Package: later (via r-universe)

January 9, 2026
Type Package

Title Utilities for Scheduling Functions to Execute Later with Event
Loops

Version 1.4.5

Description Executes arbitrary R or C functions some time after the
current time, after the R execution stack has emptied. The
functions are scheduled in an event loop.

License MIT + file LICENSE
URL https://later.r-1lib.org, https://github.com/r-1ib/later

BugReports https://github.com/r-1lib/later/issues
Depends R (>=3.5)

Imports Rcpp (>=1.0.10), rlang

Suggests knitr, nanonext, promises, rmarkdown, testthat (>= 3.0.0)
LinkingTo Rcpp

VignetteBuilder knitr
Config/build/compilation-database true
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Config/usethis/last-upkeep 2025-07-18

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Repository https:/test.r-universe.dev

Date/Publication 2026-01-08 08:06:53 UTC

RemoteUrl https://github.com/r-lib/later

RemoteRef v1.4.5

RemoteSha 44df32274f3f0fc65a069fe099e4f762dece9621

https://later.r-lib.org
https://github.com/r-lib/later
https://github.com/r-lib/later/issues

2

create_loop

Contents
create_loop e e 2
later o e e 3
later_fd L s 4
NEXE_OP_SECS « « o v v v e e et e e e e e e e e e e e e 6
TUNL_NOW . . v v v o v v e e e e e e e e e e e e e 7

Index 8

create_loop Private event loops
Description

Normally, later uses a global event loop for scheduling and running functions. However, in some
cases, it is useful to create a private event loop to schedule and execute tasks without disturbing

the g

lobal event loop. For example, you might have asynchronous code that queries a remote data

source, but want to wait for a full back-and-forth communication to complete before continuing
in your code — from the caller’s perspective, it should behave like synchronous code, and not do
anything with the global event loop (which could run code unrelated to your operation). To do this,
you would run your asynchronous code using a private event loop.

Usage
create_loop(parent = current_loop())
destroy_loop(loop)
exists_loop(loop)
current_loop()
with_temp_loop(expr)
with_loop(loop, expr)
global_loop()
Arguments
parent The parent event loop for the one being created. Whenever the parent loop runs,
this loop will also automatically run, without having to manually call run_now()
on this loop. If NULL, then this loop will not have a parent event loop that auto-
matically runs it; the only way to run this loop will be by calling run_now() on
this loop.
loop A handle to an event loop.
expr An expression to evaluate.

later 3

Details

create_loop creates and returns a handle to a private event loop, which is useful when for schedul-
ing tasks when you do not want to interfere with the global event loop.

destroy_loop destroys a private event loop.
exists_loop reports whether an event loop exists — that is, that it has not been destroyed.

current_loop returns the currently-active event loop. Any calls to later () or run_now() will use
the current loop by default.

with_loop evaluates an expression with a given event loop as the currently-active loop.

with_temp_loop creates an event loop, makes it the current loop, then evaluates the given expres-
sion. Afterwards, the new event loop is destroyed.

global_loop returns a handle to the global event loop.

later Executes a function later

Description

Schedule an R function or formula to run after a specified period of time. Similar to JavaScript’s
setTimeout function. Like JavaScript, R is single-threaded so there’s no guarantee that the opera-
tion will run exactly at the requested time, only that at least that much time will elapse.

Usage

later(func, delay = @, loop = current_loop())

Arguments
func A function or formula (see rlang: :as_function()).
delay Number of seconds in the future to delay execution. There is no guarantee that
the function will be executed at the desired time, but it should not execute earlier.
loop A handle to an event loop. Defaults to the currently-active loop.
Details

The mechanism used by this package is inspired by Simon Urbanek’s background package and
similar code in Rhttpd.

Value

A function, which, if invoked, will cancel the callback. The function will return TRUE if the callback
was successfully cancelled and FALSE if not (this occurs if the callback has executed or has been
cancelled already).

https://github.com/s-u/background

4 later_fd

Note

To avoid bugs due to reentrancy, by default, scheduled operations only run when there is no other
R code present on the execution stack; i.e., when R is sitting at the top-level prompt. You can force
past-due operations to run at a time of your choosing by calling run_now().

Error handling is not particularly well-defined and may change in the future. options(error=browser)
should work and errors in func should generally not crash the R process, but not much else can be
said about it at this point. If you must have specific behavior occur in the face of errors, put error
handling logic inside of func.

Examples

Example of formula style
later(~cat("Hello from the past\n"), 3)

Example of function style
later(function() {
print(summary(cars))

3 2)

later_fd Executes a function when a file descriptor is ready

Description

Schedule an R function or formula to run after an indeterminate amount of time when file descriptors
are ready for reading or writing, subject to an optional timeout.

Usage

later_fd(
func,
readfds = integer(),
writefds = integer(),
exceptfds = integer(),
timeout = Inf,
loop = current_loop()

Arguments

func A function that takes a single argument, a logical vector that indicates which file
descriptors are ready (a concatenation of readfds, writefds and exceptfds).
This may be all FALSE if the timeout argument is non-Inf. File descriptors with
error conditions pending are represented as NA, as are invalid file descriptors such
as those already closed.

later_fd 5

readfds Integer vector of file descriptors, or Windows SOCKETSs, to monitor for being
ready to read.

writefds Integer vector of file descriptors, or Windows SOCKETS, to monitor being ready
to write.

exceptfds Integer vector of file descriptors, or Windows SOCKETS, to monitor for error

conditions pending.

timeout Number of seconds to wait before giving up, and calling func with all FALSE.
The default Inf implies waiting indefinitely. Specifying @ will check once with-
out blocking, and supplying a negative value defaults to a timeout of 1s.

loop A handle to an event loop. Defaults to the currently-active loop.

Details

On the occasion the system-level poll (on Windows WSAPoll) returns an error, the callback will
be made on a vector of all NAs. This is indistinguishable from a case where the poll succeeds but
there are error conditions pending against each file descriptor.

If no file descriptors are supplied, the callback is scheduled for immediate execution and made on
the empty logical vector logical(@).

Value

A function, which, if invoked, will cancel the callback. The function will return TRUE if the callback
was successfully cancelled and FALSE if not (this occurs if the callback has executed or has been
cancelled already).

Note

To avoid bugs due to reentrancy, by default, scheduled operations only run when there is no other
R code present on the execution stack; i.e., when R is sitting at the top-level prompt. You can force
past-due operations to run at a time of your choosing by calling run_now().

Error handling is not particularly well-defined and may change in the future. options(error=browser)
should work and errors in func should generally not crash the R process, but not much else can be
said about it at this point. If you must have specific behavior occur in the face of errors, put error
handling logic inside of func.

Examples

create nanonext sockets

s1 <- nanonext::socket(listen = "inproc://nano")
s2 <- nanonext::socket(dial = "inproc://nano")
fd1 <- nanonext::opt(s1, "recv-fd")

fd2 <- nanonext::opt(s2, "recv-fd")

1. timeout: prints FALSE, FALSE
later_fd(print, c(fd1, fd2), timeout = 0.1)
Sys.sleep(0.2)

run_now()

2. fdl1 ready: prints TRUE, FALSE

6 next_op_secs

later_fd(print, c(fd1, fd2), timeout = 1)
res <- nanonext::send(s2, "msg")
Sys.sleep(0.1)

run_now()

3. both ready: prints TRUE, TRUE
res <- nanonext::send(s1, "msg")
later_fd(print, c(fd1, fd2), timeout
Sys.sleep(0.1)

run_now()

D

4. fd2 ready: prints FALSE, TRUE

res <- nanonext::recv(sl)

later_fd(print, c(fd1, fd2), timeout = 1)
Sys.sleep(0.1)

run_now()

5. fds invalid: prints NA, NA

close(s2)

close(s1)

later_fd(print, c(fd1, fd2), timeout = 0)
Sys.sleep(0.1)

run_now()

next_op_secs Relative time to next scheduled operation

Description

Returns the duration between now and the earliest operation that is currently scheduled, in seconds.
If the operation is in the past, the value will be negative. If no operation is currently scheduled, the
value will be Inf.

Usage

next_op_secs(loop = current_loop())

Arguments

loop A handle to an event loop.

run_now 7

run_now Execute scheduled operations

Description

Normally, operations scheduled with later () will not execute unless/until no other R code is on
the stack (i.e. at the top-level). If you need to run blocking R code for a long time and want to allow
scheduled operations to run at well-defined points of your own operation, you can call run_now()
at those points and any operations that are due to run will do so.

Usage

run_now(timeoutSecs = OL, all = TRUE, loop = current_loop())

Arguments
timeoutSecs Wait (block) for up to this number of seconds waiting for an operation to be
ready to run. If @, then return immediately if there are no operations that are
ready to run. If Inf or negative, then wait as long as it takes (if none are sched-
uled, then this will block forever).
all If FALSE, run_now() will execute at most one scheduled operation (instead of
all eligible operations). This can be useful in cases where you want to interleave
scheduled operations with your own logic.
loop A handle to an event loop. Defaults to the currently-active loop.
Details

If one of the callbacks throws an error, the error will not be caught, and subsequent callbacks will
not be executed (until run_now() is called again, or control returns to the R prompt). You must use
your own tryCatch if you want to handle errors.

Value

A logical indicating whether any callbacks were actually run.

Index

create_loop, 2
current_loop (create_loop), 2

destroy_loop (create_loop), 2
exists_loop (create_loop), 2
global_loop (create_loop), 2

later, 3,3
later(), 7
later_fd, 4

next_op_secs, 6
rlang::as_function(), 3
run_now, 2, 3,7
run_now(), 4, 5

tryCatch, 7

with_loop (create_loop), 2
with_temp_loop (create_loop), 2

	create_loop
	later
	later_fd
	next_op_secs
	run_now
	Index

