
Package: jsonedit (via r-universe)
January 9, 2026

Type Package

Title JSON Parsing and Modification Utilities

Version 1.0.0

Description Bindings to 'node-jsonc-parser' to parse, format, and
modify JSON files while retaining comments.

License MIT + file LICENSE

URL https://github.com/r-lib/jsonedit

Imports cli, rlang (>= 1.1.0), V8 (>= 6.0.6)

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Config/pak/sysreqs libssl-dev libnode-dev

Repository https://test.r-universe.dev

Date/Publication 2026-01-09 17:19:29 UTC

RemoteUrl https://github.com/r-lib/jsonedit

RemoteRef HEAD

RemoteSha 0b169c2a3f5a3609296c4eea47519a23599691ab

Contents
format . 2
modify . 3
parse . 5

Index 7

1

https://github.com/r-lib/jsonedit

2 format

format Format a JSON file or string

Description

Format a JSON file or string, preserving comments.

Usage

text_format(text, ..., formatting_options = NULL)

file_format(file, ..., formatting_options = NULL)

formatting_options(
indent_width = 4L,
indent_style = "space",
eol = "\n",
insert_final_newline = TRUE

)

Arguments

text A single string containing JSON.

... These dots are for future extensions and must be empty.
formatting_options

The result of formatting_options(). If NULL, a default set of options are used.

file Path to file on disk. File must exist.

indent_width The number of spaces to use to indicate a single indent when indent_style =
"space".

indent_style The style of indentation to use. Either:

• "space" for spaces.
• "tab" for tabs.

eol The character used for the end of a line. This is only applicable when the text
doesn’t already contain an existing line ending, i.e. an empty string or a string
spanning a single line.

insert_final_newline

Whether or not to insert a final newline.

Examples

text <- '{"foo":[1,2]}'
cat(text_format(text))

formatting_options <- formatting_options(indent_width = 2)
cat(text_format(text, formatting_options = formatting_options))

modify 3

modify Modify a JSON file or string

Description

Set or delete fields in a JSON file or string while retaining comments and whitespace.

Usage

text_modify(
text,
path,
value,
...,
parse_options = NULL,
modification_options = NULL

)

file_modify(
file,
path,
value,
...,
parse_options = NULL,
modification_options = NULL

)

modification_options(formatting_options = NULL, is_array_insertion = FALSE)

Arguments

text A single string containing JSON to modify.

path Either:

• A character vector representing a path to a JSON element by name, i.e.
c("[r]", "editor.formatOnSave").

• A list of strings or numbers representing a path to a JSON element by name
and position, i.e. list("[r]", "editor.rulers", 2).

Numeric positions are specified as positive integers and are only applicable for
arrays. -1 is specially recognized as a request to insert at the end of an array.

value New value. Wrap in V8::JS() to specify literal JavaScript value. Use NULL to
delete the field.

... These dots are for future extensions and must be empty.

parse_options The result of parse_options(). If NULL, a default set of options are used.

4 modify

modification_options

The result of modification_options(). If NULL, a default set of options are
used.

file Path to file on disk. File must exist.
formatting_options

The result of a call to formatting_options(). If NULL, a default set of options
are used.

is_array_insertion

Whether or not to treat the change as an insertion at the specified path rather
than a modification at that path. Only applicable for arrays.

Examples

text <- "{}"

text <- text_modify(text, c('[r]', 'editor.formatOnSave'), TRUE)
cat(text)

text <- text_modify(text, c('[r]', 'editor.formatOnSave'), NULL)
cat(text)

Insert an array
text <- text_modify(text, "foo", 1:3)
cat(text)

Update the array at location 2
cat(text_modify(text, list("foo", 2), 0))

Insert at location 2
cat(text_modify(

text,
list("foo", 2),
0,
modification_options = modification_options(is_array_insertion = TRUE)

))

Insert at the end of the array. `-1` is treated as an insertion regardless
of the value of `is_array_insertion`.
cat(text_modify(text, list("foo", -1), 0))

Only the modified elements are reformatted
text <- '{"foo":[1,2],\n"bar":1}'
cat(text_modify(text, list("foo", 3), 0))

You can control how those elements are formatted
cat(text_modify(

text,
list("foo", 3),
0,
modification_options = modification_options(

formatting_options = formatting_options(indent_width = 2),
is_array_insertion = TRUE

parse 5

)
))

parse Parse a JSON file or string

Description

• text_parse() and file_parse() parse JSON into an R object.
• text_parse_at_path() and file_parse_at_path() parse JSON at a requested JSON path,

i.e. c("[r]", "editor.formatOnSave").

Usage

text_parse(text, ..., parse_options = NULL)

file_parse(file, ..., parse_options = NULL)

text_parse_at_path(text, path, ..., parse_options = NULL)

file_parse_at_path(file, path, ..., parse_options = NULL)

parse_options(
allow_comments = TRUE,
allow_trailing_comma = TRUE,
allow_empty_content = TRUE

)

Arguments

text A single string containing JSON.
... These dots are for future extensions and must be empty.
parse_options The result of parse_options(). If NULL, a default set of options are used.
file Path to file on disk. File must exist.
path Either:

• A character vector representing a path to a JSON element by name, i.e.
c("[r]", "editor.formatOnSave").

• A list of strings or numbers representing a path to a JSON element by name
and position, i.e. list("[r]", "editor.rulers", 2).

Numeric positions are specified as positive integers and are only applicable for
arrays.

allow_comments Whether or not to allow comments when parsing.
allow_trailing_comma

Whether or not to allow a trailing comma when parsing.
allow_empty_content

Whether or not to allow empty strings or empty files when parsing.

6 parse

Examples

text <- '
{

"a": 1,
"b": [2, 3, 4],
"[r]": {
"this": "setting",
// A comment!
"that": true

}, // A trailing comma!
}
'

Parse the JSON, allowing comments (i.e. JSONC)
str(text_parse(text))

Try to parse the JSON, but comments aren't allowed!
parse_options <- parse_options(allow_comments = FALSE)
try(text_parse(text, parse_options = parse_options))

Try to parse the JSON, but trailing commas aren't allowed!
parse_options <- parse_options(allow_trailing_comma = FALSE)
try(text_parse(text, parse_options = parse_options))

Parse only a subset of the JSON
text_parse_at_path(text, "b")
text_parse_at_path(text, "[r]")
text_parse_at_path(text, c("[r]", "that"))

Use a `list()` combining strings and positional indices when
arrays are involved
text_parse_at_path(text, list("b", 2))

Index

file_format (format), 2
file_modify (modify), 3
file_parse (parse), 5
file_parse_at_path (parse), 5
format, 2
formatting_options (format), 2
formatting_options(), 2, 4

modification_options (modify), 3
modification_options(), 4
modify, 3

parse, 5
parse_options (parse), 5
parse_options(), 3, 5

text_format (format), 2
text_modify (modify), 3
text_parse (parse), 5
text_parse_at_path (parse), 5

V8::JS(), 3

7

	format
	modify
	parse
	Index

