Package: fmesher (via r-universe)

January 29, 2026

Type Package
Title Triangle Meshes and Related Geometry Tools

Version 0.6.1.9006

Description Generate planar and spherical triangle meshes, compute
finite element calculations for 1-, 2-, and 3-dimensional flat
and curved manifolds with associated basis function spaces,
methods for lines and polygons, and transparent handling of
coordinate reference systems and coordinate transformation,
including 'sf" and 'sp' geometries. The core 'fmesher' library
code was originally part of the TNLA' package, and implements
parts of * " Triangulations and Applications" by Hjelle and
Daehlen (2006) <doi:10.1007/3-540-33261-8>.

Depends R (>=4.1.0), methods

Imports dplyr, graphics, grDevices, lifecycle, Matrix, Rcpp, rlang,
sf, splancs, stats, tibble, utils, withr

Suggests geometry, ggplot2, knitr, patchwork, testthat (>= 3.0.0),
terra, tidyterra, rgl, rmarkdown, sp (>= 1.6-1)

URL https://inlabru-org.github.io/fmesher/,
https://github.com/inlabru-org/fmesher

BugReports https://github.com/inlabru-org/fmesher/issues
License MPL-2.0

Copyright 2010-2025 Finn Lindgren, except src/predicates.cc by
Jonathan Richard Shewchuk, 1996

NeedsCompilation yes
RoxygenNote 7.3.3

Encoding UTF-8

Roxygen list(markdown = TRUE)
Config/testthat/edition 3
Config/testthat/parallel true

SystemRequirements C++17

https://doi.org/10.1007/3-540-33261-8
https://inlabru-org.github.io/fmesher/
https://github.com/inlabru-org/fmesher
https://github.com/inlabru-org/fmesher/issues

2 Contents

LinkingTo Rcpp
VignetteBuilder knitr
BuildVignettes true

Collate 'RcppExports.R' 'deprecated.R' 'bary.R' 'basis.R' 'bbox.R'
'collect.R' 'components.R' 'print.R' 'crs.R' 'data-fmexample.R'
'diameter.R' 'evaluator.R' 'fem.R' 'fm.R' 'fmesher-package.R’
'fmesher.R' 'ggplot.R' 'integration.R' 'lattice_2d.R’
"lattice_Nd.R'" 'list.R' 'local.R' 'manifold.R" 'mapping.R’
'matern.R' 'mesh.R' 'mesh_1d.R' 'mesh_2d.R' 'mesh_3d.R'
'mesh_assessment.R' 'nonconvex_hull.R' 'onload.R' 'plot.R’
'segm.R' 'sf_mesh.R' 'sf_utils.R' 'simplify.R' 'sp_mesh.R’
'split_lines.R' 'tensor.R' 'utils.R’

LazyData true

Config/pak/sysreqs libabsl-dev cmake libgdal-dev gdal-bin libgeos-dev
libssl-dev libproj-dev libsqlite3-dev libudunits2-dev

Repository https://test.r-universe.dev

Date/Publication 2026-01-29 18:04:52 UTC

RemoteUrl https://github.com/inlabru-org/fmesher
RemoteRef HEAD

RemoteSha 0dbd931425d83a0a9152686946f522bd02e4e6df

Contents
as.triangles3d.fm_mesh_3d oo 4
fmesher-deprecated 5
fmesher-print L e 5
fmesher_globe_points L 7
fmexample 8
fmexample_Sp e 9
fm_area e 9
fM_asSess e e e e 10
fm_as_collect e e e e e 11
fm_as fm e e 12
fm_as lattice 2d e 13
fm_as_lattice Nd e 14
fm_as mesh_1d e 15
fm_as_mesh_2d e 16
fm_as_mesh_3d e 18
fm_as_segm 19
fm_as sfc e 21
fm_as_tensor e e 23
f_bary e e 24
fm_bary loc e 26
fm_bary_simplex 28

fM_basis L 29

Contents

3
fm_bbox e 32
fm_block e e e e 34
fm_centroids e, 37
fm_collect e e 38
fm_components e e e 39
fm_contains e e e 41
fm_CRS . . . e 43
fM_CIS . . . e 46
fM_Crs<-. e e 50
fm_crs_is_identical e 52
fm_crs_is_null e 53
fro_crs_plot e e 54
fmocrs. WKt . . . o s, 56
fm_detect_manifold e 59
fm_diameter e e 60
fm_dof e 62
fm_evaluate e 63
fm_fem e e 66
f_gmrf 67
fm_hexagon_lattice 68
fM_INt . . . e e 70
fm_is_within e e 73
fm lattice 2d e e 74
fm_lattice Nd e 76
LISt . . . e e 77
fm_manifold 79
fm_mesh_1d 80
fm_mesh_2d e 82
fm_mesh_3d e 84
fm_nonconvex_hull 85
fm_pixels 88
fm_ginv e e e 89
fm_raw_basis e e e 90
fm_redt_ 2d e 92
fm_row_Kkron e 94
fm_segmo e e e 94
fm_segm_list 96
fm_simplify 98
fM_SIZES e e 99
fro_split_lines oL 100
fm_subdivide e 101
fm_subset e 102
fm_tensor e e e e e e e e e e e 103
fm_transform e 104
fM_VErtices e e 105
fm_zm e e e e e e 106
geom_fm L e 108

Index

as.triangles3d.fm_mesh_3d

plot.fm_mesh_2d 112
plotfm_segm L. 114
plot_rgl . ..o e 115
print.fm_basis e e e 118
print.fm_evaluator 118

120

as.triangles3d.fm_mesh_3d

Convert a 3D mesh to a 3D rgl triangulation

Description

Extracts a matrix of coordinates of triangles, suitable for passing to rgl: :triangles3d().

Usage
as.triangles3d.fm_mesh_3d(obj, subset = NULL, ...)
Arguments
obj An fm_mesh_3d object
subset Character string specifying which triangles to extract. Either "all" (default) or
"boundary".
Currently unused
Value

A 3-column matrix of coordinates of triangles, suitable for passing to rgl: :triangles3d().

Examples

Protect against unavailable rgl device by only running interactively
if (interactive() &&
requireNamespace("geometry”, quietly = TRUE) &&
requireNamespace("rgl”, quietly = TRUE)) {
(m <- fm_delaunay_3d(matrix(rnorm(30), 10, 3)))
rgl::open3d()
rgl::triangles3d(rgl::as.triangles3d(m, "boundary”), col = "blue")
rgl::axes3d()

fmesher-deprecated 5

fmesher-deprecated Deprecated functions in fmesher

Description

These functions still attempt to do their job, but will be removed in a future version.

Usage
fm_mesh_components(...)
fm_int_object(...)

fm_sp2segment(...)

Arguments

Usually passed on to other methods

Functions

* fm_mesh_components(): Backwards compatibility for fm_components(), deprecated since
version @.4.0.9001, disabled since 0.6.0

e fm_int_object(): Deprecated function since @.5.0.9013; use new_fm_int() instead.

* fm_sp2segment(): [Deprecated] in favour of fm_as_segm()

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

fmesher-print Print objects

Description

Print objects

mailto:Finn.Lindgren@gmail.com

Usage

S3 method for class
print(x, ., digits =

S3 method for class

'fm_segm'
NULL, verbose

'fm_segm_list'

fmesher-print

TRUE, newline = TRUE)

print(x, ., digits = NULL, verbose = FALSE, newline = TRUE)

S3 method for class 'fm_list'

print(x, ., digits = NULL, verbose = FALSE, newline = TRUE)

S3 method for class 'fm_mesh_2d'

print(x, ., digits = NULL, verbose = FALSE)

S3 method for class 'fm_mesh_3d'

print(x, ., digits = NULL, verbose = FALSE)

S3 method for class 'fm_mesh_1d'

print(x, ., digits = NULL, verbose = FALSE)

S3 method for class 'fm_bbox'

print(x, ., digits = NULL, verbose = TRUE, newline = TRUE)

S3 method for class 'fm_tensor'

print(x, ., digits = NULL, verbose = FALSE)

S3 method for class 'fm_collect'

print(x, ., digits = NULL, verbose = FALSE)

S3 method for class 'fm_lattice_2d'

print(x, ., digits = NULL, verbose = FALSE)

S3 method for class 'fm_lattice_Nd'

print(x, ., digits = NULL, verbose = FALSE)

S3 method for class 'fm_crs'

print(x, ...)

S3 method for class 'fm_CRS'

print(x, ...)

Arguments

X an object used to select a method.
further arguments passed to or from other methods.

digits a positive integer indicating how many significant digits are to be used for nu-
meric and complex x. The default, NULL, uses getOption("digits").

verbose logical

fmesher_globe_points

newline logical; if TRUE (default), end the printing with \n

Value

The input object x

Examples

fm_bbox(matrix(1:6, 3, 2))
print(fm_bbox(matrix(1:6, 3, 2)), verbose = FALSE)

print(fmexample$mesh)
print(fmexample$boundary_fm)

print(fm_mesh_1d(c(1, 2, 3, 5, 7), degree = 2))

fmesher_globe_points Globe points

Description

C++ method, may get a stable R interface as fm_globe_points() in the future.

Create points on a globe

Usage

fmesher_globe_points(globe)

Arguments

globe integer; the number of edge subdivision segments, 1 or higher.

Value

A matrix of points on a unit radius globe

Examples

fmesher_globe_points(1)

8 fmexample

fmexample Example mesh data

Description

This is an example data set used for fmesher package examples.

Usage

fmexample

Format

The data is a list containing these elements:

loc: A matrix of points.

loc_sf: An sfc version of loc.

boundary_fm: A fm_segm_list of two fm_segm objects used in the mesh construction.
boundary_sf: An sfc list version of boundary.

mesh: An fm_mesh_2d() object.

Source

Generated by data-raw/fmexample.R.

See Also

fmexample_sp()

Examples

if (require(ggplot2, quietly = TRUE)) {
ggplot() +
geom_sf(data = fm_as_sfc(fmexample$mesh)) +
geom_sf(data = fmexample$boundary_sf[[1]], fill = "red”, alpha = 0.5)

fmexample_sp 9

fmexample_sp Add sp data to fmexample

Description

Adds loc_sp and boundary_sp to fmexample for use in sp related code examples and tests.

Usage

fmexample_sp()

Value

Returns a copy of fmexample with loc_sp (SpatialPoints) and boundary_sp (SpatialPolygons)
added.

Examples

if (fm_safe_sp()) {
fmexample_sp()
3

fm_area Calculate the area inside segments

Description

Calculate the (signed) area inside fm_segm boundary objects.

Usage

fm_area(x, ...)

S3 method for class 'fm_segm'
fm_area(x, ...)

S3 method for class 'fm_segm_list'
fm_area(x, ...)
Arguments

X Object for which to calculate the area

Currently unused

10

fim_assess

fm_assess Interactive mesh building and diagnostics

Description

Assess the finite element approximation errors in a mesh for interactive R sessions.

Usage

fm_assess(mesh, spatial.range, alpha = 2, dims = NULL)

Arguments

mesh An fm_mesh_2d object

spatial.range numeric; the spatial range parameter to use for the assessment

alpha numeric; A valid fm_matern_precision() alpha parameter
dims 2-numeric; the grid size
Value

An sf object with gridded mesh assessment information

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_mesh_2d(), fm_rcdt_2d

Examples

bnd <- fm_segm(cbind(
c(o, 10, 10, @, 0),
c(e, o, 10, 10, 0)
), is.bnd = TRUE)
mesh <- fm_rcdt_2d_inla(boundary = bnd, max.edge = 1)

out <- fm_assess(mesh, spatial.range = 3, alpha = 2)

mailto:Finn.Lindgren@gmail.com

fm_as_collect 11

fm_as_collect Convert objects to fm_collect

Description

Convert objects to fm_collect

Usage

fm_as_collect(x, ...)
fm_as_collect_list(x, ...)

S3 method for class 'fm_collect'

fm_as_collect(x, ...)
Arguments
X Object to be converted

Arguments passed on to submethods

Value

An fm_collect object

Functions

* fm_as_collect(): Convert an object to fm_collect.

e fm_as_collect_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_fm(), fm_as_lattice_2d(), fm_as_lattice_Nd(),
fm_as_mesh_1d(), fm_as_mesh_2d (), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(),
fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(),
fm_simplify(), fm_tensor()

Examples

fm_as_collect_list(list(fm_collect(list())))

12 fm_as_fm

fm_as_fm Convert objects to fimesher objects

Description
Used for conversion from general objects (usually inla.mesh and other legacy INLA specific
classes) to fmesher classes.

Usage
fm_as_fm(x, ...)

S3 method for class 'NULL'
fm_as_fm(x, ...)

S3 method for class 'fm_mesh_1d'
fm_as_fm(x, ...)

S3 method for class 'fm_mesh_2d'
fm_as_fm(x, ...)

S3 method for class 'fm_mesh_3d'
fm_as_fm(x, ...)

S3 method for class 'fm_tensor'
fm_as_fm(x, ...)

S3 method for class 'fm_collect'
fm_as_fm(x, ...)

S3 method for class 'fm_segm'
fm_as_fm(x, ...)

S3 method for class 'fm_lattice_Nd'
fm_as_fm(x, ...)

S3 method for class 'fm_lattice_2d'
fm_as_fm(x, ...)

S3 method for class 'fm_bbox'
fm_as_fm(x, ...)

S3 method for class 'crs'
fm_as_fm(x, ...)

S3 method for class 'CRS'
fm_as_fm(x, ...)

fm_as_lattice_2d 13

S3 method for class 'fm_crs'
fm_as_fm(x, ...)

S3 method for class 'inla.CRS'
fm_as_fm(x, ...)

S3 method for class 'inla.mesh.1d'
fm_as_fm(x, ...)

S3 method for class 'inla.mesh'
fm_as_fm(x, ...)

S3 method for class 'inla.mesh.segment'
fm_as_fm(x, ...)

S3 method for class 'inla.mesh.lattice'
fm_as_fm(x, ...)

Arguments
X Object to be converted
Arguments forwarded to submethods
Value

An object of some fm_x class

See Also

Other object creation and conversion: fm_as_collect(), fm_as_lattice_2d(), fm_as_lattice_Nd(),
fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(),
fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(),
fm_simplify(), fm_tensor()

Examples

fm_as_fm(NULL)

fm_as_lattice_2d Convert objects to fm_lattice_2d

Description

Convert objects to fm_lattice_2d

14 fm_as_lattice_Nd

Usage

fm_as_lattice_2d(...)
fm_as_lattice_2d_list(x, ...)

S3 method for class 'fm_lattice_2d'
fm_as_lattice_2d(x, ...)

S3 method for class 'inla.mesh.lattice'
fm_as_lattice_2d(x, ...)

Arguments

Arguments passed on to submethods

X Object to be converted

Value

An fm_lattice_2d or fm_lattice_2d_list object

Functions

* fm_as_lattice_2d(): Convert an object to fm_lattice_2d.

e fm_as_lattice_2d_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_Nd(),
fm_as_mesh_1d(), fm_as_mesh_2d (), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(),
fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(),
fm_simplify(), fm_tensor()

Examples

str(fm_as_lattice_2d_list(list(fm_lattice_2d(), fm_lattice_2d())))

fm_as_lattice_Nd Convert objects to fm_lattice_Nd

Description

Convert objects to fm_lattice_Nd

fm_as_mesh_1d 15

Usage

fm_as_lattice_Nd(...)
fm_as_lattice_Nd_list(x, ...)

S3 method for class 'fm_lattice_Nd'
fm_as_lattice_Nd(x, ...)

Arguments

Arguments passed on to submethods

X Object to be converted

Value

An fm_lattice_Md or fm_lattice_Nd_list object

Functions

* fm_as_lattice_Nd(): Convert an object to fm_lattice_Nd.

e fm_as_lattice_Nd_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_mesh_1d(), fm_as_mesh_2d (), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(),
fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(),
fm_simplify(), fm_tensor()

Examples

(fm_as_lattice_Nd_list(list(
fm_lattice_Nd(list(1:3, 1:2)),
fm_lattice_Nd(list(1:4))

)

fm_as_mesh_1d Convert objects to fm_segm

Description

Convert objects to fm_segm

16 fm_as_mesh_2d
Usage

fm_as_mesh_1d(x, ...)

fm_as_mesh_1d_list(x, ...)

S3 method for class 'fm_mesh_1d'
fm_as_mesh_1d(x, ...)

S3 method for class 'inla.mesh.1d'

fm_as_mesh_1d(x, ...)
Arguments
X Object to be converted

Arguments passed on to submethods

Value

An fm_mesh_1d or fm_mesh_1d_list object

Functions

* fm_as_mesh_1d(): Convert an object to fm_mesh_1d.

e fm_as_mesh_1d_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(),
fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(),
fm_simplify(), fm_tensor()

Examples

fm_as_mesh_1d_list(list(fm_mesh_1d(1:4)))

fm_as_mesh_2d Convert objects to fm_mesh_2d

Description

Convert objects to fm_mesh_2d

fm_as_mesh_2d 17
Usage

fm_as_mesh_2d(x, ...)

fm_as_mesh_2d_list(x, ...)

S3 method for class 'fm_mesh_2d'
fm_as_mesh_2d(x, ...)

S3 method for class 'inla.mesh'
fm_as_mesh_2d(x, ...)

S3 method for class 'fm_mesh_3d'
fm_as_mesh_2d(x, ...)

S3 method for class 'sfg'
fm_as_mesh_2d(x, ...)

S3 method for class 'sfc_MULTIPOLYGON'
fm_as_mesh_2d(x, ...)

S3 method for class 'sfc_POLYGON'
fm_as_mesh_2d(x, ...)

S3 method for class 'sf'

fm_as_mesh_2d(x, ...)
Arguments
X Object to be converted

Arguments passed on to submethods

Value

An fm_mesh_2d or fm_mesh_2d_list object

Methods (by class)

* fm_as_mesh_2d(fm_mesh_3d): Construct a 2D mesh of the boundary of a 3D mesh

Functions

e fm_as_mesh_2d(): Convert an object to fm_mesh_2d.

e fm_as_mesh_2d_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_3d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(),

18 fm_as_mesh_3d

fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(),
fm_simplify(), fm_tensor()

Examples

fm_as_mesh_2d_list(list(fm_mesh_2d(cbind(2, 1))))

fm_as_mesh_3d Convert objects to fm_mesh_3d

Description

Convert objects to fm_mesh_3d
Usage

fm_as_mesh_3d(x, ...)

fm_as_mesh_3d_list(x, ...)

S3 method for class 'fm_mesh_3d'

fm_as_mesh_3d(x, ...)
Arguments
X Object to be converted

Arguments passed on to submethods

Value

An fm_mesh_3d or fm_mesh_3d_list object

Functions

* fm_as_mesh_3d(): Convert an object to fm_mesh_3d.

e fm_as_mesh_3d_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_segm(), fm_as_sfc(), fm_as_tensor(),
fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(), fm_segm(),
fm_simplify(), fm_tensor()

fm_as_segm

Examples

(m <~ fm_mesh_3d(
matrix(c(1, o, @, @, 1, 0, 0, 0, 1, @, @, @), 4, 3, byrow = TRUE),
matrix(c(1, 2, 3, 4), 1, 4, byrow = TRUE)

)

fm_as_mesh_3d_list(list(m))

fm_as_segm Convert objects to fm_segm

Description

Convert objects to fm_segm

Usage
fm_as_segm(x, ...)

fm_as_segm_list(x, ...)

S3 method for class 'fm_segm'
fm_as_segm(x, ...)

S3 method for class 'inla.mesh.segment'
fm_as_segm(x, ...)

S3 method for class 'sfg'
fm_as_segm(x, ...)

S3 method for class 'sfc_POINT'
fm_as_segm(x, reverse = FALSE, grp = NULL, is.bnd = TRUE, ...)

S3 method for class 'sfc_LINESTRING'

fm_as_segm(x, join = TRUE, grp = NULL, reverse = FALSE, ...)
S3 method for class 'sfc_MULTILINESTRING'
fm_as_segm(x, join = TRUE, grp = NULL, reverse = FALSE, ...)

S3 method for class 'sfc_POLYGON'
fm_as_segm(x, join = TRUE, grp = NULL, ...)

S3 method for class 'sfc_MULTIPOLYGON'
fm_as_segm(x, join = TRUE, grp = NULL, ...)

S3 method for class 'sfc_GEOMETRY'
fm_as_segm(x, grp = NULL, join = TRUE, ...)

20

S3 method for class
fm_as_segm(x, ...)

S3 method for class

lsfv

'matrix’

fm_as_segm(
X,
reverse = FALSE,
grp = NULL,
is.bnd = FALSE,
crs = NULL,
closed = FALSE,

)

S3 method for class 'SpatialPoints'

fm_as_segm

fm_as_segm(x, reverse = FALSE, grp = NULL, is.bnd = TRUE, closed = FALSE, ...)

S3 method for class 'SpatialPointsDataFrame'
fm_as_segm(x, ...)

S3 method for class 'Line'
fm_as_segm(x, reverse = FALSE, grp = NULL, crs = NULL, ...)

S3 method for class 'Lines'
fm_as_segm(x, join = TRUE, grp = NULL, crs = NULL, ...)

S3 method for class 'SpatiallLines'
fm_as_segm(x, join = TRUE, grp = NULL, ...)

S3 method for class 'SpatiallLinesDataFrame'
fm_as_segm(x, ...)

S3 method for class 'SpatialPolygons'
fm_as_segm(x, join = TRUE, grp = NULL, ...)

S3 method for class 'SpatialPolygonsDataFrame'
fm_as_segm(x, ...)

S3 method for class 'Polygons'
fm_as_segm(x, join = TRUE, crs = NULL, grp = NULL, ...)

S3 method for class 'Polygon'

fm_as_segm(x, crs = NULL, ...)
Arguments
X Object to be converted.

Arguments passed on to submethods

fim_as_sfc 21

reverse logical; When TRUE, reverse the order of the input points. Default FALSE
grp if non-null, should be an integer vector of grouping labels for one for each seg-
ment. Default NULL

is.bnd logical; if TRUE, set the boundary flag for the segments. Default TRUE

join logical; if TRUE, join input segments with common vertices. Default TRUE

crs A crs object

closed logical; whether to treat a point sequence as a closed polygon. Default: FALSE
Value

An fm_segm or fm_segm_list object

Functions

» fm_as_segm(): Convert an object to fm_segm.

* fm_as_segm_list(): Convert each element, making a fm_segm_list object

See Also

c.fm_segm(), c.fm_segm_list(), [.fm_segm_list()

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_sfc(),
fm_as_tensor (), fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(),
fm_segm(), fm_simplify(), fm_tensor ()

Examples

fm_as_segm_list(list(
fm_segm(fmexample$mesh),
fm_segm(fmexample$mesh, boundary = FALSE)
))

(segm <- fm_segm(fmexample$mesh, boundary = FALSE))
(segm_sfc <- fm_as_sfc(segm))
(fm_as_segm(segm_sfc))

fm_as_sfc Conversion methods from mesh related objects to sfc

Description

Conversion methods from mesh related objects to sfc

22 fm_as_sfc
Usage
fm_as_sfc(x, ...)

S3 method for class 'fm_mesh_2d'
fm_as_sfc(x, ..., format = NULL, multi = FALSE)

S3 method for class 'fm_segm'
fm_as_sfc(x, ..., multi = FALSE)

S3 method for class 'fm_segm_list'
fm_as_sfc(x, ...)

S3 method for class 'sfc'
fm_as_sfc(x, ...)

S3 method for class 'sf'

fm_as_sfc(x, ...)
Arguments
X An object to be coerced/transformed/converted into another class

Arguments passed on to other methods
format One of "mesh", "int", "bnd", or "loc". Default "mesh".

multi logical; if TRUE, attempt to a sfc_MULTIPOLYGON/LINESTRING/POINT/GEOMETRYCOLLECTION,
otherwise a set of sfc_POLYGON/LINESTRING/POINT. Default FALSE

Value

e fm_as_sfc: An sfc_MULTIPOLYGON/LINESTRING/POINT/GEOMETRYCOLLECTION or sfc_POLYGON/LINESTRING/POIN
object

Methods (by class)

e fm_as_sfc(fm_mesh_2d): [Experimental]

e fm_as_sfc(fm_segm): [Experimental]

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),
fm_as_tensor (), fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(),
fm_segm(), fm_simplify(), fm_tensor()

Examples

fm_as_sfc(fmexample$mesh)
fm_as_sfc(fmexample$mesh, multi = TRUE)
fm_as_sfc(fmexample$mesh, format = "loc")

fim_as_tensor 23

Boundary edge conversion to polygons is supported from version 0.4.0.9002:

fm_as_sfc(fmexample$mesh, format = "bnd")
fm_as_tensor Convert objects to fm_tensor
Description

Convert objects to fm_tensor

Usage

fm_as_tensor(x, ...)
fm_as_tensor_list(x, ...)

S3 method for class 'fm_tensor'

fm_as_tensor(x, ...)
Arguments
X Object to be converted

Arguments passed on to submethods

Value

An fm_tensor object

Functions

* fm_as_tensor(): Convert an object to fm_tensor.

e fm_as_tensor_list(): Convert each element of a list

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),
fm_as_sfc(), fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(),
fm_segm(), fm_simplify(), fm_tensor ()

Examples

fm_as_tensor_list(list(fm_tensor(list())))

24 fm_bary

fm_bary Compute barycentric coordinates

Description

Identify knot intervals or triangles and compute barycentric coordinates
Usage
fm_bary(...)

S3 method for class 'fm_bary'
fm_bary(bary, ..., extra_class = NULL)

S3 method for class 'list'
fm_bary(bary, ..., extra_class = NULL)

S3 method for class 'tbl_df'
fm_bary(bary, ..., extra_class = NULL)

S3 method for class 'fm_mesh_1d'
fm_bary(mesh, loc, method = c("linear"”, "nearest"), restricted = FALSE, ...)

S3 method for class 'fm_mesh_2d'
fm_bary(mesh, loc, crs = NULL, ..., max_batch_size = NULL)

S3 method for class 'fm_mesh_3d'
fm_bary(mesh, loc, ..., max_batch_size = NULL)

S3 method for class 'fm_lattice_2d'
fm_bary(mesh, loc, crs = NULL, ...)

S3 method for class 'fm_lattice_Nd'
fm_bary(mesh, loc, ...)

Arguments

Arguments forwarded to sub-methods.

bary An fm_bary object, or an object that can be converted to fm_bary.

extra_class character; If non-NULL and not already in the class vector of bary, add it to the
front of the class vector.

mesh fm_mesh_1d or fm_mesh_2d object

loc Points for which to identify the containing interval/triangle, and corresponding

barycentric coordinates. May be a vector (for 1d) or a matrix of raw coordinates,
sf, or sp point information (for 2d).

fm_bary 25

method character; method for defining the barycentric coordinates, "linear" (default) or
"nearest”

restricted logical, used for method="1inear". If FALSE (default), points outside the mesh

crs

interval will be given barycentric weights less than 0 and greater than 1, accord-
ing to linear extrapolation. If TRUE, the barycentric weights are clamped to the
(0, 1) interval.

Optional crs information for loc

max_batch_size integer; maximum number of points to process in a single batch. This speeds

Value

up calculations by avoiding repeated large internal memory allocations and data
copies. The default, NULL, uses max_batch_size = 2e5L, chosen based on em-
pirical time measurements to give an approximately optimal runtime.

A fm_bary object, a tibble with columns index; either

vector of triangle indices (triangle meshes),
vector of knot indices (1D meshes, either for edges or individual knots), or

vector of lower left box indices (2D lattices),

and where, a matrix of barycentric coordinates.

Methods (by class)

fm_bary(fm_bary): Returns the bary input unchanged

fm_bary(list): Converts a 1list bary to fm_bary. In the list elements are unnamed, the
names index and where are assumed.

fm_bary(tbl_df): Converts a tibble::tibble() bary to fm_bary

fm_bary(fm_mesh_1d): Return an fm_bary object with elements index (edge index vector
pointing to the first knot of each edge) and where (barycentric coordinates, 2-column matri-
ces). Use fm_bary_simplex() to obtain the corresponding endpoint knot indices.

For method = "nearest”, index contains the index of the nearest mesh knot, and where is a
single-column all-ones matrix.

fm_bary(fm_mesh_2d): An fm_bary object with columns index (vector of triangle indices)
and where (3-column matrix of barycentric coordinates). Points that were not found give NA
entries in index and where.

fm_bary(fm_mesh_3d): An fm_bary object with columns index (vector of triangle indices)
and where (4-column matrix of barycentric coordinates). Points that were not found give NA
entries in index and where.

fm_bary(fm_lattice_2d): An fm_bary object with columns index (vector of lattice cell
indices) and where (4-column matrix of barycentric coordinates). Points that are outside the
lattice are given NA entries in index and where.

fm_bary(fm_lattice_Nd): An fm_bary object with columns index (vector of lattice cell
indices) and where 2*d-column matrix of barycentric coordinates). Points that are outside the
lattice are given NA entries in index and where.

26

See Also

fm_bary_simplex(), fm_bary_loc()

Examples

bary <- fm_bary(fm_mesh_1d(1:4), seq(@, 5, by = 0.5))

bary

str(fm_bary(fmexample$mesh, fmexample$loc_sf))

m <- fm_mesh_3d(
rbind(
c(1, 0, 0),
c(o, 1, 0),
c(o, o, 1),
c(o, 0, @)
),

matrix(c(1, 2, 3, 4), 1

)

’ 4)

b <- fm_bary(m, matrix(c(1, 1, 1) /7 4, 1, 3))
str(fm_bary(fmexample$mesh, fmexample$loc_sf))

fm_bary_loc

fm_bary_loc

Extract Euclidean Sgeometry from Barycentric coordinates

Description

Extract the Euclidean coordinates for location identified by an fm_bary object. This acts as the

inverse of fm_bary().

Usage

fm_bary_loc(mesh, bary

S3 method for class
fm_bary_loc(mesh, bary

S3 method for class
fm_bary_loc(mesh, bary

S3 method for class
fm_bary_loc(mesh, bary

S3 method for class
fm_bary_loc(mesh, bary

S3 method for class
fm_bary_loc(mesh, bary

= NULL,

L]

"fm_mesh_2d'

= NULL,

L}

"fm_mesh_3d'

= NULL,

bl

'fm_mesh_1d'

= NULL,

L]

format

format

format

format

"fm_lattice_2d'

= NULL,

Al

format

'"fm_lattice_Nd'

= NULL,

L]

format

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

fm_bary_loc 27

Arguments
mesh A mesh object, e.g. fm_mesh_2d or fm_mesh_1d.
bary An fm_bary object. If NULL, return the mesh nodes is the mesh class supports
it, otherwise gives an error.
Further arguments potentially used by sub-methods.
format Optional format for the output. If NULL, the output format is determined by the
default for the mesh object.
Value

Output format depends on the mesh class.

Methods (by class)

e fm_bary_loc(fm_mesh_2d): Extract points on a triangle mesh. Implemented formats are
"matrix” (default) and "sf".

e fm_bary_loc(fm_mesh_3d): Extract points on a tetrahedron mesh. Implemented format is
"matrix” (default).

e fm_bary_loc(fm_mesh_1d): Extract points on a 1D mesh. Implemented formats are "numeric”
(default).

e fm_bary_loc(fm_lattice_2d): Extract points on a 2D lattice. Implemented formats are
"matrix” (default) and "sf".

e fm_bary_loc(fm_lattice_Nd): Extract points on a ND lattice.

See Also

fm_bary (), fm_bary_simplex()

Examples

head(fm_bary_loc(fmexample$mesh))
bary <- fm_bary(fmexample$mesh, fmexample$loc_sf)
fm_bary_loc(fmexample$mesh, bary, format = "matrix”)
fm_bary_loc(fmexample$mesh, bary, format = "sf")
(m <= fm_mesh_3d(
matrix(c(1, o0, 0, 0, 1, @, 0, 0, 1, @, @, @), 4, 3, byrow = TRUE),
matrix(c(1, 2, 3, 4), 1, 4, byrow = TRUE)
)
(bary <- fm_bary(m, rbind(
cbind(0.1, 9.2, 0.3),
cbind(-0.1, 0.2, 0.3)
)
fm_bary_loc(m, bary)
mesh1l <- fm_mesh_1d(1:4)
fm_bary_loc(mesh1)
(baryl <- fm_bary(mesh1, seq(@, 5, by
fm_bary_loc(mesh1, baryl)
(baryl <- fm_bary(mesh1, seq(@, 5, by = 0.5), restricted = TRUE))

2.5)))

28 fm_bary_simplex

fm_bary_loc(mesh1, baryl)

fm_basis(mesh1, bary1)

(baryl <- fm_bary(mesh1, baryl, method = "nearest"))
fm_bary_loc(mesh1, bary1)

fm_basis(mesh1, bary1)

(baryl <- fm_bary(mesh1, baryl, method = "linear"))
fm_bary_loc(mesh1, baryl)

fm_basis(mesh1, bary1)

m <- fm_lattice_2d(x = 1:3, y = 1:4)
head(fm_bary_loc(m))

(bary <- fm_bary(m, cbind(1.5, 3.2)))
fm_bary_loc(m, bary, format = "matrix")
fm_bary_loc(m, bary, format = "sf")

m <- fm_lattice_Nd(list(x = 1:3, y =1:4, z = 1:2))
head(fm_bary_loc(m))

(bary <- fm_bary(m, cbind(1.5, 3.2, 1.5)))
fm_bary_loc(m, bary)

fm_bary_simplex Extract Simplex information for Barycentric coordinates

Description

Extract the simplex vertex information for a combination of a mesh and fm_bary coordinates.
Usage
fm_bary_simplex(mesh, bary = NULL, ...)

S3 method for class 'fm_mesh_2d'
fm_bary_simplex(mesh, bary = NULL, ...)

S3 method for class 'fm_mesh_3d'
fm_bary_simplex(mesh, bary = NULL, ...)

S3 method for class 'fm_mesh_1d'
fm_bary_simplex(mesh, bary = NULL, ...)

S3 method for class 'fm_lattice_2d'
fm_bary_simplex(mesh, bary = NULL, ...)

S3 method for class 'fm_lattice_Nd'

fm_bary_simplex(mesh, bary = NULL, ...)
Arguments
mesh A mesh object, e.g. fm_mesh_2d or fm_mesh_1d.
bary An fm_bary object. If NULL, return the full simplex information for the mesh.

Further arguments potentially used by sub-methods.

fm_basis 29

Value

A matrix of vertex indices, one row per point in bary.

Methods (by class)

e fm_bary_simplex(fm_mesh_2d): Extract the triangle vertex indices for a 2D mesh

e fm_bary_simplex(fm_mesh_3d): Extract the tetrahedron vertex indices for a 3D mesh
e fm_bary_simplex(fm_mesh_1d): Extract the edge vertex indices for a 1D mesh

e fm_bary_simplex(fm_lattice_2d): Extract the cell vertex indices for a 2D lattice

e fm_bary_simplex(fm_lattice_Nd): Extract the cell vertex indices for a ND lattice

See Also

fm_bary (), fm_bary_loc()

Examples

bary <- fm_bary(fmexample$mesh, fmexample$loc_sf)
fm_bary_simplex(fmexample$mesh, bary)
(m <~ fm_mesh_3d(
matrix(c(1, 0, @0, @, 1, 0, @, 0, 1, @, 0, @), 4, 3, byrow = TRUE),
matrix(c(1, 2, 3, 4), 1, 4, byrow = TRUE)
)
(bary <- fm_bary(m, rbind(
cbind(0.1, 0.2, 0.3),
cbind(-0.1, 0.2, 0.3)
)))
fm_bary_simplex(m, bary)
mesh1l <- fm_mesh_1d(1:4)
(baryl <- fm_bary(mesh1, seq(@, 5, by = 0.5)))
(baryl <- fm_bary(mesh1, seq(@, 5, by = 0.5), restricted = TRUE))
fm_bary_simplex(mesh1, bary1)
m <- fm_lattice_2d(x = 1:3, y = 1:4)
bary <- fm_bary(m, cbind(1.5, 3.2))
fm_bary_simplex(m, bary)
m <- fm_lattice_Nd(list(x = 1:3, y = 1:4, z = 1:2))
(bary <- fm_bary(m, cbind(1.5, 3.2, 1.5)))
(fm_bary_simplex(m, bary))
fm_bary_loc(m, bary)

fm_basis Compute mapping matrix between mesh function space and points

Description

Computes the basis mapping matrix between a function space on a mesh, and locations.

30 fm_basis

Usage
fm_basis(x, ..., full = FALSE)
Default S3 method:
fm_basis(x, ..., full = FALSE)

S3 method for class 'fm_mesh_1d'

fm_basis(x, loc, weights = NULL, derivatives = NULL, ..., full = FALSE)
S3 method for class 'fm_mesh_2d'
fm_basis(x, loc, weights = NULL, derivatives = NULL, ..., full = FALSE)
S3 method for class 'fm_mesh_3d'
fm_basis(x, loc, weights = NULL, ..., full = FALSE)
S3 method for class 'fm_lattice_2d'
fm_basis(x, loc, weights = NULL, ..., full = FALSE)
S3 method for class 'fm_lattice_Nd'
fm_basis(x, loc, weights = NULL, ..., full = FALSE)
S3 method for class 'fm_tensor'
fm_basis(x, loc, weights = NULL, ..., full = FALSE)
S3 method for class 'fm_collect'
fm_basis(x, loc, weights = NULL, ..., full = FALSE)
S3 method for class 'matrix'
fm_basis(x, ok = NULL, weights = NULL, ..., full = FALSE)
S3 method for class 'Matrix'
fm_basis(x, ok = NULL, weights = NULL, ..., full = FALSE)
S3 method for class 'list'
fm_basis(x, weights = NULL, ..., full = FALSE)
S3 method for class 'fm_basis'
fm_basis(x, ..., full = FALSE)
S3 method for class 'fm_evaluator'
fm_basis(x, ..., full = FALSE)
Arguments
X An function space object, or other supported object (matrix, Matrix, list)
- Passed on to submethods
full logical; if TRUE, return a fm_basis object, containing at least a projection matrix

A and logical vector ok indicating which evaluations are valid. If FALSE, return

fm_basis 31

only the projection matrix A. Default is FALSE.

loc A location/value information object (numeric, matrix, sf, fm_bary, etc, de-
pending on the class of x)

weights Optional weight vector to apply (from the left, one weight for each row of the
basis matrix)

derivatives If non-NULL and logical, include derivative matrices in the output. Forces full
= TRUE.

ok numerical of length NROW(x), indicating which rows of x are valid/successful

basis evaluations. If NULL, inferred as rep (TRUE, NROW(x)).

Value

A sparseMatrix object (if full = FALSE), or a fm_basis object (if full = TRUE or isTRUE (derivatives)).
The fm_basis object contains at least the projection matrix A and logical vector ok; If x_j denotes

the latent basis coefficient for basis function j, the field is defined as u(loc_i)=sum_j A_ij x_j

for all i where ok[i] is TRUE, and u(loc_i)=0.0 where ok[i] is FALSE.

Methods (by class)

e fm_basis(fm_mesh_1d): If derivatives=TRUE, the fm_basis object contains additional
derivative weight matrices, d1A and d2A, du/dx(loc_i)=sum_j dx_ij w_i.

e fm_basis(fm_mesh_2d): If derivatives=TRUE, additional derivative weight matrices are in-
cluded in the ful1=TRUE output: Derivative weight matrices dx, dy, dz; du/dx(loc_i)=sum_j dx_ij w_i,
etc.

e fm_basis(fm_mesh_3d): fm_mesh_3d basis functions.

e fm_basis(fm_lattice_2d): fm_lattice_2d bilinear basis functions.

e fm_basis(fm_lattice_Nd): fm_lattice_Nd multilinear basis functions.

* fm_basis(fm_tensor): Evaluates a basis matrix for a fm_tensor function space.

e fm_basis(fm_collect): Evaluates a basis matrix for a fm_collect function space. The loc
argument must be a list or tibble with elements loc (the locations) and index (the indices
into the function space collection).

e fm_basis(matrix): Creates a new fm_basis object with elements A and ok, from a pre-
evaluated basis matrix, including optional additional elements in the . . . arguments. If a ok is
NULL, it is inferred as rep(TRUE, NROW(x)), indicating that all rows correspond to successful
basis evaluations. If full = FALSE, returns the matrix unchanged.

e fm_basis(Matrix): Creates a new fm_basis object with elements A and ok, from a pre-
evaluated basis matrix, including optional additional elements in the . . . arguments. If a ok is
NULL, it is inferred as rep (TRUE, NROW(x)), indicating that all rows correspond to successful
basis evaluations. If full = FALSE, returns the matrix unchanged.

e fm_basis(list): Creates a new fm_basis object from a plain list containing at least an
element A. If an ok element is missing, it is inferred as rep(TRUE, NROW(x$A)). If full =
FALSE, extracts the A matrix.

e fm_basis(fm_basis): If full is TRUE, returns x unchanged, otherwise returns the A matrix
contained in Xx.

e fm_basis(fm_evaluator): Extract fm_basis information from an fm_evaluator object. If
full = FALSE, returns the A matrix contained in the fm_basis object.

32

See Also

fm_raw_basis()

Examples

Compute basis mapping matrix

dim(fm_basis(fmexample$mesh, fmexample$loc))
print(fm_basis(fmexample$mesh, fmexample$loc, full = TRUE))

From precomputed ~fm_bary™ information:
bary <- fm_bary(fmexample$mesh, fmexample$loc)
print(fm_basis(fmexample$mesh, bary, full = TRUE))

fm_bbox

fm_bbox

Bounding box class

Description

Simple class for handling bounding box information

Usage

fm_bbox(...)

S3 method
fm_bbox (x,

S3 method
fm_bbox(...)

S3 method
fm_bbox(x,

S3 method
fm_bbox (x,

S3 method
fm_bbox (x,

S3 method
fm_bbox (x,

S3 method
fm_bbox (x,

S3 method
fm_bbox (x,

for

for

for

for

for

for

for

for

)

class

class

class

class

class

class

class

class

'list’

"NULL'

"numeric’

'matrix’

'Matrix'

'fm_bbox'

"fm_mesh_1d"'

'fm_mesh_2d'

fm_bbox 33

S3 method for class 'fm_mesh_3d'
fm_bbox(x, ...)

S3 method for class 'fm_segm'
fm_bbox(x, ...)

S3 method for class 'fm_lattice_2d'
fm_bbox(x, ...)

S3 method for class 'fm_lattice_Nd'
fm_bbox(x, ...)

S3 method for class 'fm_tensor'
fm_bbox(x, ...)

S3 method for class 'fm_collect'
fm_bbox(x, ...)

S3 method for class 'sf'
fm_bbox(x, ...)

S3 method for class 'sfg'
fm_bbox(x, ...)

S3 method for class 'sfc'
fm_bbox(x, ...)

S3 method for class 'bbox'
fm_bbox(x, ...)

fm_as_bbox(x, ...)

S3 method for class 'fm_bbox'
x[i]

S3 method for class 'fm_bbox'
c(..., .join = FALSE)

fm_as_bbox_list(x, ...)

Arguments

Passed on to sub-methods

X fm_bbox object from which to extract element(s)
i indices specifying elements to extract
.join logical; if TRUE, concatenate the bounding boxes into a single multi-dimensional

bounding box. Default is FALSE.

34 fm_block

Value
For c.fm_bbox(), a fm_bbox_list object if . join = FALSE (the default) or an fm_bbox object if
.join = TRUE.
Methods (by class)
* fm_bbox(1list): Construct a bounding box from precomputed interval information, stored as
a list of 2-vector ranges, list(x1lim, ylim, ...).
Methods (by generic)

e [: Extract sub-list

* c(fm_bbox): The ... arguments should be fm_bbox objects, or coercible with fm_as_bbox (1ist(. .

Functions

e fm_as_bbox_list(): Convert a list to a fm_bbox_list object, with each element converted
to an fm_bbox object.

Examples

fm_bbox(matrix(1:6, 3, 2))
m <- c(A = fm_bbox(cbind(1, 2)), B = fm_bbox(cbind(3, 4)))
str(m)
str(m[2])
m <- fm_as_bbox_list(list(
A = fm_bbox(cbind(1, 2)),
B = fm_bbox(cbind(3, 4))
))
str(fm_as_bbox_list(m))

fm_block Blockwise aggregation matrices

Description

Creates an aggregation matrix for blockwise aggregation, with optional weighting.

Usage

fm_block(
block = NULL,
weights = NULL,
log_weights = NULL,
rescale = FALSE,
n_block = NULL

D).

fm_block

fm_block_eval(
block = NULL,
weights = NULL,
log_weights = NULL,
rescale = FALSE,
n_block = NULL,
values = NULL

)

fm_block_logsumexp_eval(
block = NULL,
weights = NULL,
log_weights = NULL,
rescale = FALSE,
n_block = NULL,
values = NULL,
log = TRUE

)

fm_block_weights(
block = NULL,
weights = NULL,
log_weights = NULL,
rescale = FALSE,
n_block = NULL

)

fm_block_log_weights(
block = NULL,
weights = NULL,
log_weights = NULL,
rescale = FALSE,
n_block = NULL

)

fm_block_log_shift(block = NULL, log_weights

fm_block_prep(
block = NULL,
log_weights = NULL,
weights = NULL,
n_block = NULL,
values = NULL,
n_values = NULL,
force_log = FALSE

= NULL, n_block = NULL)

35

36

fm_block

Arguments

block integer vector; block information. If NULL, rep(1L, block_len) is used, where

block_lenis determined by length(log_weights))) or length(weights))).
A single scalar is also repeated to a vector of corresponding length to the weights.
Note: from version9.2.0.9017 to 0. 4.0.9005, "character’ input was converted
to integer with as. integer(factor(block)). As this could lead to unintended
ordering of the output, this is no longer allowed.

weights Optional weight vector

log_weights Optional log(weights) vector. Overrides weights when non-NULL.

rescale logical; If TRUE, normalise the weights by sum(weights) or sum(exp(log_weights))
within each block. Default: FALSE

n_block integer; The number of conceptual blocks. Only needs to be specified if it’s
larger than max(block), or to keep the output of consistent size for different
puts.

values Vector to be blockwise aggregated

log If TRUE (default), return log-sum-exp. If FALSE, return sum-exp.

n_values When supplied, used instead of length(values) to determine the value vector
input length.

force_log When FALSE (default), passes either weights and log_weights on, if pro-
vided, with log_weights taking precedence. If TRUE, forces the computation
of log_weights, whether given in the input or not.

Value

A (sparse) matrix

Functions

fm_block(): A (sparse) matrix of size n_block times length(block).

fm_block_eval(): Evaluate aggregation. More efficient alternative to to as.vector (fm_block(...)
%*% values).

fm_block_logsumexp_eval(): Evaluate log-sum-exp aggregation. More efficient and nu-
merically stable alternative to to log(as.vector(fm_block(...) %*% exp(values))).

fm_block_weights(): Computes (optionally) blockwise renormalised weights

fm_block_log_weights(): Computes (optionally) blockwise renormalised log-weights
fm_block_log_shift(): Computes shifts for stable blocked log-sum-exp. To compute log(;.pjock, =1 €XP(Vi)wi)
for each block k, first compute combined values and weights, and a shift:

w_values <- values + fm_block_log_weights(block, log_weights = log_weights)
shift <- fm_block_log_shift(block, log_weights = w_values)

Then aggregate the values within each block:
agg <- aggregate(exp(w_values - shift[block]),

by = list(block = block),

\(x) log(sum(x)))
agg$x <- agg$x + shiftlagg$block]

fm_centroids 37

The implementation uses a faster method:

as.vector(
Matrix: :sparseMatrix(
i = block,
j = rep(1L, length(block)),

x = exp(w_values - shift[block]),
dims = c(n_block, 1))
) + shift

e fm_block_prep(): Helper function for preparing block, weights, and log_weights, n_block
inputs.

Examples

block <- rep(1:2, 3:2)
fm_block(block)
fm_block(block, rescale = TRUE)
fm_block(block, log_weights = -2:2, rescale = TRUE)
fm_block_eval(

block,

weights = 1:5,

rescale = TRUE,

values = 11:15
)
fm_block_logsumexp_eval(

block,

weights = 1:5,

rescale = TRUE,

values = log(11:15),

log = FALSE

fm_centroids Extract triangle centroids from an fm_mesh_2d

Description

Computes the centroids of the triangles of an fm_mesh_2d () object.

Usage

fm_centroids(x, format = NULL)

Arguments

X An fm_mesh_2d object.

format character; "sf", "df", "sp”

38 fm_collect

Value

An sf, data.frame, or SpatialPointsDataFrame object, with the vertex coordinates, and a . triangle
column with the triangle indices.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_vertices()

Examples

if (require("ggplot2", quietly = TRUE)) {

vrt <- fm_centroids(fmexample$mesh, format = "sf")
ggplot() +
geom_sf(data = fm_as_sfc(fmexample$mesh)) +
geom_sf(data = vrt, color = "red")
3
fm_collect Make a collection function space
Description

[Experimental] Collection function spaces. The interface and object storage model is experimental
and may change.

Usage
fm_collect(x, ...)
Arguments
X list of function space objects, such as fm_mesh_2d(), all of the same type.
Currently unused
Value

A fm_collect or fm_collect_list object. Elements of fm_collect:

fun_spaces fm_list of function space objects

manifold character; manifold type summary, obtained from the function spaces.

mailto:Finn.Lindgren@gmail.com

fm_components 39

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),
fm_as_sfc(), fm_as_tensor(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(),
fm_segm(), fm_simplify(), fm_tensor()

Examples

m <- fm_collect(list(
A = fmexample$mesh,
B = fmexample$mesh
)
m2 <- fm_as_collect(m)
m3 <- fm_as_collect_list(list(m, m))
c(fm_dof (m$fun_spaces[[1]1]1) + fm_dof (m$fun_spaces[[2]1]), fm_dof(m))
fm_basis(m, loc = tibble::tibble(
loc = fmexample$loc_sf,
index = c(1, 1, 2, 2, 1, 2, 2, 1, 1, 2)
), full = TRUE)
fm_basis(m, loc = tibble::tibble(
loc = rbind(c(@, 0), c(0.1, 0.1)),
index = c("B", "A")
), full = TRUE)
fm_evaluator(m, loc = tibble::tibble(loc = cbind(@, @), index = 2))
names (fm_fem(m))
fm_diameter(m)

fm_components Compute connected mesh subsets

Description
Compute subsets of vertices and triangles/tetrahedrons in an fm_mesh_2d or fm_mesh_3d object
that are connected by edges/triangles, and split fm_segm objects into connected components.
Usage

fm_components(x, ...)

S3 method for class 'fm_mesh_2d'
fm_components(x, ...)

S3 method for class 'fm_mesh_3d'
fm_components(x, ...)

S3 method for class 'fm_segm'
fm_components(x, ...)

40 fm_components

S3 method for class 'fm_segm_list'

fm_components(x, ...)
Arguments
X An object to extract components from

Additional arguments passed to methods

Value

For fm_mesh_2d and fm_mesh_3d, returns a list with elements vertex and triangle/tetra, vec-
tors of integer labels for which connected component they belong, and info, a data. frame with

columns

component Connected component integer label.

nv The number of vertices in the component.

nT The number of triangles/tetrahedrons in the component.

area/volume The surface area or volume associated with the component. Component labels

are not comparable across different meshes, but some ordering stability is guar-
anteed by initiating each component from the lowest numbered triangle when-
ever a new component is initiated.

For fm_segm, returns a list of segments, each with component either a single closed loop of seg-
ments, or an open segment chain.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also
fm_mesh_2d(), fm_rcdt_2d(), fm_mesh_3d(), fm_segm()

Examples

Construct two simple meshes:

loc <- matrix(c(o, 1, @, 1), 2, 2)

mesh1l <- fm_mesh_2d(loc = loc, max.edge = 0.1)

bnd <- fm_nonconvex_hull(loc, 0.3)

mesh2 <- fm_mesh_2d(boundary = bnd, max.edge = 0.1)

Compute connectivity information:
connl <- fm_components(mesh1)

conn2 <- fm_components(mesh2)

One component, simply connected mesh
connl$info

Two disconnected components
conn2$info

Extract the subset mesh for each component:

mailto:Finn.Lindgren@gmail.com

fm_contains

(Note: some information is lost, such
and boundary edge labels.)
mesh3_1 <- fm_rcdt_2d_inla(
loc = mesh2$loc,
tv = mesh2$graph$tvlconn2$triangle ==
delaunay = FALSE
)
mesh3_2 <- fm_rcdt_2d_inla(
loc = mesh2$loc,
tv = mesh2$graph$tvlconn2$triangle ==
delaunay = FALSE
)

if (require("ggplot2")) {
ggplot() +

as fixed segments,

1 ’

2,

, drop = FALSE],

, drop = FALSE],

geom_fm(data = mesh3_1, fill = "red”, alpha = 0.5) +

geom_fm(data = mesh3_2, fill

}

(m <~ fm_mesh_3d(
matrix(c(1, o0, 0, @, 1, @, 0, 0, 1, 0@

matrix(c(1, 2, 3, 4), 1, 4, byrow = TRUE)

)
Compute connectivity information:
(conn <- fm_components(m))

(segm <- c(
fm_segm(

matrix(c(e, o, 1, o, 1, 1, @, 1), 4, 2,
matrix(c(1, 2, 2, 3, 3, 4, 4, 1), 4, 2,

),

fm_segm(
matrix(c(e, o, 1, o, 1, 1, @, 1), 4, 2,
matrix(c(3, 4, 1, 2, 2, 3), 3, 2, byrow
is.bnd = FALSE

)

)

Compute connectivity information:
(conn <- lapply(segm, fm_components))
(conn2 <- fm_components(segm))

, 0,

"blue”, alpha = 0.5)

0), 4, 3, byrow = TRUE),

byrow = TRUE),
byrow = TRUE)

byrow = TRUE),
= TRUE),

41

fm_contains

Check which mesh triangles are inside a polygon

Description

Wrapper for the sf: :st_contains() (previously sp::over()) method to find triangle centroids

or vertices inside sf or sp polygon objects

42 fm_contains
Usage
fm_contains(x, y, ...)

S3 method for class 'Spatial'
fm_contains(x, y, ...)

S3 method for class 'sf'
fm_contains(x, y, ...)

S3 method for class 'sfc'

fm_contains(x, y, ..., type = c("centroid”, "vertex"))

Arguments
X geometry (typically an sf or sp: : SpatialPolygons object) for the queries
y an fm_mesh_2d() object

Passed on to other methods

type the query type; either 'centroid' (default, for triangle centroids), or 'vertex'
(for mesh vertices)

Value

List of vectors of triangle indices (when type is 'centroid') or vertex indices (when type is
'vertex'). The list has one entry per row of the sf object. Use unlist(fm_contains(...)) if
the combined union is needed.

Author(s)

Haakon Bakka, bakka@r-inla.org, and Finn Lindgren Finn.Lindgren @ gmail.com

Examples

Create a polygon and a mesh
obj <- sf::st_sfc(
sf::st_polygon(
list(rbind(
c(o, 0),
c(50, 0),
c(50, 50),
c(o, 50),
c(0, 0)
)
),
crs = fm_crs("longlat_globe")
)

mesh <- fm_rcdt_2d_inla(globe = 2, crs = fm_crs("sphere"))

2 vertices found in the polygon
fm_contains(obj, mesh, type = "vertex")

mailto:bakka@r-inla.org
mailto:Finn.Lindgren@gmail.com

fm_CRS

3 triangles found in the polygon
fm_contains(obj, mesh)

Multiple transformations can lead to slightly different results
due to edge cases:

4 triangles found in the polygon

fm_contains(

43

obj,
fm_transform(mesh, crs = fm_crs("mollweide_norm"))
)
fm_CRS Create a coordinate reference system object
Description

Creates either a CRS object or an inla.CRS object, describing a coordinate reference system
Usage
fm_CRS(x, ..., units = NULL, oblique = NULL)

S3 method for class 'fm_CRS'
is.na(x)

S3 method for class 'crs'
fm_CRS(x, ..., units = NULL, oblique = NULL)

S3 method for class 'fm_crs'
fm_CRS(x, ..., units = NULL, oblique = NULL)

S3 method for class 'Spatial'
fm_CRS(x, ..., units = NULL, oblique = NULL)

S3 method for class 'fm_CRS'
fm_CRS(x, ..., units = NULL, oblique = NULL)

S3 method for class 'SpatVector'
fm_CRS(x, ..., units = NULL, oblique = NULL)

S3 method for class 'SpatRaster'’
fm_CRS(x, ..., units = NULL, oblique = NULL)

S3 method for class 'sf'
fm_CRS(x, ..., units = NULL, oblique = NULL)

44

S3 method
fm_CRS(x,

S3 method
fm_CRS(X,

S3 method
fm_CRS(x,

S3 method
fm_CRS(x,

S3 method
fm_CRS(x,

S3 method
fm_CRS(x,

S3 method
fm_CRS(x,

S3 method
fm_CRS(x,

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

Default S3 method:

fm_CRS(
X,
oblique =
projargs =

NULL,

NULL,

sfc
NULL, oblique

lsf‘gl
NULL, oblique

'fm_mesh_2d'
NULL, oblique

'fm_lattice'
NULL, oblique

'fm_segm'
NULL, oblique

"fm_collect'
NULL, oblique

'matrix’
NULL, oblique

'CRS'
NULL, oblique

doCheckCRSArgs = NULL,
args = NULL,

SRS_string

L

= NULL,

units = NULL

)

S3 method
is.na(x)

S3 method
fm_CRS(x,

Arguments

X

units

for class

for class

., units =

Object to convert to CRS or to extract CRS information from.

Additional parameters, passed on to sub-methods.

'inla.CRS'

"inla.CRS'
NULL, oblique

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

fm_CRS

character; if non-NULL, fm_length_unit()<- is called to change the length
units of the crs object. If NULL (default), the length units are not changed. (From

fm_CRS 45

version 0.3.0.9013)

oblique Vector of length at most 4 of rotation angles (in degrees) for an oblique pro-
jection, all values defaulting to zero. The values indicate (longitude, latitude,
orientation, orbit), as explained in the Details section for fm_crs().

projargs Either 1) a projection argument string suitable as input to sp: :CRS, or 2) an
existing CRS object, or 3) a shortcut reference string to a predefined projection;
run names (fm_wkt_predef()) for valid predefined projections. (projargs is a
compatibility parameter that can be used for the default fm_CRS () method)

doCheckCRSArgs ignored.

args An optional list of name/value pairs to add to and/or override the PROJ4 argu-
ments in projargs. name=value is converted to "+name=value”, and name=NA
is converted to "+name”.

SRS_string a WKT?2 string defining the coordinate system; see sp: : CRS. This takes prece-
dence over projargs.

Details

The first two elements of the oblique vector are the (longitude, latitude) coordinates for the oblique
centre point. The third value (orientation) is a counterclockwise rotation angle for an observer
looking at the centre point from outside the sphere. The fourth value is the quasi-longitude (orbit
angle) for a rotation along the oblique observers equator.

Simple oblique: oblique=c(9@, 45)
Polar: oblique=c(@, 90)
Quasi-transversal: oblique=c(@, @, 90)

Satellite orbit viewpoint: oblique=c(lon@-time*v1, @, orbitangle, orbit@+time*v2), where
lon@ is the longitude at which a satellite orbit crosses the equator at time=0, when the satellite is
at an angle orbit@ further along in its orbit. The orbital angle relative to the equatorial plane is
orbitangle, and v1 and v2 are the angular velocities of the planet and the satellite, respectively.
Note that "forward" from the satellite’s point of view is "to the right" in the projection.

When oblique[2] or oblique[3] are non-zero, the resulting projection is only correct for perfect
spheres.

Value

Either an sp: :CRS object or an inla.CRS object, depending on if the coordinate reference system
described by the parameters can be expressed with a pure sp: : CRS object or not.

An S3 inla.CRS object is a list, usually (but not necessarily) containing at least one element:

crs The basic sp: : CRS object

Functions

* is.na(fm_CRS): Check if a fm_CRS has NA crs information and NA obliqueness

* is.na(inla.CRS): Check if a inla.CRS has NA crs information and NA obliqueness

46

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_crs

fm_crs(), sp: :CRS(), fm_crs_wkt, fm_crs_is_identical ()

Examples

if (fm_safe_sp()) {
fm_CRS("longlat_globe")
fm_CRS("lambert_globe")
fm_CRS("mollweide_norm")
fm_CRS("hammer_globe")
fm_CRS("sphere”)

crs1 <-
crs2 <-
crs3 <-
crs4 <-
crsb <-
crs6 <-

fm_CRS("globe™)

fm_crs

Obtain coordinate reference system object

Description

Obtain an sf: :crs or fm_crs object from a spatial object, or convert crs information to construct a
new sf: :crs object.

Usage

fm_crs(x,

., units =

fm_crs_oblique(x)

S3 method for class

st_crs(x,

.2

S3 method for class

x$name

Default S3 method:

fm_crs(x,

., units =

S3 method for class

fm_crs(x,

., units =

S3 method for class

fm_crs(x,

., units =

NULL, oblique =

"fm_crs'

"fm_crs'

NULL, oblique

crs
NULL, oblique

"fm_crs'
NULL, oblique

NULL)

NULL)

NULL)

NULL)

mailto:Finn.Lindgren@gmail.com

fm_crs

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

S3 method
fm_crs(x,

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

for class

., units =

'fm_CRS'
NULL, oblique

'character’
NULL, oblique

'Spatial’
NULL, oblique

'SpatVector'
NULL, oblique

'SpatRaster’
NULL, oblique

ls,f_‘l
NULL, oblique

sfc
NULL, oblique

ls,f_‘gl
NULL, oblique

'"fm_mesh_2d'
NULL, oblique

"fm_mesh_1d"'
NULL, oblique

'"fm_mesh_3d'
NULL, oblique

'fm_tensor'
NULL, oblique

"fm_collect'
NULL, oblique

'fm_lattice_2d
NULL, oblique

'fm_segm'
NULL, oblique

"fm_list'
NULL, oblique

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL)

NULL,

NULL,

NULL)

NULL)

NULL)

.multi

.multi

FALSE)

FALSE)

47

48 fm_crs
S3 method for class 'matrix'
fm_crs(x, ..., units = NULL, oblique = NULL)
S3 method for class 'fm_list'
fm_CRS(x, ..., units = NULL, oblique = NULL)
fm_wkt_predef ()
S3 method for class 'inla.CRS'
fm_crs(x, ..., units = NULL, oblique = NULL)
Arguments
X Object to convert to crs or to extract crs information from. If character, a

string suitable for sf: :st_crs(x), or the name of a predefined wkt string from
“names(fm_wkt_predef())*.

Additional parameters. Not currently in use.

units character; if non-NULL, fm_length_unit()<- is called to change the length
units of the crs object. If NULL (default), the length units are not changed. (From
version 0.3.0.9013)

oblique Numeric vector of length at most 4 of rotation angles (in degrees) for an oblique
projection, all values defaulting to zero. The values indicate (longitude, latitude,
orientation, orbit), as explained in the Details section below. When oblique
is non-NULL, used to override the obliqueness parameters of a fm_crs object.
When NA, remove obliqueness from the object, resulting in a return class of
sf::st_crs(). When NULL, pass though any oblique information in the object,
returning an fm_crs() object if needed.

name element name

.multi logical; If TRUE, return a list of fm_crs objects for classes that support multiple
spaces. Default FALSE

Details

The first two elements of the oblique vector are the (longitude, latitude) coordinates for the oblique
centre point. The third value (orientation) is a counter-clockwise rotation angle for an observer
looking at the centre point from outside the sphere. The fourth value is the quasi-longitude (orbit
angle) for a rotation along the oblique observers equator.

Simple oblique: oblique=c(@, 45)

Polar: oblique=c(@, 90)

Quasi-transversal: oblique=c(@, @, 90)

Satellite orbit viewpoint: oblique=c(lon@-time*v1, @, orbitangle, orbit@+timexv2), where
lon@ is the longitude at which a satellite orbit crosses the equator at time=@, when the satellite is
at an angle orbit@ further along in its orbit. The orbital angle relative to the equatorial plane is

orbitangle, and v1 and v2 are the angular velocities of the planet and the satellite, respectively.
Note that "forward" from the satellite’s point of view is "to the right" in the projection.

When oblique[2] or oblique[3] are non-zero, the resulting projection is only correct for perfect
spheres.

fm_crs

Value

49

Either an sf::crs object or an fm_crs object, depending on if the coordinate reference system
described by the parameters can be expressed with a pure crs object or not.

A crsobject (sf::st_crs())ora fm_crs object. An S3 fm_crs object is a list with elements crs
and oblique.

fm_wkt_predef returns a WKT2 string defining a projection

Methods (by class)

* fm_crs(fm_tensor): By default returns the crs of the first space in the tensor product space.

e fm_crs(fm_collect): By default returns the crs of the first space in the collection.

e fm_crs(fm_list): returns a list of "crs’ objects, one for each list element

Methods (by generic)

e st_crs(fm_crs): st_crs(x,
is a fm_crs object.

...) is equivalent to fm_crs(x, oblique =NA, ...) when x

* $: For a fm_crs object x, x$name calls the accessor method for the crs object inside it. If
name is "crs", the internal crs object itself is returned. If name is "oblique", the internal oblique
angle parameter vector is returned.

Functions

e fm_crs_oblique(): Return NA for object with no oblique information, and otherwise a length
4 numeric vector.

e fm_CRS(fm_list): returns a list of "CRS’ objects, one for each list element

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

sf::st_crs(), fm_crs_wkt

fm_crs_is_null

fm_crs<-(), fm_crs_oblique<-()

Examples

crsi
crs2
crs3
crs4
crs5
crs6

fm_crs("longlat_globe")
fm_crs("lambert_globe")
fm_crs("mollweide_norm")
fm_crs("hammer_globe")
fm_crs("sphere")
fm_crs("globe”)

names (fm_wkt_predef())

mailto:Finn.Lindgren@gmail.com

50 fim_crs<-

fm_crs<- Assignment operators for crs information objects

Description

Assigns new crs information.
Usage

fm_crs(x) <- value

fm_crs_oblique(x) <- value

S3 replacement method for class 'NULL'
fm_crs(x) <- value

S3 replacement method for class 'NULL'
fm_crs_oblique(x) <- value

S3 replacement method for class 'fm_segm'
fm_crs(x) <- value

S3 replacement method for class 'fm_list'
fm_crs(x) <- value

S3 replacement method for class 'fm_mesh_2d'
fm_crs(x) <- value

S3 replacement method for class 'fm_collect'
fm_crs(x) <- value

S3 replacement method for class 'fm_lattice_2d'
fm_crs(x) <- value

S3 replacement method for class 'sf'
fm_crs(x) <- value

S3 replacement method for class 'sfg
fm_crs(x) <- value

S3 replacement method for class 'sfc

fm_crs(x) <- value

S3 replacement method for class 'Spatial'
fm_crs(x) <- value

S3 replacement method for class 'crs

fm_crs<- 51

fm_crs_oblique(x) <- value

S3 replacement method for class 'CRS'
fm_crs_oblique(x) <- value

S3 replacement method for class 'fm_CRS'
fm_crs_oblique(x) <- value

S3 replacement method for class 'fm_crs'
fm_crs_oblique(x) <- value

S3 replacement method for class 'fm_segm'
fm_crs_oblique(x) <- value

S3 replacement method for class 'fm_mesh_2d'
fm_crs_oblique(x) <- value

S3 replacement method for class 'fm_collect'
fm_crs_oblique(x) <- value

S3 replacement method for class 'fm_lattice_2d'
fm_crs_oblique(x) <- value

S3 replacement method for class 'inla.CRS'
fm_crs_oblique(x) <- value

Arguments
X Object to assign crs information to
value For fm_crs<-(), object supported by fm_crs(value).
For fm_crs_oblique<-(), NA or a numeric vector, see the oblique argument
for fm_crs(). For assignment, NULL is treated as NA.
Value
The modified object
Functions

e fm_crs(x) <- value: Automatically converts the input value with fm_crs(value), fm_crs(value,
oblique = NA), fm_CRS(value), or fm_CRS(value, oblique = NA), depending on the type of
X.

e fm_crs_oblique(x) <- value: Assigns new oblique information.

See Also

fm_crs()

52 fim_crs_is_identical

Examples

x <- fm_segm()
fm_crs(x) <- fm_crs("+proj=longlat")
fm_crs(x)$projdstring

fm_crs_is_identical Check if two CRS objects are identical

Description

Check if two CRS objects are identical

Usage

fm_crs_is_identical(crs@, crsl, crsonly = FALSE)

Arguments
crso, crsi Two sf::crs, sp: :CRS, fm_crs or inla. CRS objects to be compared.
crsonly logical. If TRUE and any of crs@ and crs1 are fm_crs or inla.CRS objects,
extract and compare only the sf: :crs or sp: : CRS aspects. Default: FALSE
Value

logical, indicating if the two crs objects are identical in the specified sense (see the crsonly argu-
ment)

See Also

fm_crs(), fm_CRS(), fm_crs_is_null()

Examples

crs@ <- crs1 <- fm_crs("longlat_globe")

fm_crs_oblique(crsl) <- c(0, 90)

print(c(
fm_crs_is_identical(crs@, crso),
fm_crs_is_identical(crso, crsi),
fm_crs_is_identical(crs@, crsi1, crsonly = TRUE)

)

fm_crs_is_null 53

fm_crs_is_null Check if a crs is NULL or NA

Description

Methods of checking whether various kinds of CRS objects are NULL or NA. Logically equivalent
to either is.na(fm_crs(x)) or is.na(fm_crs(x, oblique = NA)), but with a short-cut pre-check
for is.null(x).

Usage

fm_crs_is_null(x, crsonly = FALSE)

S3 method for class 'fm_crs'
is.na(x)

Arguments

X An object supported by fm_crs(x)

crsonly For crs objects with extended functionality, such as fm_crs() objects with oblique
information, crsonly = TRUE only checks the plain CRS part.

Value

logical

Functions

e fm_crs_is_null(): Check if an object is or has NULL or NA CRS information. If not NULL,
is.na(fm_crs(x)) is returned. This allows the input to be e.g. a proj4string or epsg number,
since the default fm_crs() method passes its argument on to sf: :st_crs().

e is.na(fm_crs): Check if a fm_crs has NA crs information and NA obliqueness

See Also
fm_crs(), fm_CRS(), fm_crs_is_identical ()

Examples

fm_crs_is_null(NULL)

fm_crs_is_null(27700)

fm_crs_is_null(fm_crs())

fm_crs_is_null(fm_crs(27700))

fm_crs_is_null(fm_crs(oblique = c(1, 2, 3, 4)))
fm_crs_is_null(fm_crs(oblique = c(1, 2, 3, 4)), crsonly = TRUE)
fm_crs_is_null(fm_crs(27700, oblique = c(1, 2, 3, 4)))
fm_crs_is_null(fm_crs(27700, oblique = c(1, 2, 3, 4)), crsonly = TRUE)

54 fm_crs_plot

fm_crs_plot Plot CRS and fin_crs objects

Description

[Experimental] Plot the outline of a crs or fm_crs() projection, with optional graticules (trans-
formed parallels and meridians) and Tissot indicatrices.

Usage
fm_crs_plot(
X!
x1im = NULL,
ylim = NULL,

outline = TRUE,
graticule = c(15, 15, 45),
tissot = c(30, 30, 30),

asp =1,
add = FALSE,
eps = 0.05,

)

fm_crs_graticule(
X,
by = c(15, 15, 45),
add = FALSE,
do.plot = TRUE,
eps = 0.05,

)

fm_crs_tissot(
X,
by = c(30, 30, 30),
add = FALSE,
do.plot = TRUE,
eps = 0.05,

diff.eps = 0.01,

Arguments

X A crsor fm_crs() object.

x1lim Optional x-axis limits.

fm_crs_plot
ylim

outline

graticule

tissot

asp
add

eps

by

do.plot
diff.eps

Value

NULL, invisibly

Functions

55

Optional y-axis limits.
Logical, if TRUE, draw the outline of the projection.

Vector of length at most 3, to plot meridians with spacing graticule[1] de-
grees and parallels with spacing graticule[2] degrees. graticule[3] option-
ally specifies the spacing above and below the first and last parallel. When
graticule[1]==0 no meridians are drawn, and when graticule[2]==0 no
parallels are drawn. Use graticule=NULL to skip drawing a graticule.

Vector of length at most 3, to plot Tissot’s indicatrices with spacing tissot[1]
degrees and parallels with spacing tissot[2] degrees. tissot[3] specifices a
scaling factor. Use tissot=NULL to skip drawing a Tissot’s indicatrices.

The aspect ratio for the plot, default 1.

If TRUE, add the projecton plot to an existing plot.

Clipping tolerance for rudimentary boundary clipping

Additional arguments passed on to the internal calls to plot and lines.

The spacing between (long, lat, long_at_poles) graticules/indicatrices,
see the graticule and tissot arguments.

logical; If TRUE, do plotting

Pre-scaling

e fm_crs_graticule(): [Experimental] Constructs graticule information for a given CRS or
fm_crs() and optionally plots the graticules. Returns a list with two elements, meridians
and parallels, which are Spatiallines objects.

e fm_crs_tissot(): [Experimental] Constructs Tissot indicatrix information for a given CRS
or fm_crs() and optionally plots the indicatrices. Returns a list with one element, tissot,
which is a SpatiallLines object.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_crs()

Examples

if (require(”"sf") && require(”sp")) {
for (projtype in c(
"longlat_norm",
"lambert_norm”,
"mollweide_norm",

mailto:Finn.Lindgren@gmail.com

56

"hammer_norm”
N A
fm_crs_plot(fm_crs(projtype), main = projtype)
}
3

if (require(”sf") && require("sp”)) {
oblique <- c(@, 45, 45, 0)
for (projtype in c(
"longlat_norm"”,
"lambert_norm”,
"mollweide_norm",
"hammer_norm"
N A
fm_crs_plot(
fm_crs(projtype, oblique = oblique),
main = paste("oblique”, projtype)

fm_crs_wkt

fm_crs_wkt Handling CRS/WKT

Description

Get and set CRS object or WKT string properties.

Usage

fm_wkt_is_geocent (wkt)
fm_crs_is_geocent(crs)
fm_wkt_get_ellipsoid_radius(wkt)
fm_crs_get_ellipsoid_radius(crs)
fm_ellipsoid_radius(x)

Default S3 method:
fm_ellipsoid_radius(x)

S3 method for class 'character'
fm_ellipsoid_radius(x)

fm_wkt_set_ellipsoid_radius(wkt, radius)

fm_crs_wkt

fm_ellipsoid_radius(x) <- value

S3 replacement method for class 'character'
fm_ellipsoid_radius(x) <- value

S3 replacement method for class 'CRS'
fm_ellipsoid_radius(x) <- value

S3 replacement method for class 'fm_CRS'
fm_ellipsoid_radius(x) <- value

S3 replacement method for class 'crs
fm_ellipsoid_radius(x) <- value

S3 replacement method for class 'fm_crs'
fm_ellipsoid_radius(x) <- value

fm_crs_set_ellipsoid_radius(crs, radius)
fm_wkt_unit_params()

fm_wkt_get_lengthunit(wkt)
fm_wkt_set_lengthunit(wkt, unit, params = NULL)
fm_crs_get_lengthunit(crs)
fm_crs_set_lengthunit(crs, unit)
fm_length_unit(x)

Default S3 method:
fm_length_unit(x)

S3 method for class 'character'
fm_length_unit(x)

fm_length_unit(x) <- value

S3 replacement method for class 'character
fm_length_unit(x) <- value

S3 replacement method for class 'CRS'
fm_length_unit(x) <- value

S3 replacement method for class 'fm_CRS'
fm_length_unit(x) <- value

57

58

fm_crs_wkt

S3 replacement method for class 'crs'
fm_length_unit(x) <- value

S3 replacement method for class 'fm_crs'
fm_length_unit(x) <- value

fm_wkt(crs)

fm_proj4string(crs)

fm_wkt_tree_projection_type(wt)

fm_wkt_projection_type(wkt)

fm_crs_projection_type(crs)

fm_crs_bounds(crs, warn.unknown = FALSE)

S3 replacement method for class 'inla.CRS'
fm_ellipsoid_radius(x) <- value

S3 replacement method for class 'inla.CRS'
fm_length_unit(x) <- value

Arguments
wkt
crs
X
radius
value

unit

params

wt

warn.unknown

Value

A WKT?2 character string

An sf::crs, sp::CRS, fm_crs or inla.CRS object
crs object to extract value from or assign values in
numeric; The new radius value

Value to assign

character, name of a unit. Supported names are "metre", "kilometre", and the

aliases "meter", "m", International metre", "kilometer", and "km", as defined by
fm_wkt_unit_params or the params argument.

Length unit definitions, in the list format produced by fm_wkt_unit_params(),
Default: NULL, which invokes fm_wkt_unit_params()

A parsed wkt tree, see fm_wkt_as_wkt_tree()

logical, default FALSE. Produce warning if the shape of the projection bounds is
unknown.

For fm_wkt_unit_params, a list of named unit definitions

For fm_wkt_get_lengthunit, a list of length units used in the wkt string, excluding the ellipsoid

radius unit.

fm_detect_manifold 59

For fm_wkt_set_lengthunit, a WKT?2 string with altered length units. Note that the length unit
for the ellipsoid radius is unchanged.

For fm_crs_get_lengthunit, a list of length units used in the wkt string, excluding the ellipsoid
radius unit.

For fm_length_unit<-, a crs object with altered length units. Note that the length unit for the
ellipsoid radius is unchanged.

Functions

o fm_wkt(): Returns a WKT?2 string, for any input supported by fm_crs().
e fm_proj4string(): Returns a proj4 string, for any input supported by fm_crs().

o fm_wkt_tree_projection_type(): Returns "longlat", "lambert", "mollweide", "hammer",
"tmerc", or NULL

e fm_wkt_projection_type(): See fm_wkt_tree_projection_type
e fm_crs_projection_type(): See fm_wkt_tree_projection_type

e fm_crs_bounds(): Returns bounds information for a projection, as a list with elements type
("rectangle" or "ellipse"), x1im, ylim, and polygon.
Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_crs()

Examples

cl <- fm_crs("globe")
fm_length_unit(c1)
fm_length_unit(c1) <- "m"
fm_length_unit(c1)

fm_detect_manifold Detect manifold type

Description

Detect if a 2d object is on "R2", "S2", or "M2"

mailto:Finn.Lindgren@gmail.com

60 fm_diameter

Usage

fm_detect_manifold(x)
fm_crs_detect_manifold(x)

S3 method for class 'crs'
fm_detect_manifold(x)

S3 method for class 'CRS'
fm_detect_manifold(x)

S3 method for class 'numeric'
fm_detect_manifold(x)

S3 method for class 'matrix'
fm_detect_manifold(x)

S3 method for class 'fm_mesh_2d'
fm_detect_manifold(x)
Arguments

X Object to investigate

Value

A string containing the detected manifold classification

Functions

e fm_crs_detect_manifold(): Detectifacrsison"R2" or "S2" (if fm_crs_is_geocent(crs)
is TRUE). Returns NA_character_ if the crs is NULL or NA.

Examples

fm_detect_manifold(1:4)
fm_detect_manifold(rbind(c(1, @, @), c(@, 1, @), c(1, 1, 0)))
fm_detect_manifold(rbind(c(1, @, @), c(@, 1, @), c(@, 0, 1)))

fm_diameter Diameter bound for a geometric object

Description

Find an upper bound to the convex hull of a point set or function space

fm_diameter 61

Usage
fm_diameter(x, ...)

S3 method for class 'matrix
fm_diameter(x, manifold = NULL, ...)

S3 method for class 'sf'
fm_diameter(x, ...)

S3 method for class 'sfg'
fm_diameter(x, ...)

S3 method for class 'sfc'
fm_diameter(x, ...)

S3 method for class 'fm_lattice_2d'
fm_diameter(x, ...)

S3 method for class 'fm_mesh_1d'
fm_diameter(x, ...)

S3 method for class 'fm_mesh_2d'
fm_diameter(x, ...)

S3 method for class 'fm_segm'
fm_diameter(x, ...)

S3 method for class 'fm_mesh_3d'
fm_diameter(x, ...)

S3 method for class 'fm_tensor'
fm_diameter(x, ...)

S3 method for class 'fm_collect'
fm_diameter(x, ...)

S3 method for class 'fm_list'

fm_diameter(x, ...)
Arguments
X A point set as an n X d matrix, or an fm_mesh_2d/1d/sf related object.

Additional parameters passed on to the submethods.

manifold Character string specifying the manifold type. Default for matrix input is to
treat the point set with Euclidean R? metrics. Use manifold="52" for great
circle distances on a sphere centred at the origin.

62 fm_dof

Value

A scalar, upper bound for the diameter of the convex hull of the point set. For multi-domain spaces
(e.g. fm_tensor () and fm_collect()), a vector of upper bounds for each domain is returned.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

Examples

fm_diameter(matrix(c(@, 1, 1, @, @, @, 1, 1), 4, 2))

fm_dof Function spece degrees of freedom

Description

Obtain the degrees of freedom of a function space, i.e. the number of basis functions it uses.

Usage
fm_dof (x)

S3 method for class 'fm_mesh_1d'
fm_dof (x)

S3 method for class 'fm_mesh_2d'
fm_dof (x)

S3 method for class 'fm_mesh_3d'
fm_dof (x)

S3 method for class 'fm_tensor'
fm_dof (x)

S3 method for class 'fm_collect'
fm_dof (x)

S3 method for class 'fm_lattice_2d'
fm_dof (x)

S3 method for class 'fm_lattice_Nd'
fm_dof (x)

Arguments

X A function space object, such as fm_mesh_1d() or fm_mesh_2d()

mailto:Finn.Lindgren@gmail.com

fm_evaluate

Value

An integer

Examples

fm_dof (fmexample$mesh)

63

fm_evaluate Methods for projecting to/from mesh objects

Description

Calculate evaluation information and/or evaluate a function defined on a mesh or function space.
Usage
fm_evaluate(...)

Default S3 method:
fm_evaluate(mesh, field, ...)

S3 method for class 'fm_evaluator'
fm_evaluate(projector, field, ...)

S3 method for class 'fm_basis'
fm_evaluate(basis, field, ...)

fm_evaluator(...)

Default S3 method:
fm_evaluator(...)

S3 method for class 'fm_mesh_3d'
fm_evaluator(mesh, loc = NULL, lattice = NULL, dims = NULL, ...)

S3 method for class 'fm_mesh_2d'
fm_evaluator(mesh, loc = NULL, lattice = NULL, crs = NULL, ...)

S3 method for class 'fm_mesh_1d'
fm_evaluator(mesh, loc = NULL, xlim = mesh$interval, dims = 100, ...)

fm_evaluator_lattice(mesh, ...)

Default S3 method:
fm_evaluator_lattice(mesh, dims = 100, ...)

64 fm_evaluate

S3 method for class 'fm_bbox'
fm_evaluator_lattice(mesh, dims = 100, ...)

S3 method for class 'fm_mesh_2d'
fm_evaluator_lattice(

mesh,
xlim = NULL,
ylim = NULL,
dims = c(100, 100),
projection = NULL,
crs = NULL,
)
Arguments
Additional arguments passed on to methods.
mesh An fm_mesh_1d, fm_mesh_2d, or other object supported by a sub-method.
field Basis function weights, one per mesh basis function, describing the function to
be evaluated at the projection locations
projector An fm_evaluator object.
basis An fm_basis object.
loc Projection locations. Can be a matrix, SpatialPoints, SpatialPointsDataFrame,
sf, sfc, or sfg object.
lattice An fm_lattice_2d() object.
dims Lattice dimensions.
crs An optional CRS or inla.CRS object associated with loc and/or lattice.
x1lim X-axis limits for a lattice. For R2 meshes, defaults to covering the domain.
ylim Y-axis limits for a lattice. For R2 meshes, defaults to covering the domain.
projection One of c("default”, "longlat”, "longsinlat”, "mollweide").
Value

A vector or matrix of the evaluated function

An fm_evaluator object

Methods (by class)

e fm_evaluate(default): The default method calls proj = fm_evaluator(mesh, ...), fol-
lowed by fm_evaluate(proj, field).

Functions

* fm_evaluate(): Returns the field function evaluated at the locations determined by an fm_evaluator
object. fm_evaluate(mesh, field = field, ...) isashortcutto fm_evaluate(fm_evaluator(mesh,
...), field = field).

fm_evaluate 65

e fm_evaluator(): Returns an fm_evaluator list object with evaluation information. The
proj element is a fm_basis object, containing (at least) a mapping matrix A and a logical
vector ok, that indicates which locations were mappable to the input mesh. For fm_mesh_2d
input, proj also contains a bary fm_bary object, with the barycentric coordinates within the
triangle each input location falls in.

e fm_evaluator(default): The default method calls fm_basis and creates a basic fm_evaluator
object

e fm_evaluator(fm_mesh_3d): The ... arguments are passed on to fm_evaluator_lattice()
if no loc or lattice is provided.

e fm_evaluator(fm_mesh_2d): The ... arguments are passed on to fm_evaluator_lattice()
if no loc or lattice is provided.

* fm_evaluator_lattice(): Create a lattice object by default covering the input mesh.

e fm_evaluator_lattice(default): Creates an fm_lattice_2d() object, by default cover-
ing the input mesh.

* fm_evaluator_lattice(fm_bbox): Creates an fm_lattice_Nd() object, by default cover-
ing the input mesh.

* fm_evaluator_lattice(fm_mesh_2d): Creates an fm_lattice_2d() object, by default cov-
ering the input mesh.

Author(s)

Finn Lindgren Finn.Lindgren @gmail.com

See Also
fm_mesh_2d(), fm_mesh_1d(), fm_lattice_2d()

Examples

if (TRUE) {
n <- 20
loc <- matrix(runif(n * 2), n, 2)
mesh <- fm_rcdt_2d_inla(loc, refine = list(max.edge = 0.05))
proj <- fm_evaluator(mesh)
field <- cos(mesh$loc[, 1] * 2 * pi * 3) * sin(mesh$loc[, 2] * 2 * pi * 7)
image(proj$x, projs$y, fm_evaluate(proj, field))

if (require("ggplot2"”) &&

require(”ggpolypath”)) {

ggplot() +

gg(data = fm_as_sfc(mesh), col = field)
#

mailto:Finn.Lindgren@gmail.com

66 fim_fem

fm_fem Compute finite element matrices

Description

Compute finite element mass and structure matrices
Usage
fm_fem(mesh, order = 2, ...)

S3 method for class 'fm_mesh_1d'
fm_fem(mesh, order = 2, ...)

S3 method for class 'fm_mesh_2d'
fm_fem(mesh, order = 2, aniso = NULL, ...)

S3 method for class 'fm_tensor'
fm_fem(mesh, order = 2, ...)

S3 method for class 'fm_collect'
fm_fem(mesh, order = 2, ...)

S3 method for class 'fm_mesh_3d'

fm_fem(mesh, order = 2, ...)

Arguments
mesh fm_mesh_1d(), fm_mesh_2d (), or other supported mesh class object
order integer; the maximum operator order

Currently unused

aniso If non-NULL, a 1ist(gamma, v). Calculates anisotropic structure matrices (in
addition to the regular) for v and v for an anisotropic operator V - HV, where
H = ~I +vv'. Currently (2023-08-05) the fields need to be given per vertex.

Value
fm_fem. fm_mesh_1d: A list with elements c@, c1, g1, g2, etc. When mesh$degree == 2, also g01,
g02, and g12.

fm_fem.fm_mesh_2d: A list with elements c@, c1, g1, va, ta, and more if order > 1. When aniso
is non-NULL, also g1aniso matrices, etc.

fm_fem.fm_tensor: A list with elements cc, g1, g2.

fm_fem.fm_collect: A list with elements c@, c1, g1, g2, etc, and cc (c@ for every model except
fm_mesh_1d with degree=2, for which it is c1). If the base type for the collection provides va and
ta values, those are also returned.

fm_fem.fm_mesh_3d: A list with elements co, c1, g1, g2, va, ta, and more if order > 2.

fm_gmrf

Examples

67

names (fm_fem(fm_mesh_1d(1:4), order = 3))
names (fm_fem(fmexample$mesh, order = 3))

fm_gmrf

SPDE, GMRF, and Matérn process methods

Description

[Experimental] Methods for SPDEs and GMRFs.

Usage

fm_matern_precision(x, alpha, rho, sigma)

fm_matern_sample(x, alpha = 2, rho, sigma, n = 1, loc = NULL)

fm_covariance(Q, A1 = NULL, A2

NULL, partial = FALSE)

fm_sample(n, Q, mu = @, constr = NULL)

Arguments

X

alpha

rho

sigma

loc

Q
A1, A2
partial

mu

constr

A mesh object, e.g. from fm_mesh_1d(), fm_mesh_2d(), or other object with
supporting fm_fem() and fm_manifold_dim() methods.

The SPDE operator order. The resulting smoothness index is nu = alpha - dim
/ 2. Supports integers 1, 2, 3, etc. that give nu > 0.

The Matérn range parameter (scale parameter kappa = sqrt(8 * nu) / rho)
The nominal Matérn std.dev. parameter
The number of samples to generate

locations to evaluate the random field, compatible with fm_evaluate(x, loc =
loc, field=...)
A precision matrix

Matrices, typically obtained from fm_basis() and/or fm_block().

[Experimental] If TRUE, compute the partial inverse of Q, i.e. the elements
of the inverse corresponding to the non-zero pattern of Q. (Note: This can be
done efficiently with the Takahashi recursion method, but to avoid an RcppEigen
dependency this is currently disabled, and a slower method is used until the
efficient method is reimplemented.)

Optional mean vector

Optional list of constraint information, with elements A and e. Should only be
used for a small number of exact constraints.

68 fm_hexagon_lattice

Value

fm_matern_sample() returns a matrix, where each column is a sampled field. If loc is NULL, the
fm_dof (mesh) basis weights are given. Otherwise, the evaluated field at the nrow(loc) locations
loc are given (from version 0.1.4.9001)

Functions

e fm_matern_precision(): Construct the (sparse) precision matrix for the basis weights for
Whittle-Matérn SPDE models. The boundary behaviour is determined by the provided mesh
function space.

e fm_matern_sample(): Simulate a Matérn field given a mesh and covariance function param-
eters, and optionally evaluate at given locations.

* fm_covariance(): Compute the covariance between "Al x" and "A2 x", when x is a basis
vector with precision matrix Q.

* fm_sample(): Generate n samples based on a sparse precision matrix Q

Examples

library(Matrix)

mesh <- fm_mesh_1d(-20:120, degree = 2)

Q <- fm_matern_precision(mesh, alpha = 2, rho = 15, sigma = 1)
x <- seq(@, 100, length.out = 601)

A <- fm_basis(mesh, x)

plot(x,
as.vector(Matrix::diag(fm_covariance(Q, A))),
type = "1",
ylab = "marginal variances”

)

plot(x,
fm_evaluate(mesh, loc = x, field = fm_sample(1, Q)[, 11),
type = n 1 n ,
ylab = "process sample”

)

fm_hexagon_lattice Create hexagon lattice points
Description

[Experimental] from 0.3.0.9001. Create hexagon lattice points within a boundary. By default,
the hexagonal lattice is anchored at the coordinate system origin, so that grids with different but
overlapping boundaries will have matching points.

fm_hexagon_lattice 69

Usage

fm_hexagon_lattice(
bnd,
edge_len = NULL,
buffer_n = 0.49,

align = "origin”,
meta = FALSE
)
Arguments
bnd Boundary object (sf polygon or boundary fm_segm object)
edge_len Triangle edge length. Default diff (fm_bbox(bnd)[[1]]1) / 250.
buffer_n Number of triangle height multiples for buffer inside the boundary object to the
start of the lattice. Default 0.49.
align Alignment of the hexagon lattice, either a length-2 numeric, or character, a
sf/sfc/sfg object containing a single point), or character, default "origin”:
"origin' align the lattice with the coordinate system origin
"bbox'' align the lattice with the midpoint of the bounding box of bnd
"centroid" align the lattice with the centroid of the boundary, sf: : st_centroid(bnd)
meta logical; if TRUE, return a list with diagnostic information from the lattice con-
struction (including the points themselves in lattice)
Value

An sfc object with points, if meta is FALSE (default), or if meta=TRUE, a list:

lattice sfc with lattice points
edge_len numeric with edge length

bnd_inner sf object with the inner boundary used to filter points outside of a edge_len * buffer_n
distance from the boundary

grid_n integer with the number of points in each direction prior to filtering

align numeric with the alignment coordinates of the hexagon lattice

Author(s)

Man Ho Suen M.H.Suen@sms.ed.ac.uk, Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_mesh_2d()

mailto:M.H.Suen@sms.ed.ac.uk
mailto:Finn.Lindgren@gmail.com

70 fm_int

Examples

(m <- fm_mesh_2d(
fm_hexagon_lattice(
fmexample$boundary_sf[[1]],
edge_len = 0.1 * 5

)Y
max.edge = c(0.2, 1) * 5,
boundary = fmexample$boundary_sf

)

(m2 <- fm_mesh_2d(
fm_hexagon_lattice(
fmexample$boundary_sf[[1]1],
edge_len = 0.1 * 5,

align = "centroid”
)?
max.edge = c(0.2, 1) x 5,
boundary = fmexample$boundary_sf
))

if (require("ggplot2", quietly = TRUE) &&
require("patchwork”, quietly = TRUE)) {
((ggplot() +
geom_fm(data = m) +
geom_point(aes(@, @), col = "red")) |
(ggplot() +
geom_fm(data = m2) +
geom_point(aes(@, @), col = "red") +
geom_sf(data = sf::st_centroid(fmexample$boundary_sf[[1]]1))
)
)
3

fm_int Multi-domain integration

Description

Construct integration points on tensor product spaces
Usage
fm_int(domain, samplers = NULL, ...)

S3 method for class 'list'
fm_int(domain, samplers = NULL, ..., extra = NULL)

S3 method for class 'numeric'
fm_int(domain, samplers = NULL, name = "x", ...)

fm_int 71

S3 method for class 'character'
fm_int(domain, samplers = NULL, name = "x", ...)

S3 method for class 'factor'
fm_int(domain, samplers = NULL, name = "x", ...)

1
x

S3 method for class 'SpatRaster'
fm_int(domain, samplers = NULL, name = "x", ...)

S3 method for class 'fm_lattice_2d'
fm_int(domain, samplers = NULL, name = "x", ...)

S3 method for class 'fm_mesh_1d'
fm_int(

domain,

samplers = NULL,

name = "x",

int.args = NULL,

format = NULL,

S3 method for class 'fm_mesh_2d'
fm_int(

domain,

samplers = NULL,

name = NULL,

int.args = NULL,

format = NULL,

)
Arguments

domain Functional space specification; single domain or a named list of domains

samplers For single domain fm_int methods, an object specifying one or more subsets of
the domain, and optional weighting in a weight variable. For fm_int.list, a
list of sampling definitions, where data frame elements may contain information
for multiple domains, in which case each row represent a separate tensor product
integration subspace.
Additional arguments passed on to other methods

extra Optional character vector with names of variables other than the integration do-
mains to be included from the samplers. If NULL (default), all additional vari-
ables are included.

name For single-domain methods, the variable name to use for the integration points.

Default ’x’

72 fm_int

int.args List of arguments passed to line and integration methods.

* method: "stable" (to aggregate integration weights onto mesh nodes) or
"direct" (to construct a within triangle/segment integration scheme without
aggregating onto mesh nodes)

* nsubT, nsub2: integers controlling the number of internal integration points
before aggregation. Points per triangle: (nsub2+1)*2. Points per knot
segment: nsub1

format character; determines the output format, as either "sf" (default for fm_mesh_2d
when the sampler is NULL), "numeric" (default for fm_mesh_1d), "bary", or "sp".
When NULL, determined by the domain and sampler types.

Value

A tibble, sf, or SpatialPointsDataFrame of 1D and 2D integration points, including a weight
column, a.block column, and a matrix column .block_origin. The .block column is used to
identify the integration blocks defined by the samplers. The .block_origin collects the original
subdomain block information for tensor product blocks.

Methods (by class)
e fm_int(list): Multi-domain integration
e fm_int(numeric): Discrete double or integer space integration
e fm_int(character): Discrete character space integration
e fm_int(factor): Discrete factor space integration
e fm_int(SpatRaster): SpatRaster integration. Not yet implemented.
e fm_int(fm_lattice_2d): fm_lattice_2d integration. Not yet implemented.
e fm_int(fm_mesh_1d): fm_mesh_1d integration. Supported samplers:

— NULL for integration over the entire domain;

A vector defining points for summation (up to @.5.0, length 2 vectors were interpreted
as intervals. From 0.6.0 intervals must be specified as rows of a 2-column matrix);

— A 2-column matrix with a single interval in each row;

A list of such vectors or matrices

A tibble with a named column containing a vector/matrix/list as above, and optionally a
weight column.

e fm_int(fm_mesh_2d): fm_mesh_2d integration. Any sampler class with an associated fm_int_mesh_2d()
method is supported.

Examples

Integration on the interval (2, 3.5) with Simpson's rule
ips <= fm_int(fm_mesh_1d(0:4), samplers = cbind(2, 3.5))
plot(ipsx, ipsweight)

Create integration points for the two intervals [@,3] and [5,10]
ips <= fm_int(
fm_mesh_1d(0:10),

fm_is_within 73

rbind(c(@, 3), c(5, 10))
)
plot(ipsx, ipsweight)

Convert a 1D mesh into integration points
mesh <- fm_mesh_1d(seq(@, 10, by = 1))

ips <- fm_int(mesh, name = "time")
plot(ips$time, ips$weight)

if (require(”ggplot2”, quietly = TRUE)) {

#' Integrate on a 2D mesh with polygon boundary subset

ips <- fm_int(fmexample$mesh, fmexample$boundary_sf[[1]]1)

ggplot() +
geom_sf(data = fm_as_sfc(fmexample$mesh, multi = TRUE), alpha = 0.5) +
geom_sf(data = fmexample$boundary_sf[[1]], fill = "red”, alpha = 0.5) +
geom_sf(data = ips, aes(size = weight)) +
scale_size_area()

}

Individual sampling points:

(ips <- fm_int(@:10, c(@, 3, 5, 6, 10)))

Sampling blocks:

(ips <- fm_int(@:10, list(c(@, 3), c(5, 6, 10))))

Continuous integration on intervals
ips <= fm_int(
fm_mesh_1d(0:10, boundary = "cyclic"),
rbind(c(@, 3), c(5, 10))
)
plot(ipsx, ipsweight)

fm_is_within Query if points are inside a mesh

Description

Queries whether each input point is within a mesh or not.

Usage
fm_is_within(x, vy, ...)
Arguments
X A set of points/locations of a class supported by fm_basis(y, loc=x, ...,
full = TRUE)
y An fm_mesh_2d or other class supported by fm_basis(y, loc=x, ..., full
= TRUE)

Passed on to fm_basis()

74 fm_lattice_2d

Value

A logical vector

Examples

all(fm_is_within(fmexample$loc, fmexample$mesh))

fm_lattice_2d Make a lattice object

Description

Construct a lattice grid for fm_mesh_2d ()
Usage
fm_lattice_2d(...)

Default S3 method:
fm_lattice_2d(

x = seq(@, 1, length.out = 2),
y = seq(@, 1, length.out = 2),
z = NULL,
dims = if (is.matrix(x)) {
dim(x)
} else {
c(length(x), length(y))
1
units = NULL,
crs = NULL,
)
Arguments
Passed on to submethods

X vector or grid matrix of x-values. Vector values are sorted before use. Matrix
input is assumed to be a grid of x-values with the same ordering convention of
as.vector(x) as rep(x, times =dims[2]) for vector input.

y vector of grid matrix of y-values. Vector values are sorted before use. Matrix
input is assumed to be a grid of y-values with the same ordering convention of
as.vector(y) as rep(y, each =dims[1]) for vector input.

z if X is a matrix, a grid matrix of z-values, with the same ordering as x and y. If

X is a vector, z is ignored.

dims the size of the grid, length 2 vector

fm_lattice_2d 75

units One of c("default”, "longlat”, "longsinlat”, "mollweide”) or NULL
(equivalent to "default").
crs An optional fm_crs, sf::st_crs, or sp: : CRS object, denoting the CRS info for
the x-y grid.
Value

An fm_lattice_2d object with elements

dims integer vector

x x-values for original vector input

y y-values for original vector input

loc matrix of (x, y) valuesor (x, y, z) values. May be altered by fm_transform()
segm fm_segm object

crs fm_crs object for loc, or NULL

crs0 fm_crs object for (x,y), or NULL

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also
fm_mesh_2d()

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),
fm_as_sfc(), fm_as_tensor (), fm_collect(), fm_lattice_Nd(), fm_mesh_1d(), fm_mesh_2d(),
fm_segm(), fm_simplify(), fm_tensor ()

Examples

lattice <- fm_lattice_2d(
seq(@, 1, length.out = 17),
seq(@, 1, length.out = 10)
)

Use the lattice "as-is"”, without refinement:
mesh <- fm_rcdt_2d_inla(lattice = lattice, boundary = lattice$segm)
mesh <- fm_rcdt_2d_inla(lattice = lattice, extend = FALSE)

Refine the triangulation, with limits on triangle angles and edges:
mesh <- fm_rcdt_2d(

lattice = lattice,

refine = list(max.edge = 0.08),

extend = FALSE
)

Add an extension around the lattice, but maintain the lattice edges:
mesh <- fm_rcdt_2d(

mailto:Finn.Lindgren@gmail.com

76 fm_lattice. Nd

lattice = lattice,
refine = list(max.edge = 0.08),
interior = lattice$segm

)

Only add extension:
mesh <- fm_rcdt_2d(lattice = lattice, refine = list(max.edge = 0.08))

fm_lattice_Nd Lattice grids for N dimensions

Description

Construct an N-dimensional lattice grid

Usage

fm_lattice_Nd(x = NULL, ...)

S3 method for class 'matrix'
fm_lattice_Nd(x = NULL, dims = NULL, values = NULL, ...)

S3 method for class 'data.frame'
fm_lattice_Nd(x = NULL, ...)

S3 method for class 'list'
fm_lattice_Nd(x = NULL, dims = NULL, ...)

S3 method for class 'fm_bbox'
fm_lattice_Nd(x = NULL, dims = NULL, ...)

S3 method for class '~“NULL™'

fm_lattice_Nd(x = NULL, ..., dims = NULL)
Arguments
X list, data.frame, matrix, fm_bbox or NULL. If a list of vectors, as.matrix(expand.grid(x))

is used to create a full grid coordinates. data.frame and matrix input is as-
sumed to follow the same ordering convention as the output of expand.grid().
of length N of vectors or grid matrices of coordinate values. List vector values
are sorted before use.

Passed on to submethods
dims numeric; the size of the grid of dimension length(dims)

values list of grid axis values

fm_list 77

Value

An fm_lattice_Nd object with elements

dims integer vector
values the grid coordinate axis values

loc matrix of constructed grid coordinates

Methods (by class)

e fm_lattice_Nd(NULL"): Ignores the NULL x and creates a lattice based on values (if non-
NULL) and dims unit hypercube lattice grid with dims dimensions.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also
fm_mesh_3d()

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),
fm_as_sfc(), fm_as_tensor(), fm_collect(), fm_lattice_2d(), fm_mesh_1d(), fm_mesh_2d(),
fm_segm(), fm_simplify(), fm_tensor()

Examples

(lattice <- fm_lattice_Nd(
list(
seq(@, 1, length.out = 3),
seq(@, 1, length.out = 4),
seq(@, 1, length.out = 2)
)
))

if (requireNamespace("geometry”, quietly = TRUE)) {
(mesh <- fm_delaunay_3d(lattice$loc))
3

fm_list Handle lists of fmesher objects

Description

Methods for constructing and manipulating fm_list objects.

mailto:Finn.Lindgren@gmail.com

78 fm_list

Usage
fm_list(x, ..., .class_stub = NULL)
fm_as_list(x, ..., .class_stub = NULL)

S3 method for class 'fm_list'

c(...)

S3 method for class 'fm_list'

x[i]

Arguments

X fm_list object from which to extract element(s)
Arguments passed to each individual conversion call.

.class_stub character; class stub name of class to convert each list element to. If NULL, uses
fm_as_fm and auto-detects if the resulting list has consistent class, and then
adds that to the class list. If non-null, uses paste@(”"fm_as_", .class_stub)
for conversion, and verifies that the resulting list has elements consistent with
that class.

i indices specifying elements to extract

Value

An fm_list object, potentially with fm_{class_stub}_list added.

Methods (by generic)

e c(fm_list): The ... arguments should be coercible to fm_list objects.

e [: Extract sub-list

Functions

* fm_list(): Convert each element of a list, or convert a single non-list object and return in a
list

* fm_as_list(): Convert each element of a list, or convert a single non-list object and return
in a list

Examples

fm_as_list(list(fmexample$mesh, fm_segm_join(fmexample$boundary_fm)))

fm_manifold 79

fm_manifold Query the mesh manifold type

Description

Extract a manifold definition string, or a logical for matching manifold type

Usage

fm_manifold(x, type = NULL)
fm_manifold_get(x)

Default S3 method:
fm_manifold_get(x)

S3 method for class 'character'
fm_manifold_get(x)

S3 method for class 'fm_lattice_2d'
fm_manifold_get(x)

S3 method for class 'fm_lattice_Nd'
fm_manifold_get(x)

fm_manifold_type(x)

fm_manifold_dim(x)

Arguments
X An object with manifold information, or a character string
type character; if NULL (the default), returns the manifold definition string by call-
ing fm_manifold_get(x). If character, returns TRUE if the manifold type of
x matches at least one of the character vector elements.
Value

fm_manifold(): Either logical (matching manifold type yes/no), or character (the stored manifold,
when is.null(type) is TRUE)

fm_manifold_get(): character or NULL

fm_manifold_type(): character or NULL; "M" (curved manifold), "R" (flat space), "S" (gener-
alised spherical space), "T" (general tensor product space), or "G" (metric graph)

fm_manifold_dim(): integer or NULL

80 fm_mesh_1d

Functions

e fm_manifold_get(): Method for obtaining a text representation of the manifold character-
istics, e.g. "R1", "R2", "M2", or "T3". The default method assumes that the manifold is
stored as a character string in a "manifold" element of the object, so it can be extracted
with x[["manifold”]]. Object classes that do not store the information in this way need to
implement their own method.

Examples

fm_manifold_get (fmexample$mesh)
fm_manifold(fmexample$mesh)
fm_manifold(fmexample$mesh, "R2")
fm_manifold_type(fmexample$mesh)
fm_manifold_dim(fmexample$mesh)

fm_mesh_1d Make a 1D mesh object

Description

Create a fm_mesh_1d object.

Usage

fm_mesh_1d(
loc,
interval = range(loc),
boundary = NULL,
degree = 1,
free.clamped = FALSE,

)
Arguments

loc B-spline knot locations.

interval Interval domain endpoints.

boundary Boundary condition specification. Valid conditions are c('neumann', 'dirichlet’,
'free', 'cyclic'). Two separate values can be specified, one applied to each
endpoint.

degree The B-spline basis degree. Supported values are 0, 1, and 2.

free.clamped If TRUE, for 'free' boundaries, clamp the basis functions to the interval end-
points.

Additional options, currently unused.

fm_mesh_1d 81

Value

An fm_mesh_1d object

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),
fm_as_sfc(), fm_as_tensor(), fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_2d(),
fm_segm(), fm_simplify(), fm_tensor ()

Examples

if (require("ggplot2")) {
ml <- fm_mesh_1d(c(1, 2, 3, 5, 8, 10),

boundary = c(”"neumann”, "free")
)
weights <- ¢(2, 3, 6, 3, 4, 7)
ggplot() +

geom_fm(data = m1, xlim = c(@0.5, 11), weights = weights)

m2 <- fm_mesh_1d(c(1, 2, 3, 5, 8, 10),
boundary = c("neumann”, "free"),
degree = 2

)

ggplot() +
geom_fm(data = m2, xlim = c(@.5, 11), weights = weights)

The knot interpretation is different for degree=2 and degree=1 meshes:
ggplot() +
geom_fm(data = m1, xlim = c(@.5, 11), weights = weights) +
geom_fm(data = m2, xlim = c(@.5, 11), weights = weights)

The “mid™ values are the representative basis function midpoints,
and can be used to connect degree=2 and degree=1 mesh interpretations:
mlb <- fm_mesh_1d(m2$mid,
boundary = c("neumann”, "free"),
degree = 1
)
ggplot() +
geom_fm(data = m2, xlim = c(@.5, 11), weights = weights) +
geom_fm(data = mib, xlim = c(0.5, 11), weights = weights)

mailto:Finn.Lindgren@gmail.com

82 fm_mesh_2d
fm_mesh_2d Make a 2D mesh object
Description
Make a 2D mesh object
Usage
fm_mesh_2d(...)
fm_mesh_2d_inla(
loc = NULL,
loc.domain = NULL,
offset = NULL,
n = NULL,
boundary = NULL,
interior = NULL,
max.edge = NULL,
min.angle = NULL,
cutoff = le-12,
max.n.strict = NULL,
max.n = NULL,
plot.delay = NULL,
crs = NULL,
)
Arguments
Currently passed on to fm_mesh_2d_inla
loc Matrix of point locations to be used as initial triangulation nodes. Can alterna-
tively be a sf, sfc, SpatialPoints or SpatialPointsDataFrame object.
loc.domain Matrix of point locations used to determine the domain extent. Can alternatively
be a SpatialPoints or SpatialPointsDataFrame object.
offset The automatic extension distance. One or two values, for an inner and an op-
tional outer extension. If negative, interpreted as a factor relative to the approx-
imate data diameter (default=-0.10???)
n The number of initial nodes in the automatic extensions (default=16)
boundary one or more (as list) of fm_segm() objects, or objects supported by fm_as_segm()
interior one object supported by fm_as_segm(), or (from version 0.2.0.9016) a list of
such objects. If a list, the objects are joined into a single object.
max.edge The largest allowed triangle edge length. One or two values.
min.angle The smallest allowed triangle angle. One or two values. (Default=21)

fm_mesh_2d

cutoff

max.n.strict

max.n

plot.delay

crs

Value

83

The minimum allowed distance between points. Point at most as far apart as this
are replaced by a single vertex prior to the mesh refinement step.

The maximum number of vertices allowed, overriding min. angle and max. edge
(default=-1, meaning no limit). One or two values, where the second value gives
the number of additional vertices allowed for the extension.

The maximum number of vertices allowed, overriding max . edge only (default=-
1, meaning no limit). One or two values, where the second value gives the
number of additional vertices allowed for the extension.

If logical TRUE or a negative numeric value, activates displaying the result after
each step of the multi-step domain extension algorithm.

An optional fm_crs(), sf::crs or sp: :CRS object

An fm_mesh_2d object.

Functions

e fm_mesh_2d_inla(): Legacy method for INLA::inla.mesh.2d() Create a triangle mesh
based on initial point locations, specified or automatic boundaries, and mesh quality parame-

ters.

INLA compatibility

For mesh and curve creation, the fm_rcdt_2d_inla(), fm_mesh_2d_inla(), and fm_nonconvex_hull_inla()
methods will keep the interface syntax used by INLA: :inla.mesh.create(), INLA: :inla.mesh.2d(),
and INLA: :inla.nonconvex.hull() functions, respectively, whereas the fm_rcdt_2d (), fm_mesh_2d(),

and fm_nonconvex_hull() interfaces may be different, and potentially change in the future.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_rcdt_2d(), fm_mesh_2d(), fm_delaunay_2d(), fm_nonconvex_hull(), fm_extensions(),

fm_refine()

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),

fm_as_sfc(), fm_as_tensor(), fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(),

fm_segm(), fm_simplify(), fm_tensor ()

Examples

fm_mesh_2d_inla(boundary = fm_extensions(cbind(2, 1), convex = 1, 2))

mailto:Finn.Lindgren@gmail.com

84 fm_mesh_3d

fm_mesh_3d Construct a 3D tetrahedralisation

Description

Constructs a 3D tetrahedralisation object.

Usage
fm_mesh_3d(loc = NULL, tv = NULL, ...)
fm_delaunay_3d(loc, ...)
Arguments
loc Input coordinates that should be part of the mesh. Can be a matrix, sf, sfc,
SpatialPoints, or other object supported by fm_unify_coords().
tv Tetrahedron indices, as a N-by-4 index vector into loc
Currently unused.
Value

An fm_mesh_3d object

Functions

* fm_delaunay_3d(): Construct a plain Delaunay triangulation in 3D. Requires the geometry
package.

Examples

(m <~ fm_mesh_3d(
matrix(c(1, 0, 0, 0, 1, 0, 0, @, 1, @0, @, @), 4, 3, byrow = TRUE),
matrix(c(1, 2, 3, 4), 1, 4, byrow = TRUE)

))

(m <- fm_delaunay_3d(matrix(rnorm(30), 10, 3)))

fm_nonconvex_hull 85

fm_nonconvex_hull Compute an extension of a spatial object

Description

Constructs a potentially nonconvex extension of a spatial object by performing dilation by convex
+ concave followed by erosion by concave. This is equivalent to dilation by convex followed by
closing (dilation + erosion) by concave.

Usage

fm_nonconvex_hull(x, ..., format = "sf"”, method = "fm")

fm_extensions(
X,
convex = -0.15,
concave = convex,

L

format = "sf",

method = "fm"
)
fm_nonconvex_hull_fm(
X,
convex = -0.15,

concave = convex,
resolution = 40,
eps = NULL,
eps_rel = NULL,
crs = fm_crs(x),

fm_nonconvex_hull_sf(
X,
convex = -0.15,
concave = convex,
preserveTopology = TRUE,
dTolerance = NULL,
crs = fm_crs(x),

)

S3 method for class 'sfc'
fm_nonconvex_hull(x, ..., format = "sf"”, method = "fm")

S3 method for class 'matrix'

86

fim_nonconvex_hull

fm_nonconvex_hull(x, ..., format = "sf”, method = "fm")

S3 method for class 'sf'
fm_nonconvex_hull(x, ..., format = "sf"”, method = "fm")

S3 method for class 'Spatial’
fm_nonconvex_hull(x, ..., format = "sf”, method = "fm")

S3 method for class 'sfg'

fm_nonconvex_hull(x, ..., format = "sf"”, method = "fm")

S3 method for class 'fm_segm'

fm_nonconvex_hull(x, ..., format = "sf"”, method = "fm")

S3 method for class 'fm_segm_list'

fm_nonconvex_hull(x, ..., format = "sf"”, method = "fm")

Arguments

X A spatial object
Arguments passed on to the fm_nonconvex_hull() sub-methods

format character specifying the output format; "sf" (default) or "fm"

method character specifying the construction method; "fm" (default) or "sf"

convex numeric vector; How much to extend

concave numeric vector; The minimum allowed reentrant curvature. Default equal to
convex

resolution integer; The internal computation resolution. A warning will be issued when this

eps, eps_rel

needs to be increased for higher accuracy, with the required resolution stated.
For method="fm" only.

The polygonal curve simplification tolerances used for simplifying the resulting
boundary curve. See fm_simplify_helper() for details. For method="fm"
only.

crs Optional crs object for the resulting polygon. Default is fm_crs(x)
preserveTopology
logical; argument to sf: :st_simplify() (for method="sf" only)
dTolerance If not zero, controls the dTolerance argument to sf: :st_simplify(). The de-
fault is pmin(convex, concave) / 40, chosen to give approximately 4 or more
subsegments per circular quadrant. (for method="sf" only)
Details

Morphological dilation by convex, followed by closing by concave, with minimum concave cur-
vature radius concave. If the dilated set has no gaps of width between

2convex (/1 + 2concave/convex — 1)

and 2concave, then the minimum convex curvature radius is convex.

fm_nonconvex_hull 87

The implementation is based on the identity
dilation(a)&closing(b) = dilation(a + b)&erosion(b)

where all operations are with respect to disks with the specified radii.

When convex, concave, or dTolerance are negative, fm_diameter * abs(...) is used instead.

Value

fm_nonconvex_hull() returns an extended object as an sfc polygon object (if format = "sf") or
an fm_segm object (if ‘format = "fm")

fm_extensions() returns a list of sfc objects.

Functions

» fm_extensions(): Constructs a potentially nonconvex extension of a spatial object by per-
forming dilation by convex + concave followed by erosion by concave. This is equivalent to
dilation by convex followed by closing (dilation + erosion) by concave.

The . .. arguments are passed on to fm_nonconvex_hull_fm() or fm_nonconvex_hull_sf(),
depending on the method argument.

e fm_nonconvex_hull_fm(): fmesher method for fm_nonconvex_hull(), which uses the
splancs: :nndistF () function to compute nearest-neighbour distances.

e fm_nonconvex_hull_sf(): Differs from sf: :st_buffer(x, convex) followed by sf: : st_concave_hull()
(available from GEOS 3.11) in how the amount of allowed concavity is controlled.
INLA compatibility

For mesh and curve creation, the fm_rcdt_2d_inla(), fm_mesh_2d_inla(), and fm_nonconvex_hull_inla()
methods will keep the interface syntax used by INLA: :inla.mesh.create(), INLA: :inla.mesh.2d(),

and INLA: :inla.nonconvex.hull () functions, respectively, whereas the fm_rcdt_2d(), fm_mesh_2d(),

and fm_nonconvex_hull() interfaces may be different, and potentially change in the future.

References

Gonzalez and Woods (1992), Digital Image Processing

See Also

fm_nonconvex_hull_inla()

Examples
inp <- matrix(rnorm(20), 10, 2)
out <- fm_nonconvex_hull(inp, convex = 1, method = "sf")
plot(out)

points(inp, pch = 20)

out <- fm_nonconvex_hull(inp, convex = 1, method = "fm", format = "fm")
lines(out, col = 2, add = TRUE)

88

if (TRUE)

fm_pixels

{

inp <- sf::st_as_sf(as.data.frame(matrix(1:6, 3, 2)), coords = 1:2)
bnd <- fm_extensions(inp, convex = c(0.75, 2))
plot(fm_mesh_2d(boundary = bnd, max.edge = c(@.25, 1)), asp = 1)

}

fm_pixels

Generate lattice points covering a mesh

Description

Generate terra, sf, or sp lattice locations

Usage

fm_pixels
mesh,
dims
xlim =
ylim =
mask =
format
minimal

Arguments

mesh
dims

xlim, ylim

mask

format

minimal
Value

sf, SpatRa

Author(s)

(

c(150, 150),
NULL,

NULL,

TRUE,

= "sf”,

= TRUE

An fm_mesh_2d object
A length 2 integer vector giving the dimensions of the target lattice.

Length 2 numeric vectors of x- and y- axis limits. Defaults taken from the range
of the mesh or mask; see minimal.

If logical and TRUE, remove pixels that are outside the mesh. If mask is an sf
or Spatial object, only return pixels covered by this object.

character; "sf", "terra" or "sp"

logical; if TRUE (default), the default range is determined by the minimum of the
ranges of the mesh and mask, otherwise only the mesh.

ster, or SpatialPixelsDataFrame covering the mesh or mask.

Finn Lindgren Finn.Lindgren @ gmail.com

mailto:Finn.Lindgren@gmail.com

fm_qinv 89

Examples

if (require("ggplot2", quietly = TRUE)) {
dims <- c(50, 50)
pxl <- fm_pixels(
fmexample$mesh,
dims = dims,
mask = fmexample$boundary_sf[[1]],
minimal = TRUE
)
pxl$val <- rnorm(NROW(px1l)) +
fm_evaluate(fmexample$mesh, px1l, field = 2 * fmexample$mesh$loc[, 1])
ggplot() +
geom_tile(
data = pxl1,
aes(geometry = geometry, fill = val),
stat = "sf_coordinates”
) +
geom_sf(data = fm_as_sfc(fmexample$mesh), alpha = 0.2)

if (require("ggplot2”, quietly = TRUE) &&
require(”"terra”, quietly = TRUE) &&
require("tidyterra”, quietly = TRUE)) {
pxl <- fm_pixels(fmexample$mesh,
dims = c(50, 50), mask = fmexample$boundary_sf[[1]1],

format = "terra”
)
pxl$val <- rnorm(NROW(px1l) * NCOL(px1l))
pxl <-
terra: :mask(
px1,
mask = pxl$.mask,
maskvalues = c(FALSE, NA),
updatevalue = NA
)
ggplot() +

geom_spatraster(data = px1, aes(fill = val)) +
geom_sf(data = fm_as_sfc(fmexample$mesh), alpha = 0.2)

fm_qginv Sparse partial inverse

Description

Compute sparse partial matrix inverse. As of 0.2.0.9010, an R implementation of the Takahashi
recursion method, unless a special build of the fmesher package is used.

90 fm_raw_basis

Usage
fm_ginv(A)

Arguments

A A sparse symmetric positive definite matrix

Value

A sparse symmetric matrix, with the elements of the inverse of A for the non-zero pattern of A plus
potential Cholesky in-fill locations.

Examples

A <- Matrix::Matrix(
c(2, -1, 0, o, -1, 2, -1, @, @, -1, 2, -1, @, 0, -1, 2),
4,
4
)
Partial inverse:
(S <= fm_ginv(A))
Full inverse (not guaranteed to be symmetric):
(S2 <- solve(A))
Matrix symmetry:
c(sum((S - Matrix::t(S))*2), sum((S2 - Matrix::t(S2))*2))
Accuracy (not that S2 is non-symmetric, and S may be more accurate):
sum((S - S2)[S != 0]1*2)

fm_raw_basis Basis functions for mesh manifolds

Description

Calculate basis functions on fm_mesh_1d() or fm_mesh_2d(), without necessarily matching the
default function space of the given mesh object.

Usage

fm_raw_basis(
mesh,
type = "b.spline”,
n =3,
degree = 2,
knot.placement = "uniform.area”,
rot.inv = TRUE,
boundary = "free"”,

free.clamped = TRUE,

fm_raw_basis 91

Arguments

mesh An fm_mesh_1d() or fm_mesh_2d() object.

type b.spline (default) for B-spline basis functions, sph.harm for spherical har-
monics (available only for meshes on the sphere)

n For B-splines, the number of basis functions in each direction (for 1d meshes n
must be a scalar, and for planar 2d meshes a 2-vector). For spherical harmonics,
n is the maximal harmonic order.

degree Degree of B-spline polynomials. See fm_mesh_1d().

knot.placement For B-splines on the sphere, controls the latitudinal placements of knots. "uniform.area”
(default) gives uniform spacing in sin(latitude), "uniform.latitude” gives
uniform spacing in latitudes.

rot.inv For spherical harmonics on a sphere, rot.inv=TRUE gives the rotationally in-
variant subset of basis functions.

boundary Boundary specification, default is free boundaries. See fm_mesh_1d() for more
information.

free.clamped If TRUE and boundary is "free”, the boundary basis functions are clamped to
0/1 at the interval boundary by repeating the boundary knots. See fm_mesh_1d ()
for more information.

Unused

Value

A matrix with evaluated basis function

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also
fm_mesh_1d(), fm_mesh_2d(), fm_basis()

Examples

loc <- rbind(c(@, @), c(1, @), c(1, 1), c(o, 1))
mesh <- fm_mesh_2d(loc, max.edge = 0.15)
basis <- fm_raw_basis(mesh, n = c(4, 5))

proj <- fm_evaluator(mesh, dims = c(10, 10))
image(proj$x, proj$y, fm_evaluate(proj, basis[, 7]1), asp = 1)

if (interactive() && require("rgl”)) {
plot_rgl(mesh, col = basis[, 7], draw.edges = FALSE, draw.vertices = FALSE)
3

mailto:Finn.Lindgren@gmail.com

92 fm_redt_2d

fm_rcdt_2d Refined Constrained Delaunay Triangulation

Description

Computes a refined constrained Delaunay triangulation on R2 or S2.

Usage
fm_rcdt_2d(...)

fm_rcdt_2d_inla(
loc = NULL,
tv = NULL,
boundary = NULL,
interior = NULL,
extend = (missing(tv) || is.null(tv)),
refine = FALSE,
lattice = NULL,
globe = NULL,
cutoff = 1e-12,
quality.spec = NULL,
crs = NULL,
delaunay = TRUE,

)

fm_delaunay_2d(loc, crs = NULL, ...)
Arguments
Currently passed on to fm_mesh_2d_inla or converted to fmesher_rcdt() op-
tions.
loc Input coordinates that should be part of the mesh. Can be a matrix, sf, sfc,
SpatialPoints, or other object supported by fm_unify_coords().
tv Initial triangulation, as a N-by-3 index vector into loc

boundary, interior
Objects supported by fm_as_segm(). If boundary is numeric, fm_nonconvex_hull(loc,
convex = boundary) is used.

extend logical or list specifying whether to extend the data region, with parameters

list('"'n"") the number of edges in the extended boundary (default=16)

list("'offset'') the extension distance. If negative, interpreted as a factor relative
to the approximate data diameter (default=-0.10)

Setting to FALSE is only useful in combination lattice or boundary.

refine logical or list specifying whether to refine the triangulation, with parameters

fm_redt_2d 93

list("'min.angle'’) the minimum allowed interior angle in any triangle. The al-
gorithm is guaranteed to converge for min.angle at most 21 (default=21)
list('""max.edge'') the maximum allowed edge length in any triangle. If nega-
tive, interpreted as a relative factor in an ad hoc formula depending on the
data density (default=Inf)
list("'max.n.strict'') the maximum number of vertices allowed, overridingmin.angle
and max . edge (default=-1, meaning no limit)
list(""'max.n'") the maximum number of vertices allowed, overriding max . edge
only (default=-1, meaning no limit)

lattice An fm_lattice_2d object, generated by fm_lattice_2d(), specifying points
on a regular lattice.

globe If non-NULL, an integer specifying the level of subdivision for global mesh
points, used with fmesher_globe_points()

cutoff The minimum allowed distance between points. Point at most as far apart as this
are replaced by a single vertex prior to the mesh refinement step.

quality.spec List of vectors of per vertex max.edge target specification for each location in
loc, boundary/interior (segm), and lattice. Only used if refining the mesh.

crs Optional crs object
delaunay logical; If FALSE, refine is FALSE, and a ready-made mesh is provided, only
creates the mesh data structure. Default TRUE, for ensuring a Delaunay triangu-
lation.
Value

An fm_mesh_2d object

Functions

e fm_rcdt_2d_inla(): Legacy method for the INLA: :inla.mesh.create() interface

» fm_delaunay_2d(): Construct a plain Delaunay triangulation.

INLA compatibility

For mesh and curve creation, the fm_rcdt_2d_inla(), fm_mesh_2d_inla(), and fm_nonconvex_hull_inla()
methods will keep the interface syntax used by INLA: :inla.mesh.create(), INLA: :inla.mesh.2d(),

and INLA: :inla.nonconvex.hull() functions, respectively, whereas the fm_rcdt_2d(), fm_mesh_2d(),

and fm_nonconvex_hull() interfaces may be different, and potentially change in the future.

Examples

(m <= fm_rcdt_2d_inla(
boundary = fm_nonconvex_hull(cbind(@, @), convex = 5)

)

fm_delaunay_2d(matrix(rnorm(30), 15, 2))

94 fm_segm

fm_row_kron Row-wise Kronecker products

Description

Takes two Matrices and computes the row-wise Kronecker product. Optionally applies row-wise
weights and/or applies an additional 0/1 row-wise Kronecker matrix product.

Usage

fm_row_kron(M1, M2, repl = NULL, n.repl = NULL, weights = NULL)

Arguments
M1 A matrix that can be transformed into a sparse Matrix.
M2 A matrix that can be transformed into a sparse Matrix.
repl An optional index vector. For each entry, specifies which replicate the row be-
longs to, in the sense used in INLA: :inla. spde.make.A
n.repl The maximum replicate index, in the sense used in INLA: : inla. spde.make.A().
weights Optional scaling weights to be applied row-wise to the resulting matrix.
Value

A Matrix::sparseMatrix object.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

Examples

fm_row_kron(rbind(c(1, 1, @), c(0, 1, 1)), rbind(c(1, 2), c(3, 4)))

fm_segm Make a spatial segment object

Description

Make a spatial segment object

mailto:Finn.Lindgren@gmail.com

fm_segm
Usage
fm_segm(...)

Default S3 method:
fm_segm(loc = NULL, idx = NULL, grp = NULL, is.bnd = TRUE, crs = NULL,

S3 method for class 'fm_segm'
fm_segm(..., grp = NULL, grp.default = @OL, is.bnd = NULL)

S3 method for class 'fm_segm_list'
fm_segm(x, grp = NULL, grp.default = 0oL, ...)

fm_segm_join(x, grp = NULL, grp.default = @0L, is.bnd = NULL)
fm_segm_split(x, grp = NULL, grp.default = 0L)

S3 method for class 'inla.mesh.segment'
fm_segm(..., grp.default = @)

S3 method for class 'fm_mesh_2d'
fm_segm(x, boundary = TRUE, grp = NULL, ...)

fm_is_bnd(x)

95

)

fm_is_bnd(x) <- value

Arguments
Passed on to submethods

loc Matrix of point locations, or SpatialPoints, or sf/sfc point object.

idx Segment index sequence vector or index pair matrix. The indices refer to the
rows of loc. If loc==NULL, the indices will be interpreted as indices into the
point specification supplied to fm_rcdt_2d(). If is.bnd==TRUE, defaults to
linking all the points in loc, as ¢(1:nrow(loc), 1L), otherwise 1:nrow(loc).

grp When joining segments, use these group labels for segments instead of the orig-
inal group labels.

is.bnd TRUE if the segments are boundary segments, otherwise FALSE.

crs An optional fm_crs(), sf::st_crs() or sp: :CRS() object

grp.default

If grp.default is NULL, use these group labels for segments with NULL group.

X Mesh to extract segments from
boundary logical; if TRUE, extract the boundary segments, otherwise interior constrain seg-
ments.
value logical
Value

An fm_segm or fm_segm_list object

96 fm_segm_list

Methods (by class)

* fm_segm(fm_segm): Join multiple fm_segm objects into a single fm_segm object. If is.bnd
is non-NULL, it overrides the input segment information. Otherwise, it checks if the inputs
are consistent.

o fm_segm(fm_segm_list): Join fm_segm objects from a fm_segm_list into a single fm_segm
object. Equivalent to fm_segm_join(x)

o fm_segm(fm_mesh_2d): Extract the boundary or interior segments of a 2d mesh. If grp is
non-NULL, extracts only segments matching the matching the set of groups given by grp.

Functions

e fm_segm(): Create a new fm_segm object.

e fm_segm_join(): Join multiple fm_segm objects into a single fm_segm object. If is.bnd is
non-NULL, it overrides the segment information. Otherwise it checks for consistency.

o fm_segm_split(): Split an fm_segm object by grp into an fm_segm_list object, optionally
keeping only some groups.

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),
fm_as_sfc(), fm_as_tensor(), fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(),
fm_mesh_2d(), fm_simplify(), fm_tensor()

Examples

fm_segm(rbind(c(@, @), c(1, @), c(1, 1), c(@, 1)), is.bnd = FALSE)
fm_segm(rbind(c(@, @), c(1, @), c(1, 1), c(@, 1)), is.bnd = TRUE)

fm_segm_join(fmexample$boundary_fm)

fm_segm(fmexample$mesh, boundary = TRUE)
fm_segm(fmexample$mesh, boundary = FALSE)

fm_segm_list Methods for fm_segm lists

Description

fm_segm lists can be combined into fm_segm_list list objects.

fm_segm_list 97

Usage

S3 method for class 'fm_segm'

c(...)

S3 method for class 'fm_segm_list'

c(...)

S3 method for class 'fm_segm_list'

x[i]
Arguments

Objects to be combined.

X fm_segm_list object from which to extract element(s)

i indices specifying elements to extract
Value

A fm_segm_list object

Methods (by generic)

e c(fm_segm_list): The ... arguments should be coercible to fm_segm_list objects.

¢ [: Extract sub-list

Functions

e c(fm_segm): The ... arguments should be fm_segm objects, or coercible with fm_as_segm_list(list(...)).

See Also

fm_as_segm_list()

Examples

m <- c(A = fm_segm(1:2), B = fm_segm(3:4))
str(m)
str(m[2])

98 fm_simplity

fm_simplify Recursive curve simplification.

Description

[Experimental] Simplifies polygonal curve segments by joining nearly co-linear segments.

Uses a variation of the binary splitting Ramer-Douglas-Peucker algorithm, with an ellipse of half-
width eps ellipse instead of a rectangle, motivated by prediction ellipse for Brownian bridge.

Usage
fm_simplify(x, eps = NULL, eps_rel = NULL, ...)
Arguments
X An fm_segm() object.
eps Absolute straightness tolerance. Default NULL, no constraint.
eps_rel Relative straightness tolerance. Default NULL, no constraint.
Currently unused.
Details

Variation of Ramer-Douglas-Peucker. Uses width epsilon ellipse instead of rectangle, motivated by
prediction ellipse for Brownian bridge.
Value

The simplified fm_segm() object.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

References

Ramer, Urs (1972). "An iterative procedure for the polygonal approximation of plane curves".
Computer Graphics and Image Processing. 1 (3): 244-256. doi:10.1016/S0146664X(72)800170

Douglas, David; Peucker, Thomas (1973). "Algorithms for the reduction of the number of points re-
quired to represent a digitized line or its caricature". The Canadian Cartographer. 10 (2): 112-122.
doi:10.3138/FM576770U75U7727

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),

fm_as_sfc(), fm_as_tensor(), fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(),

fm_mesh_2d(), fm_segm(), fm_tensor ()

mailto:Finn.Lindgren@gmail.com
https://doi.org/10.1016/S0146-664X%2872%2980017-0
https://doi.org/10.3138/FM57-6770-U75U-7727

fm_sizes

Examples

99

theta <- seq(@, 2 x pi, length.out = 1000)
(segm <- fm_segm(cbind(cos(theta), sin(theta)),
idx = seq_along(theta)

))

(segml <- fm_simplify(segm, eps_rel = 0.1))
(segm2 <- fm_simplify(segm, eps_rel = 0.2))

plot(segm)
lines(segml, col
lines(segm2, col

2)
3

(segm <- fm_segm(cbind(theta, sin(theta * 4)),
idx = seq_along(theta)

)

(segml <- fm_simplify(segm, eps_rel = 0.1))
(segm2 <- fm_simplify(segm, eps_rel = 0.2))

plot(segm)
lines(segml, col
lines(segm2, col

2)
3

fm_sizes

Jm_sizes

Description

[Experimental] Compute effective sizes of faces/cells and vertices in a mesh

Usage

fm_sizes(...)

S3 method for class 'fm_mesh_2d'

fm_sizes(mesh,

., method = "R")

S3 method for class 'fm_mesh_3d'

fm_sizes(mesh,

Arguments

mesh

method

)

Passed on to submethods
object of a supported mesh class

character; "R" or "Rcpp". For "S2" manifolds, the "Rcpp" method is always
used. The "R" method is currently faster, due to the cost of building internal
data structures in the C++ code.

100 fm_split_lines

Value
A list with elements of simplex size information. For 2D meshes:

face Vector with the area of each triangle

vertex Vector with the triangle area apportioned to each vertex

face_edge A matrix with one row per triangle and 3 columns, with edge lengths for the edge
opposing each triangle vertex.

For 3D meshes:

cell Vector with the volume of each tetrahedron
vertex Vector with the tetrahedron volume apportioned to each vertex

cell_face A matrix with one row per cell and 4 columns, with triangle areas for the triangle
opposing each tetrahedron vertex.

cell_edge A matrix with one row per cell and 4 columns, with edge lengths for the edge anchored
at each vertex, pointing to the next vertex in the internal ordering.

Examples

str(fm_sizes(fmexample$mesh))

fm_split_lines Split lines at triangle edges

Description

Compute intersections between line segments and triangle edges, and filter out segment of length
Zero.

Usage

fm_split_lines(mesh, ...)

S3 method for class 'fm_mesh_2d'

fm_split_lines(mesh, segm, ...)
Arguments
mesh An fm_mesh_2d object
Unused.
segm An fm_segm() object with segments to be split
Value

An fm_segm() object with the same crs as the mesh, with an added field origin, that for each new
segment gives the originator index into to original segm object for each new line segment.

fm_subdivide 101

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

Examples

mesh <- fm_mesh_2d(
boundary = fm_segm(
rbind(c(@, @), c(1, @), c(1, 1), c(o, 1)),
is.bnd = TRUE
)

)
splitter <- fm_segm(rbind(c(0.8, 0.2), c(0.2, 0.8)))
segm_split <- fm_split_lines(mesh, splitter)

plot(mesh)
lines(splitter)
points(segm_split$loc)

fm_subdivide Split triangles of a mesh into subtriangles

Description

[Experimental] Splits each mesh triangle into (n + 1)*2 subtriangles. The current version drops
any edge constraint information from the mesh.

Usage

fm_subdivide(mesh, n = 1, delaunay = FALSE)

Arguments
mesh an fm_mesh_2d object
n number of added points along each edge. Default is 1.
delaunay logical; if TRUE, the subdivided mesh is forced into a Delaunay triangle structure.
If FALSE (default), the triangles are subdivided uniformly instead.
Value

A refined fm_mesh_2d object, with added bary information (an fm_bary () object), that can be used
for interpolating functions from the original mesh to the new mesh (from version 0.5.0.9002).

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

mailto:Finn.Lindgren@gmail.com
mailto:Finn.Lindgren@gmail.com

102 fm_subset

Examples

mesh <- fm_rcdt_2d_inla(
loc = rbind(c(@, @), c(1, @), c(o, 1)),
tv = rbind(c(1, 2, 3))

)

mesh_sub <- fm_subdivide(mesh, 3)

mesh

mesh_sub

Difference should be zero for flat triangle meshes:
sum((mesh_sub$loc - fm_basis(mesh, mesh_sub$bary) %x% mesh$loc)*2)

plot(mesh_sub, edge.color = 2)

plot(fm_subdivide(fmexample$mesh, 3), edge.color = 2)
plot(fmexample$mesh, add = TRUE, edge.color = 1)

fm_subset Extract a subset of a mesh

Description

[Experimental] (from version 0.5.0.9003) Constructs a new mesh based on a subset of the tri-
angles of an existing mesh. The current version drops any edge constraint information from the
mesh.

Usage

fm_subset(mesh, t_sub)

Arguments

mesh an mesh to subset

t_sub triangle or tetrahedron indices.
Value

A subset mesh.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

mailto:Finn.Lindgren@gmail.com

fim_tensor 103

Examples

mesh_sub <- fm_subset(fmexample$mesh, 1:100)
mesh_sub
plot(mesh_sub)

if (requireNamespace("geometry”, quietly = TRUE)) {
print(m <- fm_delaunay_3d(matrix(rnorm(30), 10, 3)))
print(fm_subset(m, seq_len(min(5, nrow(m$graph$tv)))))
3

fm_tensor Make a tensor product function space

Description

[Experimental] Tensor product function spaces. The interface and object storage model is experi-
mental and may change.

Usage
fm_tensor(x, ...)
Arguments
X list of function space objects, such as fm_mesh_2d().
Currently unused
Value

A fm_tensor or fm_tensor_list object. Elements of fm_tensor:

fun_spaces fm_list of function space objects

manifold character; manifold type summary. Regular subset of Rd "Rd", if all function spaces
have type "R", torus connected "Td" if all function spaces have type "S", and otherwise "Md"
In all cases, d is the sum of the manifold dimensions of the function spaces.

See Also

Other object creation and conversion: fm_as_collect(), fm_as_fm(), fm_as_lattice_2d(),
fm_as_lattice_Nd(), fm_as_mesh_1d(), fm_as_mesh_2d(), fm_as_mesh_3d(), fm_as_segm(),
fm_as_sfc(), fm_as_tensor(), fm_collect(), fm_lattice_2d(), fm_lattice_Nd(), fm_mesh_1d(),
fm_mesh_2d(), fm_segm(), fm_simplify()

104 fim_transform

Examples

m <- fm_tensor(list(

space = fmexample$mesh,

time = fm_mesh_1d(1:5)
)
m2 <- fm_as_tensor(m)
m3 <- fm_as_tensor_list(list(m, m))
c(fm_dof (mfun_spacesspace) * fm_dof (mfun_spacestime), fm_dof(m))
str(fm_evaluator(m, loc = list(space = cbind(@, @), time = 2.5)))
str(fm_basis(m, loc = list(space = cbind(@, @), time = 2.5)))
str(fm_fem(m))

fm_transform Object coordinate transformation

Description
Handle transformation of various inla objects according to coordinate reference systems of crs
(from sf::st_crs()), fm_crs, sp: :CRS, fm_CRS, or INLA: :inla.CRS class.

Usage

fm_transform(x, crs, ...)

Default S3 method:
fm_transform(x, crs, ..., crs@ = NULL)

S3 method for class 'NULL'
fm_transform(x, crs, ...)

S3 method for class 'matrix'
fm_transform(x, crs, ..., passthrough

FALSE, crs@ = NULL)

S3 method for class 'sf'

fm_transform(x, crs, ..., passthrough = FALSE)
S3 method for class 'sfc'

fm_transform(x, crs, ..., passthrough = FALSE)
S3 method for class 'sfg'

fm_transform(x, crs, ..., passthrough = FALSE)
S3 method for class 'Spatial’
fm_transform(x, crs, ..., passthrough = FALSE)

S3 method for class 'fm_mesh_2d'
fm_transform(x, crs = fm_crs(x), ..., passthrough = FALSE, crs@ = fm_crs(x))

fim_ vertices 105

S3 method for class 'fm_collect'
fm_transform(x, crs = fm_crs(x), ..., passthrough = FALSE, crs@ = NULL)

S3 method for class 'fm_lattice_2d'

fm_transform(x, crs = fm_crs(x), ..., passthrough = FALSE, crs@ = fm_crs(x))
S3 method for class 'fm_segm'
fm_transform(x, crs = fm_crs(x), ..., passthrough = FALSE, crs@ = fm_crs(x))
S3 method for class 'fm_list'
fm_transform(x, crs, ...)
Arguments
X The object that should be transformed from it’s current CRS to a new CRS
crs The target crs object
Potential additional arguments
crso The source crs object for spatial classes without crs information

passthrough Default is FALSE. Setting to TRUE allows objects with no CRS information to
be passed through without transformation. Use with care!

Value

A transformed object, normally of the same class as the input object.

See Also

fm_CRS()

Examples

fm_transform(
rbind(c(@, @), c(@, 90), c(@, 91)),
crs = fm_crs("sphere”),
crs@ = fm_crs("longlat_norm")

)

fm_vertices Extract vertex locations from an fm_mesh_2d

Description

Extracts the vertices of an fm_mesh_2d object.

106 fm_zm

Usage

fm_vertices(x, format = NULL)

Arguments
X An fm_mesh_2d object.
format character; "sf"”, "df", "sp”
Value

An sf, data.frame, or SpatialPointsDataFrame object, with the vertex coordinates, and a . vertex
column with the vertex indices.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_centroids()

Examples

if (require("ggplot2”, quietly = TRUE)) {

vrt <- fm_vertices(fmexample$mesh, format = "sf")
ggplot() +
geom_sf(data = fm_as_sfc(fmexample$mesh)) +
geom_sf(data = vrt, color = "red")
3
fm_zm Add or remove Z/M information
Description

[Experimental] Add and/or remove Z and/or M information from simple feature geometries.
Usage
fm_zm(x, ...)

S3 method for class 'sf'
fm_zm(x, ...)

S3 method for class 'sfc'
fm_zm(x, ..., add = NULL, remove = NULL, target = NULL)

mailto:Finn.Lindgren@gmail.com

fm_zm 107

S3 method for class 'list'
fm_zm(x, ..., add = NULL, remove = NULL, target = NULL)

S3 method for class 'sfg'
fm_zm(x, ..., add = NULL, remove = NULL, target

NULL)

S3 method for class 'numeric'

fm_zm(x, ..., add = NULL, remove = NULL, target = NULL, input = NULL)

S3 method for class 'matrix'
fm_zm(x, ..., add = NULL, remove = NULL, target = NULL, input = NULL)

fm_zm_input(x, ...)

S3 method for class 'sf'
fm_zm_input(x, ...)

S3 method for class 'sfc'
fm_zm_input(x, ...)

S3 method for class 'list'
fm_zm_input(x, ...)

S3 method for class 'sfg'
fm_zm_input(x, ...)

S3 method for class 'numeric'
fm_zm_input(x, ..., input = NULL)

S3 method for class 'matrix'
fm_zm_input(x, ..., input = NULL)

fm_zm_target(input, add = NULL, remove = NULL, target = NULL)

Arguments

X An object to modify
Further arguments passed to methods

add character; one of NULL, "Z", "M", or "ZM". Specifies which dimensions to add.

remove character; one of NULL, "Z", "M", or "ZM". Specifies which dimensions to re-
move.

target character; one of "XY", "XYZ", "XYM", or "XYZM". Specifies the target dimension
format. If provided, overrides add and remove. When both add and remove are
NULL, the default target is the smallest format that can hold all the inputs without
loss of information.

input character or character vector; one of NULL, "XY", "XYZ", "XYM", or "XYZM".

Specifies the input dimension format. If NULL (default), the input format is in-

108 geom_fm

ferred from the number of columns in x (for matrices/numerics) or from the
geometry type (for sfc objects).

Value

An object of the same class as x, with modified Z/M dimensions.

Functions

e fm_zm_input(): Find the set of distinct XY/XYZ/XYM/XYZM types
e fm_zm_target(): Determines the target XY/XYZ/XYM/XYZM format

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

sf::st_zm() that supports a subset of these operations.

Examples
fm_zm(fmexample$loc_sf, add = "Z")
fm_zm_input (fmexample$loc_sf)
fm_zm_target(c("XY", "XYZ"))

fm_zm_target("XY", add = "Z")
fm_zm_target(c("XY", "XYZM"), remove = "M")

geom_fm ggplot2 geomes for fmesher related objects

Description

[Experimental]

geom_fm is a generic function for generating geomes from various kinds of fmesher objects, e.g.
fm_segm and fm_mesh_2d. The function invokes particular methods which depend on the class of
the data argument. Requires the ggplot2 package.

Note: geom_fm is not yet a "proper”" ggplot2 geom method; the interface may therefore change in
the future.

mailto:Finn.Lindgren@gmail.com

geom_fm

Usage
geom_fm(mapping = NULL, data = NULL, ...)

S3 method for class 'fm_mesh_2d'

geom_fm(
mapping = NULL,
data = NULL,

mappings = NULL,
defs = NULL,
crs = NULL

)

S3 method for class 'fm_segm'
geom_fm(mapping = NULL, data = NULL, ...,

S3 method for class 'fm_mesh_1d'

geom_fm(
mapping = NULL,
data = NULL,

L

mappings = NULL,

defs = NULL,
xlim = NULL,
basis = TRUE,
knots = TRUE,

derivatives = FALSE,
weights = NULL

= NULL)

)

Arguments
mapping ggplot2: :aes() mapping information.
data an object for which to generate a geom.

Arguments passed on to the geom method.

109

mappings, defs optional lists of aes mappings and non-aes settings. For fm_mesh_2d, the non-
triangle parts of the mesh, named "int" for interior constraint edges, "bnd" for
boundary edges, and "loc" for the vertices. For fm_mesh_1d, the elements are

"knots" and "fun".

crs Optional crs to transform the object to before plotting.

x1lim numeric 2-vector; specifies the interval for which to compute functions. Default
is data$interval

basis logical; if TRUE (default), show the spline basis functions

knots logical; if TRUE (default), show the spline knot locations

derivatives logical; if TRUE (not default), draw first order derivatives instead of function

values

110 geom_fm

weights numeric vector; if provided, draw weighted basis functions and the resulting
weighted sum.
Value

A combination of ggplot2 geoms.

Methods (by class)

* geom_fm(fm_mesh_2d): Converts an fm_mesh_2d () object to sf with fm_as_sfc() and uses
geom_sf to visualize the triangles and edges.
The mesh vertices are only plotted if mappings$loc or defs$loc is non-NULL, e.g. defs =
list(loc = 1list()). Default argument settings:

... = linewidth = 0.25, color = "grey"” # default for triangle mapping
defs = list(

int = list(linewidth = 0.5, color = "blue"),
bnd = list(linewidth = 1, color = "black”, alpha = 0),

loc

)

» geom_fm(fm_segm): Converts an fm_segm() object to sf with fm_as_sfc() and uses geom_sf
to visualize it.

list(size = 1, color = "red")

» geom_fm(fm_mesh_1d): Evaluates and plots the basis functions defined by an fm_mesh_1d ()
object.

Examples

ggplot() +
geom_fm(data = fmexample$mesh)

m <- fm_mesh_2d(
cbind(10, 20),
boundary = fm_extensions(cbind(10, 20), c(25, 65)),
max.edge = c(4, 10),
crs = fm_crs("+proj=longlat”)

)
ggplot() +
geom_fm(data = m)
ggplot() +
geom_fm(data = m, defs = list(loc = list()))
ggplot() +

m, crs = fm_crs("epsg:27700"))

geom_fm(data

Compute a mesh vertex based function on a different grid
px <- fm_pixels(

fm_transform(m, fm_crs("mollweide_globe")),

dims = c(50, 50) # Speed up the example by lowering the resolution
)

px$fun <- fm_evaluate(m,

new_fm_int 111

loc = px,
field = sin(m$loc[, 1] / 5) x sin(m$loc[, 2] / 5)
)
ggplot() +
geom_tile(aes(geometry = geometry, fill = fun),
data = px,
stat = "sf_coordinates”
) +
geom_fm(
data = m, alpha = 0.2, linewidth = 0.05,
crs = fm_crs("mollweide_globe”)
)

ml <- fm_segm(rbind(c(1, 2), c(4, 3), c(2, 4)), is.bnd = TRUE)
m2 <- fm_segm(rbind(c(2, 2), c(3, 4), c(2, 3)), is.bnd = FALSE)
ggplot() +

geom_fm(data = m1) +

geom_fm(data = m2)

m <- fm_mesh_1d(
c(1, 2, 3,5, 7),
boundary = c("dirichlet”, "neumann"),
degree = 2

)

ggplot() +
geom_fm(data = m)

new_fm_int Construct integration scheme objects

Description

Constructor method for integration scheme objects, allowing default construction of .block in-
formation. Primarily meant for internal use, but can be used to manually create data of the same
structure as fm_int () output.

Usage

new_fm_int(
object,
blocks = FALSE,
weight = NULL,
name = NULL,
override = FALSE

112

Arguments

object

blocks

weight

name

override

Value

plot.fm_mesh_2d

An object representing integration points; either a data.frame-like object, or a
vector/list of coordinates or other location reference objects.

logical; if TRUE, set per-element .block indices. If FALSE (default), set a com-
mon block, 1L.

Optional weight variable; if NULL, all weights are set to 1.
character; name of the integration domain.

logical; If name is non-NULL and override=TRUE for sf object, the current
sf_column is renamed to name.

A tibble or sf/tibble object. May acquire additional class attributes in the future.

See Also

fm_int(

Examples

)

new_fm_int(1:4, blocks = TRUE, weight = c(1, 2, 1, 3), name = "z")

plot.fm_mesh_2d

Draw a triangulation mesh object

Description

Plots an fm_mesh_2d() object using standard graphics.

Usage

S3 method for class 'fm_mesh_2d'
, ..., add = TRUE)

lines(x

S3 method for class 'fm_mesh_2d'

plot(
X’

col = "white”,
t.sub = seq_len(nrow(x$graph$tv)),

add =
lwd =
xlim
ylim
main
size
draw.

FALSE,
1,

= NULL,
:'I’
vertices

range(x$locl, 11),
range(x$loc[, 21),

= FALSE,

plot.fm_mesh_2d

vertex.color
draw.edges
edge.color

"black”,
TRUE,
rgb(0.3, 0.3, 0.3),

draw.segments = draw.edges,
rgl = deprecated(),

visibility =
asp = 1,

axes
xlab m

nn

ylab = s

Arguments

X

add

col

t.sub

1wd

x1lim

ylim

main

size
draw.vertices
vertex.color
draw.edges
edge.color
draw.segments
rgl
visibility
asp

axes

xlab, ylab

Value

None

Author(s)

FALSE,

"front",

An fm_mesh_2d () object.
Further graphics parameters, interpreted by the respective plotting systems.

If TRUE, adds to the current plot instead of starting a new one.

113

Color specification. A single named color, a vector of scalar values, or a matrix

of RGB values. Requires rgl=TRUE.
Optional triangle index subset to be drawn.
Line width for triangle edges.

X-axis limits.

Y-axis limits.

Deprecated.

argument cex for vertex points.

If TRUE, draw triangle vertices.

Color specification for all vertices.

If TRUE, draw triangle edges.

Color specification for all edges.

If TRUE, draw boundary and interior constraint edges more prominently.

Deprecated

If "front" only display mesh faces with normal pointing towards the camera.

Aspect ratio for new plots. Default 1.
logical; whether axes should be drawn on the plot. Default FALSE.

character; labels for the axes.

Finn Lindgren Finn.Lindgren @ gmail.com

mailto:Finn.Lindgren@gmail.com

114

See Also

plot.fm_segm(), plot_rgl.fm_mesh_2d()

Examples

mesh <- fm_rcdt_2d(globe = 10)
plot(mesh)

mesh <- fm_mesh_2d(cbind(@, 1), offset = c(1, 1.5), max.edge = 0.5)

plot(mesh)

plot.fm_segm

plot.fm_segm

Draw fm_segm objects.

Description

Draws a fm_segm() object with generic or rgl graphics.

Usage

S3 method for class 'fm_segm'
plot(x, ..., add = FALSE)

S3 method for class 'fm_segm'

lines(
X)
loc = NULL,
col = NULL,
colors = c("black”, "blue", "red", "green"),
add = TRUE,
xlim = NULL,
ylim = NULL,
asp = 1,
axes = FALSE,
xlab = "",
ylab = "",

visibility = "front",
rgl = deprecated(),

) e

S3 method for class 'fm_segm_list'

plot(x, ...)

S3 method for class 'fm_segm_list'

lines(x, ...)

plot_rgl

Arguments

X

add

loc

col

colors
xlim, ylim
asp

axes

xlab, ylab
visibility
rgl

Value

None

Author(s)

115

An fm_segm() object.

Additional parameters, passed on to graphics methods.

If TRUE, add to the current plot, otherwise start a new plot.

Point locations to be used if x$1loc is NULL.

Segment color specification.

Colors to cycle through if col is NULL.

X and Y axis limits for a new plot.

Aspect ratio for new plots. Default 1.

logical; whether axes should be drawn on the plot. Default FALSE.
character; labels for the axes.

If "front" only display mesh faces with normal pointing towards the camera.

[Deprecated] since 0.5.0.9000 in favour of the plot_rgl() and lines_rgl()
methods. If TRUE, use rgl for plotting.

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

fm_segm(), plot.fm_mesh_2d

Examples

plot(fm_segm(fmexample$mesh, boundary = TRUE))
lines(fm_segm(fmexample$mesh, boundary = FALSE), col = 2)

plot_rgl

Low level triangulation mesh plotting

Description

Plots a triangulation mesh using rgl.

mailto:Finn.Lindgren@gmail.com

Usage

plot_rgl(x, ...)
lines_rgl(x, ..., add = TRUE)

S3 method for class 'fm_segm'

lines_rgl(
X,
loc = NULL,
col = NULL,
colors = c("black”, "blue”, "red”, "green"),
add = TRUE
)
S3 method for class 'fm_mesh_2d'
plot_rgl(
X!
col = "white",

color.axis = NULL,

color.n = 512,
color.palette = cm.colors,
color.truncate = FALSE,
alpha = NULL,

Iwd =1,

specular = "black”,
draw.vertices = TRUE,
draw.edges = TRUE,
draw.faces = TRUE,
draw.segments = draw.edges,
size = 2,

edge.color = rgh(0.3, 0.3, 0.3),

t.sub = seq_len(nrow(x$graphs$tv)),

visibility = "",
S = deprecated(),
add = FALSE,

)

S3 method for class 'fm_segm'
plot_rgl(x, ..., add = FALSE)

S3 method for class 'fm_segm_list'

plot_rgl(x, ...)

S3 method for class 'fm_segm_list'

lines_rgl(x, ...)

plot_rgl

plot_rgl

Arguments

X

add

loc

col

colors
color.axis
color.n
color.palette
color.truncate
alpha

lwd

specular
draw.vertices
draw.edges
draw. faces
draw.segments
size
edge.color
t.sub
visibility

S

Value

A fm_mesh_2d () object

Additional parameters passed to and from other methods.

If TRUE, adds to the current plot instead of starting a new one.

Point locations to be used if x$1oc is NULL
Segment color specification.

Colors to cycle through if col is NULL.

The min/max limit values for the color mapping.
The number of colors to use in the color palette.
A color palette function.

If TRUE, truncate the colors at the color axis limits.
Transparency/opaqueness values. See rgl.material.
Line width for edges. See rgl.material.
Specular color. See rgl.material.

If TRUE, draw triangle vertices.

If TRUE, draw triangle edges.

If TRUE, draw triangles.

If TRUE, draw boundary and interior constraint edges more prominently.

Size for vertex points.
Edge color specification.

Optional triangle index subset to be drawn.

If "front" only display mesh faces with normal pointing towards the camera.

Deprecated.

An rgl device identifier, invisibly.

Author(s)

Finn Lindgren Finn.Lindgren @ gmail.com

See Also

plot.fm_mesh_2d()

Examples

if (interactive() && requireNamespace("rgl"”)) {
mesh <- fm_rcdt_2d(globe = 10)

plot_rgl(mesh,

}

col = mesh$loc[, 11)

117

mailto:Finn.Lindgren@gmail.com

118 print.fm_evaluator
print.fm_basis Print method for fm_basis

Description

Prints information for an fm_basis object.
Usage

S3 method for class 'fm_basis'

print(x, ..., prefix ="")
Arguments

X fm_basis() object

Unused

prefix a prefix to be used for each line. Default is an empty string.
Value

invisible(x)
See Also

fm_basis()
Examples

print(fm_basis(fmexample$mesh, fmexample$loc, full = TRUE))

print.fm_evaluator Print method for fm_evaluator ()

Description

Prints information for an fm_evaluator object.
Usage

S3 method for class 'fm_evaluator'

print(x, ...)
Arguments

X fm_evaluator() object

Unused

print.fm_evaluator 119

Value

invisible(x)

See Also

fm_evaluator ()

Examples

print(fm_evaluator (fmexample$mesh, fmexample$loc))

Index

+ datasets
fmexample, 8

* fm_as
fm_as_sfc, 21

* object creation and conversion
fm_as_collect, 11
fm_as_fm, 12
fm_as_lattice_2d, 13
fm_as_lattice_Nd, 14
fm_as_mesh_1d, 15
fm_as_mesh_2d, 16
fm_as_mesh_3d, 18
fm_as_segm, 19
fm_as_sfc, 21
fm_as_tensor, 23
fm_collect, 38
fm_lattice_2d, 74
fm_lattice_Nd, 76
fm_mesh_1d, 80
fm_mesh_2d, 82
fm_segm, 94
fm_simplify, 98
fm_tensor, 103

[.fm_bbox (fm_bbox), 32

[.fm_list (fm_list), 77

[.fm_segm_list (fm_segm_list), 96

[.fm_segm_list(), 2/

$.fm_crs (fm_crs), 46

as.triangles3d.fm_mesh_3d, 4

.fm_bbox (fm_bbox), 32
.fm_bbox (), 34

fm_list (fm_list), 77

.fm_segm (fm_segm_list), 96
.fm_segm(), 21

.fm_segm_list (fm_segm_list), 96
.fm_segm_list(), 21

class, 108

0o o0 o0 o0 o000

fm_area, 9
fm_as_bbox (fm_bbox), 32
fm_as_bbox_list (fm_bbox), 32
fm_as_collect, 11, 13-18, 21-23, 39,75, 77,
81, 83, 96, 98, 103
fm_as_collect_list (fm_as_collect), 11
fm_as_fm, 11,12, 14-18, 21-23, 39,75, 77,
81, 83, 96, 98, 103
fm_as_lattice_2d, 11, 13, 13, 15-18, 21-23,
39,75,77,81, 83, 96, 98, 103
fm_as_lattice_2d_list
(fm_as_lattice_2d), 13
fm_as_lattice_Nd, 11, 13, 14, 14, 16-18,
21-23,39,75,77,81, 83, 96, 98, 103
fm_as_lattice_Nd_list
(fm_as_lattice_Nd), 14
fm_as_list (fm_list), 77
fm_as_mesh_1d, 11, 13, 14,15, 15,17, 18
21-23,39,75,77,81, 83, 96, 98, 103
fm_as_mesh_1d_list (fm_as_mesh_1d), 15
fm_as_mesh_2d, 11, 13-15, 16, 16, 18, 21-23,
39,75,77,81, 83, 96, 98, 103
fm_as_mesh_2d_list (fm_as_mesh_2d), 16
fm_as_mesh_3d, 11, 13-17, 18, 21-23, 39, 75,
77,81, 83, 96, 98, 103
fm_as_mesh_3d_list (fm_as_mesh_3d), 18
fm_as_segm, 11, 13-18, 19, 22, 23,39, 75, 77,
81, 83,96, 98, 103
fm_as_segm(), 5, 82, 92
fm_as_segm_list (fm_as_segm), 19
fm_as_segm_list(), 97
fm_as_sfc, 11, 13-18,21, 21, 23,39, 75, 77,
81, 83,96, 98, 103
fm_as_sfc(), 110
fm_as_tensor, 11, 13-18, 21, 22, 23, 39, 75,
77,81, 83, 96, 98, 103
fm_as_tensor_list (fm_as_tensor), 23
fm_assess, 10
fm_bary, 24, 26, 28, 65

INDEX

fm_bary(), 27, 29, 101
fm_bary_loc, 26
fm_bary_loc(), 26, 29
fm_bary_simplex, 28
fm_bary_simplex(), 25-27
fm_basis, 29, 64, 118
fm_basis(), 67,73,91, 118
fm_bbox, 32
fm_block, 34
fm_block(), 67
fm_block_eval (fm_block), 34
fm_block_log_shift (fm_block), 34
fm_block_log_weights (fm_block), 34
fm_block_logsumexp_eval (fm_block), 34
fm_block_prep (fm_block), 34
fm_block_weights (fm_block), 34
fm_centroids, 37
fm_centroids(), 106
fm_collect, 11, 13-16, 18, 21-23, 38,75, 77,
81, 83, 96, 98, 103
fm_collect(), 62
fm_components, 39
fm_components(), 5
fm_contains, 41
fm_covariance (fm_gmrf), 67
fm_CRS, 43
fm_crs, 46
fm_CRS(), 52, 53, 105
fm_crs(), 45, 46, 51-55, 59, 83
fm_CRS.fm_list (fm_crs), 46
fm_crs.fm_list (fm_crs), 46
fm_crs.fm_mesh_1d (fm_crs), 46
fm_crs.fm_mesh_2d (fm_crs), 46
fm_crs.fm_mesh_3d (fm_crs), 46
fm_crs.fm_segm (fm_crs), 46
fm_crs.fm_tensor (fm_crs), 46
fm_crs.inla.CRS (fm_crs), 46
fm_crs.matrix (fm_crs), 46
fm_crs.sf (fm_crs), 46
fm_crs.sfc (fm_crs), 46
fm_crs.sfg (fm_crs), 46
fm_crs.Spatial (fm_crs), 46
fm_crs.SpatRaster (fm_crs), 46
fm_crs.SpatVector (fm_crs), 46
fm_crs<-, 50
fm_crs_bounds (fm_crs_wkt), 56
fm_crs_detect_manifold
(fm_detect_manifold), 59

121

fm_crs_get_ellipsoid_radius
(fm_crs_wkt), 56

fm_crs_get_lengthunit (fm_crs_wkt), 56

fm_crs_graticule (fm_crs_plot), 54

fm_crs_is_geocent (fm_crs_wkt), 56

fm_crs_is_identical, 52

fm_crs_is_identical (), 46, 53

fm_crs_is_null, 53

fm_crs_is_null(), 52

fm_crs_oblique (fm_crs), 46

fm_crs_oblique<- (fm_crs<-), 50

fm_crs_plot, 54

fm_crs_projection_type (fm_crs_wkt), 56

fm_crs_set_ellipsoid_radius
(fm_crs_wkt), 56

fm_crs_set_lengthunit (fm_crs_wkt), 56

fm_crs_tissot (fm_crs_plot), 54

fm_crs_wkt, 46, 49, 56

fm_delaunay_2d (fm_rcdt_2d), 92

fm_delaunay_2d(), 83

fm_delaunay_3d (fm_mesh_3d), 84

fm_detect_manifold, 59

fm_diameter, 60

fm_dof, 62

fm_ellipsoid_radius (fm_crs_wkt), 56

fm_ellipsoid_radius<- (fm_crs_wkt), 56

fm_evaluate, 63

fm_evaluator, 118

fm_evaluator (fm_evaluate), 63

fm_evaluator(), 118, 119

fm_evaluator_lattice (fm_evaluate), 63

fm_extensions (fm_nonconvex_hull), 85

fm_extensions(), 83

fm_fem, 66

fm_fem(), 67

fm_gmrf, 67

fm_hexagon_lattice, 68

fm_int, 70

fm_int(), 111, 112

fm_int_mesh_2d(), 72

fm_int_object (fmesher-deprecated), 5

fm_is_bnd (fm_segm), 94

fm_is_bnd<- (fm_segm), 94

fm_is_within, 73

fm_lattice_2d, /1, 13-16, 18, 21-23, 39, 74,
77,81, 83, 96, 98, 103

fm_lattice_2d(), 64, 65, 93

fm_lattice_Nd, /1, 13-16, 18, 21-23, 39, 75,

122

76, 81, 83, 96, 98, 103
fm_lattice_Nd(), 65
fm_length_unit (fm_crs_wkt), 56
fm_length_unit<- (fm_crs_wkt), 56
fm_list, 77
fm_manifold, 79
fm_manifold_dim (fm_manifold), 79
fm_manifold_dim(), 67
fm_manifold_get (fm_manifold), 79
fm_manifold_type (fm_manifold), 79
fm_matern_precision (fm_gmrf), 67
fm_matern_precision(), 10
fm_matern_sample (fm_gmrf), 67
fm_mesh_1d, 11, 13-16, 18, 21-23, 27, 28, 39,
64,75,77, 80, 83, 96, 98, 103
fm_mesh_1d(), 62, 65, 66, 90, 91, 110
fm_mesh_2d, 10, 11, 13-16, 18, 21-23, 27, 28,
39,64,73,75,77,81, 82, 96, 98,
100, 101, 103
fm_mesh_2d(), 8, 10, 37, 38, 40, 42, 62, 65,
66, 69, 74, 75, 83, 87, 90, 91, 93,
103,110,112, 113
fm_mesh_2d_inla (fm_mesh_2d), 82
fm_mesh_2d_inla(), 83, 87, 93
fm_mesh_3d, 39, 84
fm_mesh_3d(), 40, 77
fm_mesh_components
(fmesher-deprecated), 5
fm_nonconvex_hull, 85
fm_nonconvex_hull(), 83, 86, 87, 93
fm_nonconvex_hull_fm
(fm_nonconvex_hull), 85
fm_nonconvex_hull_inla(), 83, 87, 93
fm_nonconvex_hull_sf
(fm_nonconvex_hull), 85
fm_pixels, 88
fm_proj4string (fm_crs_wkt), 56
fm_qginv, 89
fm_raw_basis, 90
fm_raw_basis(), 32
fm_rcdt_2d, 10, 92
fm_rcdt_2d(), 40, 83, 87, 93, 95
fm_rcdt_2d_inla (fm_rcdt_2d), 92
fm_rcdt_2d_inla(), 83, 87, 93
fm_refine(), 83
fm_row_kron, 94
fm_sample (fm_gmrf), 67
fm_segm, 11, 13-16, 18, 21-23, 39, 75,77, 81,

INDEX

83,87,94, 98, 103
fm_segm(), 40, 82, 98, 100, 110, 114, 115
fm_segm_join (fm_segm), 94
fm_segm_list, 96
fm_segm_split (fm_segm), 94
fm_simplify, 11, 13-16, 18, 21-23, 39, 75,

77,81, 83, 96, 98, 103
fm_simplify_helper(), 86
fm_sizes, 99
fm_sp2segment (fmesher-deprecated), 5
fm_split_lines, 100
fm_subdivide, 101
fm_subset, 102
fm_tensor, 11, 13-16, 18, 21-23, 39,75, 77,

81, 83, 96, 98, 103
fm_tensor(), 62
fm_transform, 104
fm_transform(), 75
fm_unify_coords(), 84, 92
fm_vertices, 105
fm_vertices(), 38
fm_wkt (fm_crs_wkt), 56
fm_wkt_as_wkt_tree(), 58
fm_wkt_get_ellipsoid_radius

(fm_crs_wkt), 56
fm_wkt_get_lengthunit (fm_crs_wkt), 56
fm_wkt_is_geocent (fm_crs_wkt), 56
fm_wkt_predef (fm_crs), 46
fm_wkt_projection_type (fm_crs_wkt), 56
fm_wkt_set_ellipsoid_radius

(fm_crs_wkt), 56
fm_wkt_set_lengthunit (fm_crs_wkt), 56
fm_wkt_tree_projection_type

(fm_crs_wkt), 56
fm_wkt_unit_params (fm_crs_wkt), 56
fm_zm, 106
fm_zm_input (fm_zm), 106
fm_zm_target (fm_zm), 106
fmesher-deprecated, 5
fmesher-print, 5
fmesher_globe_points, 7
fmesher_globe_points(), 93
fmesher_rcdt(), 92
fmexample, 8, 9
fmexample_sp, 9
fmexample_sp(), 8

geom_fm, 108
ggplot2::aes(), 109

INDEX 123

is.na.fm_CRS (fm_CRS), 43
is.na.fm_crs (fm_crs_is_null), 53
is.na.inla.CRS (fm_CRS), 43

lines.fm_mesh_2d (plot.fm_mesh_2d), 112
lines.fm_segm (plot.fm_segm), 114
lines.fm_segm_list (plot.fm_segm), 114
lines_rgl (plot_rgl), 115

lines_rgl(), 115

new_fm_int, 111
new_fm_int(), 5

plot.fm_mesh_2d, 112, 115
plot.fm_mesh_2d(), 117
plot.fm_segm, 114
plot.fm_segm(), 114
plot.fm_segm_list (plot.fm_segm), 114
plot_rgl, 115

plot_rgl(), 115
plot_rgl.fm_mesh_2d(), 114
print.fm_basis, 118

print.fm_bbox (fmesher-print), 5
print.fm_collect (fmesher-print), 5
print.fm_CRS (fmesher-print), 5
print.fm_crs (fmesher-print), 5
print.fm_evaluator, 118
print.fm_lattice_2d (fmesher-print), 5
print.fm_lattice_Nd (fmesher-print), 5
print.fm_list (fmesher-print), 5
print.fm_mesh_1d (fmesher-print), 5
print.fm_mesh_2d (fmesher-print), 5
print.fm_mesh_3d (fmesher-print), 5
print.fm_segm (fmesher-print), 5
print.fm_segm_list (fmesher-print), 5
print.fm_tensor (fmesher-print), 5

sf::st_contains(), 41
sf::st_crs(), 49
sf::st_zm(), 108
sp::CRS(), 46
st_crs.fm_crs (fm_crs), 46

tibble::tibble(), 25

	as.triangles3d.fm_mesh_3d
	fmesher-deprecated
	fmesher-print
	fmesher_globe_points
	fmexample
	fmexample_sp
	fm_area
	fm_assess
	fm_as_collect
	fm_as_fm
	fm_as_lattice_2d
	fm_as_lattice_Nd
	fm_as_mesh_1d
	fm_as_mesh_2d
	fm_as_mesh_3d
	fm_as_segm
	fm_as_sfc
	fm_as_tensor
	fm_bary
	fm_bary_loc
	fm_bary_simplex
	fm_basis
	fm_bbox
	fm_block
	fm_centroids
	fm_collect
	fm_components
	fm_contains
	fm_CRS
	fm_crs
	fm_crs<-
	fm_crs_is_identical
	fm_crs_is_null
	fm_crs_plot
	fm_crs_wkt
	fm_detect_manifold
	fm_diameter
	fm_dof
	fm_evaluate
	fm_fem
	fm_gmrf
	fm_hexagon_lattice
	fm_int
	fm_is_within
	fm_lattice_2d
	fm_lattice_Nd
	fm_list
	fm_manifold
	fm_mesh_1d
	fm_mesh_2d
	fm_mesh_3d
	fm_nonconvex_hull
	fm_pixels
	fm_qinv
	fm_raw_basis
	fm_rcdt_2d
	fm_row_kron
	fm_segm
	fm_segm_list
	fm_simplify
	fm_sizes
	fm_split_lines
	fm_subdivide
	fm_subset
	fm_tensor
	fm_transform
	fm_vertices
	fm_zm
	geom_fm
	new_fm_int
	plot.fm_mesh_2d
	plot.fm_segm
	plot_rgl
	print.fm_basis
	print.fm_evaluator
	Index

