Package: jsonedit (via r-universe)

January 9, 2026
Type Package
Title JSON Parsing and Modification Ultilities
Version 1.0.0

Description Bindings to 'node-jsonc-parser' to parse, format, and
modify JSON files while retaining comments.

License MIT + file LICENSE

URL https://github.com/r-1lib/jsonedit
Imports cli, rlang (>=1.1.0), V8 (>=6.0.6)
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3

Config/pak/sysreqs libssl-dev libnode-dev
Repository https://test.r-universe.dev
Date/Publication 2026-01-09 17:19:29 UTC
RemoteUrl https://github.com/r-lib/jsonedit
RemoteRef HEAD

RemoteSha 0b169c2a3f5a3609296c4eead7519a23599691ab

Contents
format e e
modify e e
PASE .« o e e e e e
Index

https://github.com/r-lib/jsonedit

2 format

format Format a JSON file or string

Description

Format a JSON file or string, preserving comments.

Usage
text_format(text, ..., formatting_options = NULL)
file_format(file, ..., formatting_options = NULL)

formatting_options(
indent_width = 4L,

indent_style = "space”,
eol = "\n",
insert_final_newline = TRUE
)
Arguments
text A single string containing JSON.

. These dots are for future extensions and must be empty.
formatting_options
The result of formatting_options(). If NULL, a default set of options are used.
file Path to file on disk. File must exist.
indent_width The number of spaces to use to indicate a single indent when indent_style =
"space”.
indent_style The style of indentation to use. Either:
* "space” for spaces.
* "tab" for tabs.
eol The character used for the end of a line. This is only applicable when the text
doesn’t already contain an existing line ending, i.e. an empty string or a string
spanning a single line.
insert_final_newline
Whether or not to insert a final newline.

Examples
text <- '{"foo":[1,2]}'
cat(text_format(text))

formatting_options <- formatting_options(indent_width = 2)
cat(text_format(text, formatting_options = formatting_options))

modify

modify

Modify a JSON file or string

Description

Set or delete fields in a JSON file or string while retaining comments and whitespace.

Usage

text_modify(
text,
path,
value,

L

parse_options

= NULL,

modification_options = NULL

)

file_modify(
file,
path,
value,

parse_options

= NULL,

modification_options = NULL

)

modification_options(formatting_options = NULL, is_array_insertion = FALSE)

Arguments

text
path

value

parse_options

A single string containing JSON to modify.
Either:

e A character vector representing a path to a JSON element by name, i.e.
c("[r]", "editor.formatOnSave").

* A list of strings or numbers representing a path to a JSON element by name
and position, i.e. 1ist("[r]"”, "editor.rulers”, 2).

Numeric positions are specified as positive integers and are only applicable for
arrays. -1 is specially recognized as a request to insert at the end of an array.

New value. Wrap in V8::JS() to specify literal JavaScript value. Use NULL to
delete the field.

These dots are for future extensions and must be empty.

The result of parse_options(). If NULL, a default set of options are used.

4 modify

modification_options
The result of modification_options(). If NULL, a default set of options are
used.

file Path to file on disk. File must exist.

formatting_options
The result of a call to formatting_options(). If NULL, a default set of options
are used.

is_array_insertion
Whether or not to treat the change as an insertion at the specified path rather
than a modification at that path. Only applicable for arrays.

Examples

text <- "{}"

text <- text_modify(text, c('[r]', 'editor.formatOnSave'), TRUE)
cat(text)

text <- text_modify(text, c('[r]', 'editor.formatOnSave'), NULL)
cat(text)

Insert an array
text <- text_modify(text, "foo"”, 1:3)
cat(text)

Update the array at location 2
cat(text_modify(text, list("foo", 2), 0))

Insert at location 2
cat(text_modify(
text,
list("foo", 2),
0,
modification_options = modification_options(is_array_insertion = TRUE)

)

Insert at the end of the array. “-1° is treated as an insertion regardless
of the value of “is_array_insertion”.
cat(text_modify(text, list("foo"”, -1), 0))

Only the modified elements are reformatted
text <- '{"foo":[1,2],\n"bar":1}'
cat(text_modify(text, list("foo", 3), 0))

You can control how those elements are formatted
cat(text_modify(
text,
list("foo", 3),
o,
modification_options = modification_options(
formatting_options = formatting_options(indent_width = 2),
is_array_insertion = TRUE

parse
)
)
parse Parse a JSON file or string
Description
* text_parse() and file_parse() parse JSON into an R object.
* text_parse_at_path() and file_parse_at_path() parse JSON at a requested JSON path,
ie. c("[r]", "editor.formatOnSave").
Usage
text_parse(text, ..., parse_options = NULL)
file_parse(file, ..., parse_options = NULL)
text_parse_at_path(text, path, ..., parse_options = NULL)
file_parse_at_path(file, path, ..., parse_options = NULL)

parse_options(

allow_comments = TRUE,
allow_trailing_comma = TRUE,
allow_empty_content = TRUE

)

Arguments

text
parse_options

file
path

allow_comments

A single string containing JSON.

These dots are for future extensions and must be empty.

The result of parse_options(). If NULL, a default set of options are used.
Path to file on disk. File must exist.

Either:

* A character vector representing a path to a JSON element by name, i.e.
c("[r]", "editor.formatOnSave").
* A list of strings or numbers representing a path to a JSON element by name
and position, i.e. 1ist("[r]"”, "editor.rulers”, 2).
Numeric positions are specified as positive integers and are only applicable for
arrays.

Whether or not to allow comments when parsing.

allow_trailing_comma

Whether or not to allow a trailing comma when parsing.

allow_empty_content

Whether or not to allow empty strings or empty files when parsing.

6 parse

Examples

text <- '
{
"a": 1,
"b": [2, 3, 4],
"[r]": {
"this": "setting”,
// A comment!
"that": true
}, // A trailing comma!

Parse the JSON, allowing comments (i.e. JSONC)
str(text_parse(text))

Try to parse the JSON, but comments aren't allowed!
parse_options <- parse_options(allow_comments = FALSE)
try(text_parse(text, parse_options = parse_options))

Try to parse the JSON, but trailing commas aren't allowed!
parse_options <- parse_options(allow_trailing_comma = FALSE)
try(text_parse(text, parse_options = parse_options))

Parse only a subset of the JSON
text_parse_at_path(text, "b")
text_parse_at_path(text, "[r]")
text_parse_at_path(text, c("[r]"”, "that"))

Use a “list()” combining strings and positional indices when
arrays are involved
text_parse_at_path(text, list("b", 2))

Index

file_format (format), 2
file_modify (modify), 3
file_parse (parse), 5
file_parse_at_path (parse), 5
format, 2

formatting_options (format), 2
formatting_options(), 2,4

modification_options (modify), 3
modification_options(), 4
modify, 3

parse, 5
parse_options (parse), 5
parse_options(), 3,5

text_format (format), 2
text_modify (modify), 3
text_parse (parse), 5
text_parse_at_path (parse), 5

V8::350), 3

	format
	modify
	parse
	Index

