, withr

Config/build/compilation-database false

Config/build/never-clean true

Config/comment/compilation-database Generate manually with
pkgload:::generate_db() for faster pkgload::load_all()

Config/gha/extra-packages arrow=?ignore-before-r=4.2.0
adbcdrivermanager=?ignore-before-r=4.2.0

Config/gha/filter os != ``windows-latest'' | r != ``4.1''

Config/gha/filter-note Inexplicable build failures on Windows GHA with
R 4.1, works locally

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3.9000

SystemRequirements xz (for building from source)

Biarch true

Config/pak/sysreqs xz-utils

Repository https://test.r-universe.dev

1

https://r.duckdb.org/
https://github.com/duckdb/duckdb-r
https://github.com/duckdb/duckdb-r/issues

2 backend-duckdb

Date/Publication 2026-01-27 14:16:52 UTC

RemoteUrl https://github.com/duckdb/duckdb-r

RemoteRef v1.4.4

RemoteSha f4d7637ff0574ed9b4591d5f334edbb096ee0abb

Contents
backend-duckdb . 2
default_conn . 3
duckdb . 4
duckdb_explain-class . 7
duckdb_read_csv . 7
duckdb_register . 9
duckdb_register_arrow . 10
sql_query . 10

Index 12

backend-duckdb DuckDB SQL backend for dbplyr

Description

This is a SQL backend for dbplyr tailored to take into account DuckDB’s possibilities. This mainly
follows the backend for PostgreSQL, but contains more mapped functions.

tbl_file() is an experimental variant of dplyr::tbl() to directly access files on disk. It is safer
than dplyr::tbl() because there is no risk of misinterpreting the request, and paths with special
characters are supported.

tbl_function() is an experimental variant of dplyr::tbl() to create a lazy table from a table-
generating function, useful for reading nonstandard CSV files or other data sources. It is safer than
dplyr::tbl() because there is no risk of misinterpreting the query. See https://duckdb.org/
docs/data/overview for details on data importing functions.

As an alternative, use dplyr::tbl(src, dplyr::sql("SELECT ... FROM ...")) for custom SQL
queries.

tbl_query() is deprecated in favor of tbl_function().

Use simulate_duckdb() with lazy_frame() to see simulated SQL without opening a DuckDB
connection.

Usage

tbl_file(src = NULL, path, ..., cache = FALSE)

tbl_function(src, query, ..., cache = FALSE)

tbl_query(src, query, ...)

https://duckdb.org/docs/data/overview
https://duckdb.org/docs/data/overview

default_conn 3

simulate_duckdb(...)

Arguments

src A duckdb connection object, default_conn() if omitted.

path Path to existing Parquet, CSV or JSON file

... Any parameters to be forwarded

cache Enable object cache for Parquet files

query SQL code, omitting the FROM clause

Examples

library(dplyr, warn.conflicts = FALSE)
con <- DBI::dbConnect(duckdb(), path = ":memory:")

db <- copy_to(con, data.frame(a = 1:3, b = letters[2:4]))

db %>%
filter(a > 1) %>%
select(b)

path <- tempfile(fileext = ".csv")
write.csv(data.frame(a = 1:3, b = letters[2:4]))

db_csv <- tbl_file(con, path)
db_csv %>%

summarize(sum_a = sum(a))

db_csv_fun <- tbl_function(con, paste0("read_csv_auto('", path, "')"))
db_csv %>%

count()

DBI::dbDisconnect(con, shutdown = TRUE)

default_conn Get the default connection

Description

[Experimental]

default_conn() returns a default, built-in connection.

Usage

default_conn()

4 duckdb

Details

Currently, the connection is established with duckdb(environment_scan = TRUE) and dbConnect(timezone_out
= "", array = "matrix") so that data frames are automatically available as tables, timestamps are
returned in the local timezone, and DuckDB’s array type is returned as an R matrix. The details
of how the connection is established are subject to change. In particular, returning the output as a
tibble or other object may be supported in the future.

This connection is intended for interactive use. There is no way for this or other packages to
comprehensively track the state of this connection, so scripts and packages should manage their
own connections.

Value

A DuckDB connection object

Examples

conn <- default_conn()
sql_query("SELECT 42", conn = conn)

duckdb Connect to a DuckDB database instance

Description

duckdb() creates or reuses a database instance.

duckdb_shutdown() shuts down a database instance.

Return an adbcdrivermanager::adbc_driver() for use with Arrow Database Connectivity via
the adbcdrivermanager package.

dbConnect() connects to a database instance.

dbDisconnect() closes a DuckDB database connection. The associated DuckDB database in-
stance is shut down automatically, it is no longer necessary to set shutdown = TRUE or to call
duckdb_shutdown().

Usage

duckdb(
dbdir = DBDIR_MEMORY,
read_only = FALSE,
bigint = "numeric",
config = list(),
...,
environment_scan = FALSE

)

duckdb_shutdown(drv)

duckdb 5

duckdb_adbc()

S4 method for signature 'duckdb_driver'
dbConnect(
drv,
dbdir = DBDIR_MEMORY,
...,
debug = getOption("duckdb.debug", FALSE),
read_only = FALSE,
timezone_out = "UTC",
tz_out_convert = c("with", "force"),
config = list(),
bigint = "numeric",
array = "none"

)

S4 method for signature 'duckdb_connection'
dbDisconnect(conn, ..., shutdown = TRUE)

Arguments

dbdir Location for database files. Should be a path to an existing directory in the file
system. With the default (or ""), all data is kept in RAM.

read_only Set to TRUE for read-only operation. For file-based databases, this is only applied
when the database file is opened for the first time. Subsequent connections (via
the same drv object or a drv object pointing to the same path) will silently
ignore this flag.

bigint How 64-bit integers should be returned. There are two options: "numeric"
and "integer64". If "numeric" is selected, bigint integers will be treated as
double/numeric. If "integer64" is selected, bigint integers will be set to bit64
encoding.

config Named list with DuckDB configuration flags, see https://duckdb.org/docs/
configuration/overview#configuration-reference for the possible op-
tions. These flags are only applied when the database object is instantiated.
Subsequent connections will silently ignore these flags.

... Reserved for future extensions, must be empty.
environment_scan

Set to TRUE to treat data frames from the calling environment as tables. If a
database table with the same name exists, it takes precedence. The default of
this setting may change in a future version.

drv Object returned by duckdb()

debug Print additional debug information, such as queries.

timezone_out The time zone returned to R, defaults to "UTC", which is currently the only
timezone supported by duckdb. If you want to display datetime values in the
local timezone, set to Sys.timezone() or "".

https://duckdb.org/docs/configuration/overview#configuration-reference
https://duckdb.org/docs/configuration/overview#configuration-reference

6 duckdb

tz_out_convert How to convert timestamp columns to the timezone specified in timezone_out.
There are two options: "with", and "force". If "with" is chosen, the times-
tamp will be returned as it would appear in the specified time zone. If "force"
is chosen, the timestamp will have the same clock time as the timestamp in the
database, but with the new time zone.

array How arrays should be returned. There are two options: "none" and "matrix".
If "none" is selected, arrays are not returned. Instead an error is generated. If
"matrix" is selected, arrays are returned as a column matrix. Each array is one
row in the matrix.

conn A duckdb_connection object

shutdown Unused. The database instance is shut down automatically.

Details

The behavior of with = "force" at DST transitions depends on how R handles translation from the
underlying time representation to a human-readable format. If the timestamp is invalid in the target
timezone, the resulting value may be NA or an adjusted time.

Value

duckdb() returns an object of class duckdb_driver.

dbDisconnect() and duckdb_shutdown() are called for their side effect.

An object of class "adbc_driver"

dbConnect() returns an object of class duckdb_connection.

Examples

library(adbcdrivermanager)
with_adbc(db <- adbc_database_init(duckdb_adbc()), {

as.data.frame(read_adbc(db, "SELECT 1 as one;"))
})

drv <- duckdb()
con <- dbConnect(drv)

dbGetQuery(con, "SELECT 'Hello, world!'")

dbDisconnect(con)
duckdb_shutdown(drv)

Shorter:
con <- dbConnect(duckdb())
dbGetQuery(con, "SELECT 'Hello, world!'")
dbDisconnect(con, shutdown = TRUE)

duckdb_explain-class 7

duckdb_explain-class DuckDB EXPLAIN query tree

Description

DuckDB EXPLAIN query tree

duckdb_read_csv Reads a CSV file into DuckDB

Description

Directly reads a CSV file into DuckDB, tries to detect and create the correct schema for it. This
usually is much faster than reading the data into R and writing it to DuckDB.

Usage

duckdb_read_csv(
conn,
name,
files,
...,
header = TRUE,
na.strings = "",
nrow.check = 500,
delim = ",",
quote = "\"",
col.names = NULL,
col.types = NULL,
lower.case.names = FALSE,
sep = delim,
transaction = TRUE,
temporary = FALSE

)

Arguments

conn A DuckDB connection, created by dbConnect().

name The name for the virtual table that is registered or unregistered

files One or more CSV file names, should all have the same structure though

... Reserved for future extensions, must be empty.

header Whether or not the CSV files have a separate header in the first line

na.strings Which strings in the CSV files should be considered to be NULL

8 duckdb_read_csv

nrow.check How many rows should be read from the CSV file to figure out data types

delim Which field separator should be used

quote Which quote character is used for columns in the CSV file

col.names Override the detected or generated column names

col.types Character vector of column types in the same order as col.names, or a named
character vector where names are column names and types pairs. Valid types are
DuckDB data types, e.g. VARCHAR, DOUBLE, DATE, BIGINT, BOOLEAN,
etc.

lower.case.names

Transform column names to lower case

sep Alias for delim for compatibility

transaction Should a transaction be used for the entire operation

temporary Set to TRUE to create a temporary table

Details

If the table already exists in the database, the csv is appended to it. Otherwise the table is created.

Value

The number of rows in the resulted table, invisibly.

Examples

con <- dbConnect(duckdb())

data <- data.frame(a = 1:3, b = letters[1:3])
path <- tempfile(fileext = ".csv")

write.csv(data, path, row.names = FALSE)

duckdb_read_csv(con, "data", path)
dbReadTable(con, "data")

dbDisconnect(con)

Providing data types for columns
path <- tempfile(fileext = ".csv")
write.csv(iris, path, row.names = FALSE)

con <- dbConnect(duckdb())
duckdb_read_csv(con, "iris", path,

col.types = c(
Sepal.Length = "DOUBLE",
Sepal.Width = "DOUBLE",
Petal.Length = "DOUBLE",
Petal.Width = "DOUBLE",
Species = "VARCHAR"

https://duckdb.org/docs/sql/data_types/overview.html

duckdb_register 9

)
)
dbReadTable(con, "iris")
dbDisconnect(con)

duckdb_register Register a data frame as a virtual table

Description

duckdb_register() registers a data frame as a virtual table (view) in a DuckDB connection. No
data is copied.

Usage

duckdb_register(conn, name, df, overwrite = FALSE, experimental = FALSE)

duckdb_unregister(conn, name)

Arguments

conn A DuckDB connection, created by dbConnect().

name The name for the virtual table that is registered or unregistered

df A data.frame with the data for the virtual table

overwrite Should an existing registration be overwritten?

experimental Enable experimental optimizations

Details

duckdb_unregister() unregisters a previously registered data frame.

Value

These functions are called for their side effect.

Examples

con <- dbConnect(duckdb())

data <- data.frame(a = 1:3, b = letters[1:3])

duckdb_register(con, "data", data)
dbReadTable(con, "data")

duckdb_unregister(con, "data")

dbDisconnect(con)

10 sql_query

duckdb_register_arrow Register an Arrow data source as a virtual table

Description

duckdb_register_arrow() registers an Arrow data source as a virtual table (view) in a DuckDB
connection. No data is copied.

Usage

duckdb_register_arrow(conn, name, arrow_scannable, use_async = NULL)

duckdb_unregister_arrow(conn, name)

duckdb_list_arrow(conn)

Arguments

conn A DuckDB connection, created by dbConnect().

name The name for the virtual table that is registered or unregistered
arrow_scannable

A scannable Arrow-object

use_async Switched to the asynchronous scanner. (deprecated)

Details

duckdb_unregister_arrow() unregisters a previously registered data frame.

Value

These functions are called for their side effect.

sql_query Run an SQL query or statement

Description

[Experimental]
sql_query() runs an arbitrary SQL query using DBI::dbGetQuery() and returns a data.frame
with the query results. sql_exec() runs an arbitrary SQL statement using DBI::dbExecute() and
returns the number of affected rows.

These functions are intended as an easy way to interactively run DuckDB without having to manage
connections. By default, data frame objects are available as views.

Scripts and packages should manage their own connections and prefer the DBI methods for more
control.

sql_query 11

Usage

sql_query(sql, conn = default_conn())

sql_exec(sql, conn = default_conn())

Arguments

sql A SQL string

conn An optional connection, defaults to default_conn()

Value

A data frame with the query result

Examples

Queries
sql_query("SELECT 42")

Statements with side effects
sql_exec("CREATE TABLE test (a INTEGER, b VARCHAR)")
sql_exec("INSERT INTO test VALUES (1, 'one'), (2, 'two')")
sql_query("FROM test")

Data frames available as views
sql_query("FROM mtcars")

Index

adbcdrivermanager::adbc_driver(), 4

backend-duckdb, 2

data.frame, 10
dbConnect,duckdb_driver-method

(duckdb), 4
dbConnect__duckdb_driver (duckdb), 4
dbDisconnect,duckdb_connection-method

(duckdb), 4
dbDisconnect__duckdb_connection

(duckdb), 4
DBI::dbExecute(), 10
DBI::dbGetQuery(), 10
default_conn, 3
default_conn(), 3, 11
dplyr::tbl(), 2
duckdb, 4
duckdb_adbc (duckdb), 4
duckdb_connection, 6
duckdb_driver, 6
duckdb_explain (duckdb_explain-class), 7
duckdb_explain-class, 7
duckdb_list_arrow

(duckdb_register_arrow), 10
duckdb_read_csv, 7
duckdb_register, 9
duckdb_register_arrow, 10
duckdb_shutdown (duckdb), 4
duckdb_unregister (duckdb_register), 9
duckdb_unregister_arrow

(duckdb_register_arrow), 10

print.duckdb_explain
(duckdb_explain-class), 7

simulate_duckdb (backend-duckdb), 2
sql_exec (sql_query), 10
sql_query, 10
Sys.timezone(), 5

tbl_file (backend-duckdb), 2
tbl_function (backend-duckdb), 2
tbl_query (backend-duckdb), 2

12

	backend-duckdb
	default_conn
	duckdb
	duckdb_explain-class
	duckdb_read_csv
	duckdb_register
	duckdb_register_arrow
	sql_query
	Index

