Package: mirai (via r-universe)

January 30, 2026
Type Package
Title Minimalist Async Evaluation Framework for R
Version 2.5.3

Description Designed for simplicity, a 'mirai' evaluates an R
expression asynchronously, locally or distributed over the
network. Built on 'nanonext' and 'NNG' for modern networking
and concurrency, scales efficiently to millions of tasks over
thousands of parallel processes. Provides optimal scheduling
over fast TPC', TCP, and TLS connections, integrating with SSH
or cluster managers. Implements event-driven promises for
reactive programming, and supports custom serialization for
cross-language data types.

License MIT + file LICENSE
URL https://mirai.r-1lib.org, https://github.com/r-1ib/mirai

BugReports https://github.com/r-lib/mirai/issues
Depends R (>= 3.6)

Imports nanonext (>=1.7.2)

Suggests cli, litedown, otel, otelsdk

Enhances parallel, promises

VignetteBuilder litedown

Config/Needs/coverage rlang

Config/Needs/website tidyverse/tidytemplate
Config/usethis/last-upkeep 2025-04-23

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Repository https://test.r-universe.dev

Date/Publication 2025-12-01 10:26:13 UTC

RemoteUrl https://github.com/shikokuchuo/mirai
RemoteRef v2.5.3

RemoteSha 54a7ab0fee7cd58ca20ec1282762f7ad0be58576

https://mirai.r-lib.org
https://github.com/r-lib/mirai
https://github.com/r-lib/mirai/issues

2 mirai-package

Contents
mirai-package 2
ASPrOMISE.IMITAL . . . v v v v v v v v v e e e e e e e e e e e 3
AS.PrOMISE.MITAL_MAP . . .+« v v v v v e e e e e e e e e e e e e e e e 4
call_miral e 5
cluster_config L 7
collect_miral e e e 8
daemon L L e e e e e e e 10
daemons L e e 12
daemons_SEt. e e 16
dispatcher e e 17
everywhere L e 18
host_url e 20
Info . . e e e e 21
IS_MITAL . . 0 v v v e o e e e e e e e e e e e 22
IS_MITAI_EITOT . o v v v v o e e e e e e e e e e e e e 23
launch_local e 24
make _ClUSter e 25
1011 27
MITA_MADP « .« ¢ v v vt e e e e e e e e e e e e e e e e e e 29
on_daemon L L e e e e 32
TACE_IMITAL . . .+ v v v v v e o e e e e e e e e e e 33
register_serial L. e e e e e 34
remote_config 35
require_daemons L. Lo e 36
serial_config L e 37
ssh_config 38
STALUS e e e e e e e e e e 40
SOP_IMITAL« o v vt s e e e 41
unresolved L L L e e e e 42
with.miraiDaemons 42
with_daemons e 43

Index 45

mirai-package mirai: Minimalist Async Evaluation Framework for R
Description

Designed for simplicity, a *mirai’ evaluates an R expression asynchronously, locally or distributed
over the network. Built on "nanonext’ and 'NNG’ for modern networking and concurrency, scales
efficiently to millions of tasks over thousands of parallel processes. Provides optimal schedul-
ing over fast 'IPC’, TCP, and TLS connections, integrating with SSH or cluster managers. Im-
plements event-driven promises for reactive programming, and supports custom serialization for
cross-language data types.

as.promise.mirai 3

Notes

For local mirai requests, the default transport for inter-process communications is platform-dependent:
abstract Unix domain sockets on Linux, Unix domain sockets on MacOS, Solaris and other POSIX
platforms, and named pipes on Windows.

This may be overriden, if desired, by specifying "url’ in the daemons() interface and launching
daemons using launch_local().
OpenTelemetry

mirai provides comprehensive OpenTelemetry tracing support for observing asynchronous opera-
tions and distributed computation. Please refer to the OpenTelemetry vignette for further details:
vignette("v@5-opentelemetry”, package = "mirai”)

Reference Manual

vignette("mirai”, package = "mirai")

Author(s)

Maintainer: Charlie Gao <charlie.gao@posit.co> (ORCID)

Other contributors:

* Joe Cheng <joe@posit.co> [contributor]
¢ Posit Software, PBC (ROR) [copyright holder, funder]
 Hibiki AI Limited [copyright holder]

See Also
Useful links:
e https://mirai.r-lib.org
* https://github.com/r-1lib/mirai
* Report bugs at https://github.com/r-1ib/mirai/issues

as.promise.mirai Make mirai Promise

Description

Creates a 'promise’ from a *mirai’.

Usage

S3 method for class 'mirai
as.promise(x)

https://orcid.org/0000-0002-0750-061X
https://ror.org/03wc8by49
https://mirai.r-lib.org
https://github.com/r-lib/mirai
https://github.com/r-lib/mirai/issues

4 as.promise.mirai_map

Arguments

X an object of class 'mirai’.

Details

This function is an S3 method for the generic as.promise() for class 'mirai’.
Requires the promises package.

Allows a ’mirai’ to be used with the promise pipe %. . . >%, which schedules a function to run upon
resolution of the “mirai’.

Value

A ’promise’ object.

Examples

library(promises)

p <- as.promise(mirai("example"))

print(p)
is.promise(p)

p2 <- mirai("completed”) %...>% identity()
p2$then(cat)
is.promise(p2)

as.promise.mirai_map Make mirai_map Promise

Description

Creates a ’promise’ from a “mirai_map’.

Usage

S3 method for class 'mirai_map
as.promise(x)

Arguments

X an object of class 'mirai_map’.

call _mirai 5

Details

This function is an S3 method for the generic as.promise() for class *'mirai_map’.
Requires the promises package.

Allows a mirai_map’ to be used with the promise pipe %. . .>%, which schedules a function to run
upon resolution of the entire mirai_map’.

The implementation internally uses promises: :promise_all(). If all of the promises were suc-
cessful, the returned promise will resolve to a list of the promise values; if any promise fails, the
first error to be encountered will be used to reject the returned promise.

Value

A ’promise’ object.

Examples

library(promises)

with(daemons(1), {
mp <- mirai_map(1:3, function(x) { Sys.sleep(1); x })
p <- as.promise(mp)
print(p)
p %...>% print
mp[.flat]
»

call_mirai mirai (Call Value)

Description
Waits for the *mirai’ to resolve if still in progress, stores the value at $data, and returns the *mirai’
object.

Usage

call_mirai(x)

Arguments

X a ’mirai’ object, or list of *mirai’ objects.

6 call_mirai

Details

Accepts a list of 'mirai’ objects, such as those returned by mirai_map(), as well as individual
‘mirai’.

Waits for the asynchronous operation(s) to complete if still in progress, blocking but user-interruptible.

x[] may also be used to wait for and return the value of a mirai x, and is the equivalent of
call_mirai(x)$data.

Value

The passed object (invisibly). For a *mirai’, the retrieved value is stored at $data.

Alternatively

The value of a *mirai’ may be accessed at any time at $data, and if yet to resolve, an "unresolved’
logical NA will be returned instead.

Using unresolved() on a 'mirai’ returns TRUE only if it has yet to resolve and FALSE otherwise.
This is suitable for use in control flow statements such as while or if.

Errors

If an error occurs in evaluation, the error message is returned as a character string of class *miraiEr-
ror’ and ’errorValue’. is_mirai_error() may be used to test for this. The elements of the original
condition are accessible via $ on the error object. A stack trace comprising a list of calls is also
available at $stack. trace, and the original condition classes at $condition.class.

If a daemon crashes or terminates unexpectedly during evaluation, an ’errorValue’ 19 (Connection
reset) is returned.

is_error_value() tests for all error conditions including *mirai’ errors, interrupts, and timeouts.

See Also

race_mirai()

Examples

using call_mirai()

df1 <- data.frame(a =1, b = 2)

df2 <- data.frame(a = 3, b = 1)

m <- mirai(as.matrix(rbind(df1, df2)), df1 = df1, df2 = df2, .timeout = 1000)
call_mirai(m)$data

using unresolved()
m <- mirai(
{
res <- rnorm(n)
res / rev(res)
}?
n = le6
)

while (unresolved(m)) {

cluster_config 7

cat("unresolved\n")
Sys.sleep(@.1)

3
str(m$data)

cluster_config Cluster Remote Launch Configuration

Description

Generates a remote configuration for launching daemons using an HPC cluster resource manager
such as Slurm sbatch, SGE and Torque/PBS qsub or LSF bsub.

Usage
cluster_config(command = "sbatch”, options = "", rscript = "Rscript”)
Arguments
command filename of executable e.g. "sbatch" for Slurm. Replace with "qsub" for SGE /
Torque / PBS, or "bsub" for LSF. See examples below.
options options as would be supplied inside a script file passed to command, e.g. "#SBATCH
—mem=16G", each separated by a new line. See examples below.
Other shell commands e.g. to change working directory may also be included.
For certain setups, "module load R" as a final line is required, or for example
"module load R/4.5.0" for a specific R version.
For the avoidance of doubt, the initial shebang line such as "#!/bin/bash" is not
required.
rscript filename of the R executable. Use the full path of the Rscript executable on the
remote machine if necessary. If launching on Windows, "Rscript” should be
replaced with "Rscript.exe”.
Value

A list in the required format to be supplied to the remote argument of daemons () or launch_remote().

See Also

ssh_config() for SSH launch configurations, or remote_config() for generic configurations.

Examples

Slurm Config:
cluster_config(
command = "sbatch”,
options = "#SBATCH --job-name=mirai
#SBATCH --mem=16G

#SBATCH --output=job.out

module load R/4.5.0",

rscript = file.path(R.home("bin"), "Rscript”)

)

SGE Config:
cluster_config(
command = "qgsub”,
options = "#$ -N mirai
#$ -1 mem_free=16G
#$ -o job.out
module load R/4.5.0",

rscript = file.path(R.home("bin"), "Rscript”)

)

Torque/PBS Config:
cluster_config(
command = "qgsub”,
options = "#PBS -N mirai
#PBS -1 mem=16gb
#PBS -0 job.out
module load R/4.5.0",

rscript = file.path(R.home("bin"), "Rscript”)

)

LSF Config:
cluster_config(
command = "bsub”,
options = "#BSUB -J mirai
#BSUB -M 16000
#BSUB -0 job.out
module load R/4.5.0",

rscript

)

Not run:

Launch 2 daemons using the Slurm sbatch defaults:
daemons(n = 2, url = host_url(), remote = cluster_config())

End(Not run)

file.path(R.home("bin"), "Rscript")

collect_mirai

collect_mirai mirai (Collect Value)

Description

Waits for the *mirai’ to resolve if still in progress, and returns its value directly. It is a more efficient

version of and equivalent to call_mirai(x) $data.

collect_mirai 9

Usage

collect_mirai(x, options = NULL)

Arguments
X a ‘mirai’ object, or list of *mirai’ objects.
options (if x is a list of mirai) a character vector comprising any combination of collec-
tion options for mirai_map(), such as ".flat" or c(".progress”, ".stop").
Details

This function will wait for the asynchronous operation(s) to complete if still in progress, blocking
but interruptible.

x[1] is an equivalent way to wait for and return the value of a mirai x.

Value

An object (the return value of the *mirai’), or a list of such objects (the same length as x, preserving
names).

Options

As an alternative to a character vector, a list where the names are the collection options is also
accepted. The value for .progress is passed to the cli progress bar - if a character value as the
name, and if a list as named parameters to cli::cli_progress_bar. Examples: c(.stop = TRUE,
.progress = "bar name") or list(.stop = TRUE, .progress =1list(name = "bar"”, type = "tasks"))

Alternatively

The value of a *mirai’ may be accessed at any time at $data, and if yet to resolve, an "unresolved’
logical NA will be returned instead.

Using unresolved() on a 'mirai’ returns TRUE only if it has yet to resolve and FALSE otherwise.
This is suitable for use in control flow statements such as while or if.

Errors

If an error occurs in evaluation, the error message is returned as a character string of class *miraiEr-
ror’ and ’errorValue’. is_mirai_error () may be used to test for this. The elements of the original
condition are accessible via $ on the error object. A stack trace comprising a list of calls is also
available at $stack. trace, and the original condition classes at $condition.class.

If a daemon crashes or terminates unexpectedly during evaluation, an ’errorValue’ 19 (Connection
reset) is returned.

is_error_value() tests for all error conditions including *mirai’ errors, interrupts, and timeouts.

10 daemon

Examples

using collect_mirai()

df1 <- data.frame(a =1, b = 2)

df2 <- data.frame(a = 3, b = 1)

m <- mirai(as.matrix(rbind(df1, df2)), df1 = df1, df2 = df2, .timeout = 1000)
collect_mirai(m)

using x[]
m[]

mirai_map with collection options
daemons (1, dispatcher = FALSE)
m <- mirai_map(1:3, rnorm)

collect_mirai(m, c(".flat", ".progress"))
daemons (@)
daemon Daemon Instance
Description

Starts up an execution daemon to receive mirai() requests. Awaits data, evaluates an expression
in an environment containing the supplied data, and returns the value to the host caller. Daemon
settings may be controlled by daemons() and this function should not need to be invoked directly,
unless deploying manually on remote resources.

Usage

daemon (
url,
dispatcher = TRUE,
asyncdial = FALSE,
autoexit = TRUE,
cleanup = TRUE,
output = FALSE,
idletime = Inf,
walltime = Inf,
maxtasks = Inf,
tlscert = NULL,
rs = NULL

Arguments

url the character host or dispatcher URL to dial into, including the port to connect
to, e.g. “tcp://hostname:5555’ or "tls+tcp://10.75.32.70:5555°.

daemon

dispatcher

asyncdial

autoexit

cleanup

output

idletime

walltime

maxtasks

tlscert

rs

Details

11

logical value, which should be set to TRUE if using dispatcher and FALSE oth-
erwise.

reserved, but not currently used.

whether to perform dials asynchronously. The default FALSE will error if a
connection is not immediately possible (for instance if daemons() has yet to
be called on the host, or the specified port is not open etc.). Specifying TRUE
continues retrying (indefinitely) if not immediately successful, which is more
resilient but can mask potential connection issues.

logical value, whether the daemon should exit automatically when its socket
connection ends. By default, the process ends immediately when the host pro-
cess ends. Supply NA to have a daemon complete any tasks in progress before
exiting (see ’Persistence’ section below).

logical value, whether to perform cleanup of the global environment and restore
attached packages and options to an initial state after each evaluation.

logical value, to output generated stdout / stderr if TRUE, or else discard if
FALSE. Specify as TRUE in the . . . argument to daemons () or launch_local()
to provide redirection of output to the host process (applicable only for local
daemons).

integer milliseconds maximum time to wait for a task (idle time) before exiting.

integer milliseconds soft walltime (time limit) i.e. the minimum amount of real
time elapsed before exiting.

integer maximum number of tasks to execute (task limit) before exiting.

required for secure TLS connections over ’tls+tcp://’. Either the character path
to a file containing X.509 certificate(s) in PEM format, comprising the certifi-
cate authority certificate chain starting with the TLS certificate and ending with
the CA certificate, or a length 2 character vector comprising (i) the certificate
authority certificate chain and (ii) the empty string "".

the initial value of .Random.seed. This is set automatically using L’Ecuyer-
CMRG RNG streams generated by the host process if applicable, and should
not be independently supplied.

The network topology is such that daemons dial into the host or dispatcher, which listens at the
url address. In this way, network resources may be added or removed dynamically and the host or
dispatcher automatically distributes tasks to all available daemons.

Value

Invisibly, an integer exit code: OL for normal termination, and a positive value if a self-imposed
limit was reached: 1L (idletime), 2L (walltime), 3L (maxtasks).

Persistence

The autoexit argument governs persistence settings for the daemon. The default TRUE ensures that
it exits as soon as its socket connection with the host process drops. A 200ms grace period allows
the daemon process to exit normally, after which it will be forcefully terminated.

12

daemons

Supplying NA ensures that a daemon always exits cleanly after its socket connection with the host
drops. This means that it can temporarily outlive this connection, but only to complete any task that
is currently in progress. This can be useful if the daemon is performing a side effect such as writing
files to disk, with the result not being required back in the host process.

Setting to FALSE allows the daemon to persist indefinitely even when there is no longer a socket
connection. This allows a host session to end and a new session to connect at the URL where the
daemon is dialed in. Daemons must be terminated with daemons(NULL) in this case instead of
daemons(@). This sends explicit exit signals to all connected daemons.

daemons

Daemons (Set Persistent Processes)

Description

Set daemons, or persistent background processes, to receive mirai() requests. Specify n to create
daemons on the local machine. Specify url to receive connections from remote daemons (for
distributed computing across the network). Specify remote to optionally launch remote daemons
via a remote configuration. Dispatcher (enabled by default) ensures optimal scheduling.

Usage

daemons (
n,

url = NULL,

remote

= NULL,

dispatcher = TRUE,

bl
sync =
seed =
serial

FALSE,
NULL,
= NULL,

tls = NULL,
pass = NULL,
.compute = NULL

)

Arguments

n

url

remote

integer number of daemons to launch.

if specified, a character string comprising a URL at which to listen for remote
daemons, including a port accepting incoming connections, e.g. ’tcp://hostname:5555’
or ’tcp://10.75.32.70:5555°. Specify a URL with scheme ’tls+tcp://’ to use se-

cure TLS connections (for details see Distributed Computing section below).
Auxiliary function host_url() may be used to construct a valid host URL.

(required only for launching remote daemons) a configuration generated by
ssh_config(), cluster_config(), or remote_config().

daemons 13

dispatcher logical value, whether to use dispatcher. Dispatcher runs in a separate process
to ensure optimal scheduling, and should normally be kept on (for details see
Dispatcher section below).

(optional) additional arguments passed through to daemon() if launching dae-
mons. These include asyncdial, autoexit, cleanup, output, maxtasks, idletime,
walltime and tlscert.

sync logical value, whether to evaluate mirai synchronously in the current process.
Setting to TRUE substantially changes the behaviour of mirai by causing them to
be evaluated immediately after creation. This facilitates testing and debugging,
e.g. via an interactive browser (). In this case, arguments other than seed and
.compute are disregarded.

seed (optional) The default of NULL initializes L’Ecuyer-CMRG RNG streams for
each daemon, the same as base R’s parallel package. Results are statistically-
sound, although generally non-reproducible, as which tasks are sent to which
daemons may be non-deterministic, and also depends on the number of dae-
mons.
(experimental) supply an integer value to instead initialize a L’Ecuyer-CMRG
RNG stream for the compute profile. This is advanced for each mirai evaluation,
hence allowing for reproducible results, as the random seed is always associated
with a given mirai, independently of where it is evaluated.

serial (optional, requires dispatcher) a configuration created by serial_config() to
register serialization and unserialization functions for normally non-exportable
reference objects, such as Arrow Tables or torch tensors. If NULL, configura-
tions registered with register_serial () are automatically applied.

tls (optional for secure TLS connections) if not supplied, zero-configuration single-
use keys and certificates are automatically generated when required. If supplied,
either the character path to a file containing the PEM-encoded TLS certificate
and associated private key (may contain additional certificates leading to a vali-
dation chain, with the TLS certificate first), or a length 2 character vector com-
prising (i) the TLS certificate (optionally certificate chain) and (ii) the associated
private key.

pass (required only if the private key supplied to tls is encrypted with a password)
For security, should be provided through a function that returns this value, rather
than directly.

.compute character value for the compute profile to use (each has its own independent set
of daemons), or NULL to use the ’default’ profile.

Details

Use daemons (@) to reset daemon connections:

* All connected daemons and/or dispatchers exit automatically.
* Any as yet unresolved mirai’ will return an ’errorValue’ 19 (Connection reset).

e mirai() reverts to the default behaviour of creating a new background process for each re-
quest.

14 daemons

If the host session ends, all connected dispatcher and daemon processes automatically exit as soon
as their connections are dropped.

Calling daemons () implicitly resets any existing daemons for the compute profile with daemons (9).
Instead, launch_local() or launch_remote() may be used to add daemons at any time without
resetting daemons.

Value

Invisibly, logical TRUE when creating daemons and FALSE when resetting.

Local Daemons

Setting daemons, or persistent background processes, is typically more efficient as it removes the
need for, and overhead of, creating new processes for each mirai evaluation. It also provides control
over the total number of processes at any one time.

Supply the argument n to set the number of daemons. New background daemon() processes are
automatically launched on the local machine connecting back to the host process, either directly or
via dispatcher.

Dispatcher

By default dispatcher = TRUE launches a background process running dispatcher (). Dispatcher
connects to daemons on behalf of the host, queues tasks, and ensures optimal FIFO scheduling.
Dispatcher also enables (i) mirai cancellation using stop_mirai() or when using a .timeout ar-
gument to mirai(), and (ii) the use of custom serialization configurations.

Specifying dispatcher = FALSE, daemons connect directly to the host and tasks are distributed in
a round-robin fashion, with tasks queued at each daemon. Optimal scheduling is not guaranteed
as, depending on the duration of tasks, they can be queued at one daemon while others remain
idle. However, this solution is the most resource-light, and suited to similar-length tasks, or where
concurrent tasks typically do not exceed available daemons.

Distributed Computing

Specify url as a character string to allow tasks to be distributed across the network (n is only
required in this case if also providing a launch configuration to remote).

The host / dispatcher listens at this URL, utilising a single port, and daemon() processes dial in
to this URL. Host / dispatcher automatically adjusts to the number of daemons actually connected,
allowing dynamic upscaling / downscaling.

The URL should have a ’tcp://” scheme, such as ’tcp://10.75.32.70:5555°. Switching the URL
scheme to ’tls+tcp://’ automatically upgrades the connection to use TLS. The auxiliary function
host_url() may be used to construct a valid host URL based on the computer’s IP address.

IPv6 addresses are also supported and must be enclosed in square brackets [] to avoid confusion
with the final colon separating the port. For example, port 5555 on the IPv6 loopback address ::1
would be specified as "tcp://[::1]:5555°.

Specifying the wildcard value zero for the port number e.g. ’tcp://[::1]:0° will automatically assign
a free ephemeral port. Use status() to inspect the actual assigned port at any time.

daemons 15

Specify remote with a call to ssh_config(), cluster_config() or remote_config() to launch
(programatically deploy) daemons on remote machines, from where they dial back to url. If not
launching daemons, launch_remote() may be used to generate the shell commands for manual
deployment.

Compute Profiles

If NULL, the "default” compute profile is used. Providing a character value for . compute creates
a new compute profile with the name specified. Each compute profile retains its own daemons
settings, and may be operated independently of each other. Some usage examples follow:

local / remote daecmons may be set with a host URL and specifying .compute as "remote”, which
creates a new compute profile. Subsequent mirai() calls may then be sent for local computation
by not specifying the .compute argument, or for remote computation to connected daemons by
specifying the . compute argument as "remote”.

cpu / gpu some tasks may require access to different types of daemon, such as those with GPUs.
In this case, daemons () may be called to set up host URLs for CPU-only daemons and for those
with GPUs, specifying the . compute argument as "cpu” and "gpu” respectively. By supplying the
.compute argument to subsequent mirai() calls, tasks may be sent to either cpu or gpu daemons
as appropriate.

Note: further actions such as resetting daemons via daemons (@) should be carried out with the
desired . compute argument specified.

See Also

with_daemons() and local_daemons() for managing the compute profile used locally.

Examples

Create 2 local daemons (using dispatcher)
daemons(2)

status()

Reset to zero

daemons (@)

Create 2 local daemons (not using dispatcher)
daemons (2, dispatcher = FALSE)

status()

Reset to zero

daemons (0)

Set up dispatcher accepting TLS over TCP connections
daemons(url = host_url(tls = TRUE))

status()

Reset to zero

daemons (@)

Set host URL for remote daemons to dial into
daemons(url = host_url(), dispatcher = FALSE)
status()

Reset to zero

16

daemons (0)

Use with() to evaluate with daemons for the duration of the expression
with(
daemons(2),
{
ml <- mirai(Sys.getpid())
m2 <- mirai(Sys.getpid())
cat(m1[1, m2[]1, "\n")
}
)

Not run:

Launch daemons on remotes 'nodeone' and 'nodetwo' using SSH
connecting back directly to the host URL over a TLS connection:
daemons (

url = host_url(tls = TRUE),

remote = ssh_config(c('ssh://nodeone', 'ssh://nodetwo'))
)
Launch 4 daemons on the remote machine 10.75.32.90 using SSH tunnelling:
daemons (

n =4,

url = local_url(tcp = TRUE),
remote = ssh_config('ssh://10.75.32.90', tunnel = TRUE)
)

End(Not run)

Synchronous mode

mirai are run in the current process - useful for testing and debugging
daemons(sync = TRUE)

m <- mirai(Sys.getpid())

daemons (@)

m[]

Synchronous mode restricted to a specific compute profile
daemons(sync = TRUE, .compute = "sync")
with_daemons("sync”, {

m <- mirai(Sys.getpid())
»
daemons (@, .compute = "sync")

m[]

daemons_set

daemons_set Query if Daemons are Set

dispatcher 17

Description

Returns a logical value, whether or not daemons have been set for a given compute profile.

Usage

daemons_set (.compute = NULL)

Arguments
.compute character value for the compute profile to use (each has its own independent set
of daemons), or NULL to use the ’default’ profile.
Value

Logical TRUE or FALSE.

Examples

daemons_set ()
daemons(sync = TRUE)
daemons_set ()
daemons (0)

dispatcher Dispatcher

Description

Dispatches tasks from a host to daemons for processing, using FIFO scheduling, queuing tasks as
required. Daemon / dispatcher settings are controlled by daemons() and this function should not
need to be called directly.

Usage
dispatcher(host, url = NULL, n = @L, ...)
Arguments
host the character URL dispatcher should dial in to, typically an IPC address.
url the character URL dispatcher should listen at (and daemons should dial in to), in-
cluding the port to connect to e.g. tcp://hostname:5555’ or *tcp://10.75.32.70:5555°.
Specify ’tls+tcp://’ to use secure TLS connections.
n if specified, the integer number of daemons to be launched locally by the host

process.

(optional) additional arguments passed through to daemon() if launching dae-
mons. These include asyncdial, autoexit, cleanup, output, maxtasks, idletime,
walltime and tlscert.

18

Details

everywhere

The network topology is such that a dispatcher acts as a gateway between the host and daemons,
ensuring that tasks received from the host are dispatched on a FIFO basis for processing. Tasks
are queued at the dispatcher to ensure tasks are only sent to daemons that can begin immediate
execution of the task.

Value

Invisible NULL.

everywhere

Evaluate Everywhere

Description

Evaluate an expression "everywhere’ on all connected daemons for the specified compute profile -
this must be set prior to calling this function. Performs operations across daemons such as loading
packages or exporting common data. Resultant changes to the global environment, loaded packages
and options are persisted regardless of a daemon’s cleanup setting.

Usage
everywhere(.expr, ..., .args = list(), .min = 1L, .compute = NULL)
Arguments

.expr an expression to evaluate asynchronously (of arbitrary length, wrapped in { }
where necessary), or else a pre-constructed language object.

(optional) either named arguments (name = value pairs) specifying objects ref-
erenced, but not defined, in .expr, or an environment containing such objects.
See ’evaluation’ section below.

.args (optional) either a named list specifying objects referenced, but not defined, in
.expr, or an environment containing such objects. These objects will remain
local to the evaluation environment as opposed to those supplied in . . . above -
see ’evaluation’ section below.

.min (only applicable when using dispatcher) integer minimum number of daemons
on which to evaluate the expression. A synchronization point is created, which
can be useful for remote daemons, as these may take some time to connect.

.compute character value for the compute profile to use (each has its own independent set

of daemons), or NULL to use the ’default’ profile.

everywhere 19

Details

If using dispatcher, this function forces a synchronization point at dispatcher, whereby the everywhere ()
call must have been evaluated on all daemons prior to subsequent mirai evaluations taking place.

Calling everywhere() does not affect the RNG stream for mirai calls when using a reproducible
seed value at daemons(). This allows the seed associated for each mirai call to be the same,
regardless of the number of daemons actually used to evaluate the code. Note that this means
the code evaluated in an everywhere() call is itself non-reproducible if it should involve random
numbers.

Value

A ’mirai_map’ (list of *mirai’ objects).

Evaluation

The expression .expr will be evaluated in a separate R process in a clean environment (not the
global environment), consisting only of the objects supplied to .args, with the objects passed as
... assigned to the global environment of that process.

As evaluation occurs in a clean environment, all undefined objects must be supplied through . . .
and/or .args, including self-defined functions. Functions from a package should use namespaced
calls such as mirai::mirai(), or else the package should be loaded beforehand as part of .expr.

For evaluation to occur as if in your global environment, supply objects to ... rather than .args,
e.g. for non-local variables or helper functions required by other functions, as scoping rules may
otherwise prevent them from being found.

Examples

daemons(sync = TRUE)

export common data by a super-assignment expression:
everywhere(y <<- 3)
mirai(y)[]

'...' variables are assigned to the global environment
'.expr' may be specified as an empty {} in such cases:
everywhere({}, a =1, b = 2)

mirai(a + b -y == 0L)[]

everywhere() returns a mirai_map object:
mp <- everywhere("”just a normal operation”)
mp

mp[.flat]

mp <- everywhere(stop("”everywhere"))
collect_mirai(mp)

daemons (0)

loading a package on all daemons
daemons(sync = TRUE)
everywhere(library(parallel))

m <- mirai("package:parallel” %in% search())

20 host_url

m[]

daemons (@)

host_url URL Constructors

Description

host_url() constructs a valid host URL (at which daemons may connect) based on the computer’s
IP address. This may be supplied directly to the url argument of daemons().

local_url() constructs a URL suitable for local daemons, or for use with SSH tunnelling. This
may be supplied directly to the url argument of daemons ().

Usage

host_url(tls = FALSE, port = 0)

local_url(tcp = FALSE, port = 0)

Arguments
tls logical value whether to use TLS. If TRUE, the scheme used will be *tls+tcp://’.
port numeric port to use. @ is a wildcard value that automatically assigns a free
ephemeral port. For host_url, this port should be open to connections from the
network addresses the daemons are connecting from. For local_url, is only
taken into account if tcp = TRUE.
tcp logical value whether to use a TCP connection. This must be TRUE for use with
SSH tunnelling.
Details

host_url() will return a vector of URLSs if multiple network adapters are in use, and each will be
named by the interface name (adapter friendly name on Windows). If this entire vector is passed to
the url argument of functions such as daemons (), the first URL is used. If no suitable IP addresses
are detected, the computer’s hostname will be used as a fallback.

local_url() generates a random URL for the platform’s default inter-process communications
transport: abstract Unix domain sockets on Linux, Unix domain sockets on MacOS, Solaris and
other POSIX platforms, and named pipes on Windows.

Value

A character vector (comprising a valid URL or URLs), named for host_url().

info 21

Examples

host_url()
host_url(tls = TRUE)
host_url(tls = TRUE, port = 5555)

local_url()
local_url(tcp = TRUE)
local_url(tcp = TRUE, port = 5555)

info Information Statistics

Description

Retrieve statistics for the specified compute profile.

Usage

info(.compute = NULL)

Arguments
.compute character value for the compute profile to use (each has its own independent set
of daemons), or NULL to use the ’default’ profile.
Details

The returned statistics are:

« Connections: active daemon connections.

e Cumulative: total daemons that have ever connected.

* Awaiting: mirai tasks currently queued for execution at dispatcher.
» Executing: mirai tasks currently being evaluated on a daemon.

* Completed: mirai tasks that have been completed or cancelled.

For non-dispatcher daemons: only ’connections’ will be available and the other values will be NA.

Value

Named integer vector or else NULL if the compute profile is yet to be set up.

See Also

status() for more verbose status information.

22 is_mirai

Examples

info()

daemons (sync = TRUE)
info()

daemons (0)

is_mirai Is mirai / mirai_map

Description

Is the object a *mirai’ or *mirai_map’.

Usage

is_mirai(x)

is_mirai_map(x)

Arguments

X an object.

Value

Logical TRUE if x is of class 'mirai’ or *mirai_map’ respectively, FALSE otherwise.

Examples

daemons (1, dispatcher = FALSE)

df <- data.frame()

m <- mirai(as.matrix(df), df = df)
is_mirai(m)

is_mirai(df)

mp <- mirai_map(1:3, runif)
is_mirai_map(mp)
is_mirai_map(mp[])

daemons (@)

is_mirai_error 23

is_mirai_error Error Validators

Description

Validator functions for error value types created by mirai.

Usage

is_mirai_error(x)
is_mirai_interrupt(x)
is_error_value(x)

Arguments

X an object.

Details

Is the object a *miraiError’. When execution in a mirai’ process fails, the error message is returned
as a character string of class *miraiError’ and ’errorValue’. The elements of the original condition
are accessible via $ on the error object. A stack trace is also available at $stack. trace.

Is the object a mirailnterrupt’. When an ongoing "mirai’ is sent a user interrupt, it will resolve to
an empty character string classed as *mirailnterrupt’ and ’errorValue’.

Is the object an ’errorValue’, such as a *mirai’ timeout, a “miraiError’ or a *mirailnterrupt’. This is
a catch-all condition that includes all returned error values.

Value

Logical value TRUE or FALSE.

Examples

m <- mirai(stop())
call_mirai(m)
is_mirai_error(m$data)
is_mirai_interrupt(m$data)
is_error_value(m$data)
m$data$stack. trace

m2 <- mirai(Sys.sleep(1L), .timeout = 100)
call_mirai(m2)

is_mirai_error(m2$data)
is_mirai_interrupt(m2$data)
is_error_value(m2$data)

24 launch_local

launch_local Launch Daemon

Description

Launching a daemon is very much akin to launching a satellite. They are a way to deploy a daemon
(in our case) on the desired machine. Once it executes, it connects back to the host process using its
own communications.

launch_local deploys a daemon on the local machine in a new background Rscript process.

launch_remote returns the shell command for deploying daemons as a character vector. If an
ssh_config(), cluster_config() or remote_config() configuration is supplied then this is
used to launch the daemon on the remote machine.

Usage
launch_local(n = 1L, ..., .compute = NULL)
launch_remote(n = 1L, remote = remote_config(), ..., .compute = NULL)
Arguments
n integer number of daemons.
or for launch_remote only, a ‘'miraiCluster’ or *miraiNode’.
(optional) arguments passed through to daemon(). These include asycdial,
autoexit, cleanup, output, maxtasks, idletime, and walltime. Only supply
to override arguments originally provided to daemons (), otherwise those will be
used instead.
.compute character value for the compute profile to use (each has its own independent set
of daemons), or NULL to use the ’default’ profile.
remote required only for launching remote daemons, a configuration generated by ssh_config(),
cluster_config(), or remote_config(). An empty remote_config() does
not perform any launches but returns the shell commands for deploying manu-
ally on remote machines.
Details

Daemons must already be set for launchers to work.
These functions may be used to re-launch daemons that have exited after reaching time or task
limits.

For non-dispatcher daemons using the default seed strategy, the generated command contains the
argument rs specifying the length 7 L’Ecuyer-CMRG random seed supplied to the daemon. The
values will be different each time the function is called.

make_cluster

Value

25

For launch_local: Integer number of daemons launched.

For launch_remote: A character vector of daemon launch commands, classed as *miraiLaunchCmd’.
The printed output may be copy / pasted directly to the remote machine.

Examples

daemons(url = host_url(), dispatcher = FALSE)

status()

launch_local (1L, cleanup = FALSE)
launch_remote(1L, cleanup = FALSE)

Sys.sleep(1)
status()
daemons (@)

daemons(url = host_url(tls = TRUE))

status()

launch_local(2L, output = TRUE)

Sys.sleep(1)
status()
daemons (@)

make_cluster

Make Mirai Cluster

Description

make_cluster creates a cluster of type "miraiCluster’, which may be used as a cluster object for any
function in the parallel base package such as parallel: :clusterApply() orparallel: :parLapply().

stop_cluster stops a cluster created by make_cluster.

Usage

make_cluster(n, url = NULL, remote = NULL, ...)

stop_cluster(cl)

Arguments

n

url

remote

integer number of nodes (automatically launched on the local machine unless
url is supplied).

(specify for remote nodes) the character URL on the host for remote nodes to
dial into, including a port accepting incoming connections, e.g. "tcp://10.75.37.40:5555".
Specify a URL with the scheme ’tls+tcp:// to use secure TLS connections.

(specify to launch remote nodes) a remote launch configuration generated by
ssh_config(), cluster_config() or remote_config(). If not supplied, nodes
may be deployed manually on remote resources.

26

make_cluster

additional arguments passed to daemons ().

cl a 'miraiCluster’.

Details

For R version 4.5 or newer, parallel: :makeCluster() specifying type = "MIRAI" is equivalent
to this function.

Value

For make_cluster: An object of class 'miraiCluster’ and ’cluster’. Each ’miraiCluster’ has an
automatically assigned ID and n nodes of class 'miraiNode’. If url is supplied but not remote, the
shell commands for deployment of nodes on remote resources are printed to the console.

For stop_cluster: invisible NULL.

Remote Nodes

Specify url and n to set up a host connection for remote nodes to dial into. n defaults to one if not
specified.

Also specify remote to launch the nodes using a configuration generated by remote_config() or
ssh_config(). In this case, the number of nodes is inferred from the configuration provided and n
is disregarded.

If remote is not supplied, the shell commands for deploying nodes manually on remote resources
are automatically printed to the console.

launch_remote () may be called at any time on a 'miraiCluster’ to return the shell commands for
deployment of all nodes, or on a *miraiNode’ to return the command for a single node.

Status

Call status() on a 'miraiCluster’ to check the number of currently active connections as well as
the host URL.

Errors

Errors are thrown by the parallel package mechanism if one or more nodes failed (quit unexpect-
edly). The resulting “errorValue’ returned is 19 (Connection reset). Other types of error, e.g. in
evaluation, result in the usual "miraiError’ being returned.

Note

The default behaviour of clusters created by this function is designed to map as closely as possible
to clusters created by the parallel package. However, . .. arguments are passed onto daemons ()
for additional customisation if desired, although resultant behaviour may not always be supported.

mirai

Examples

27

cl <- make_cluster(2)

cl
clC[1L]]

Sys.sleep(0.5)

status(cl)

stop_cluster(cl)

mirai

mirai (Evaluate Async)

Description

Evaluate an expression asynchronously in a new background R process or persistent daemon (local
or remote). This function will return immediately with a *mirai’, which will resolve to the evaluated
result once complete.

Usage

mirai(.expr,

Arguments

.expr

.args

.timeout

.compute

Details

., .args = list(), .timeout = NULL, .compute = NULL)

an expression to evaluate asynchronously (of arbitrary length, wrapped in { }
where necessary), or else a pre-constructed language object.

(optional) either named arguments (name = value pairs) specifying objects ref-
erenced, but not defined, in .expr, or an environment containing such objects.
See ’evaluation’ section below.

(optional) either a named list specifying objects referenced, but not defined, in
.expr, or an environment containing such objects. These objects will remain
local to the evaluation environment as opposed to those supplied in . . . above -
see “evaluation’ section below.

integer value in milliseconds, or NULL for no timeout. A mirai will resolve to
an ’errorValue’ 5 (timed out) if evaluation exceeds this limit.

character value for the compute profile to use (each has its own independent set
of daemons), or NULL to use the ’default’ profile.

This function will return a mirai’ object immediately.

The value of a mirai may be accessed at any time at $data, and if yet to resolve, an "unresolved’
logical NA will be returned instead. Each mirai has an attribute id, which is a monotonically
increasing integer identifier in each session.

28

mirai

unresolved() may be used on a mirai, returning TRUE if a *mirai’ has yet to resolve and FALSE
otherwise. This is suitable for use in control flow statements such as while or if.

Alternatively, to call (and wait for) the result, use call_mirai() on the returned 'mirai’. This will
block until the result is returned.

Specify .compute to send the mirai using a specific compute profile (if previously created by
daemons()), otherwise leave as "default”.

Value

A ’mirai’ object.

Evaluation

The expression .expr will be evaluated in a separate R process in a clean environment (not the
global environment), consisting only of the objects supplied to .args, with the objects passed as
. assigned to the global environment of that process.

As evaluation occurs in a clean environment, all undefined objects must be supplied through . . .
and/or .args, including self-defined functions. Functions from a package should use namespaced
calls such as mirai::mirai(), or else the package should be loaded beforehand as part of . expr.

For evaluation to occur as if in your global environment, supply objects to . .. rather than .args,
e.g. for non-local variables or helper functions required by other functions, as scoping rules may
otherwise prevent them from being found.

Timeouts

Specifying the . timeout argument ensures that the mirai always resolves. When using dispatcher,
the mirai will be cancelled after it times out (as if stop_mirai() had been called). As in that case,
there is no guarantee that any cancellation will be successful, if the code cannot be interrupted for
instance. When not using dispatcher, the mirai task will continue to completion in the daemon
process, even if it times out in the host process.

Errors

If an error occurs in evaluation, the error message is returned as a character string of class *miraiEr-
ror’ and ’errorValue’. is_mirai_error () may be used to test for this. The elements of the original
condition are accessible via $ on the error object. A stack trace comprising a list of calls is also
available at $stack. trace, and the original condition classes at $condition.class.

If a daemon crashes or terminates unexpectedly during evaluation, an ’errorValue’ 19 (Connection
reset) is returned.

is_error_value() tests for all error conditions including *mirai’ errors, interrupts, and timeouts.

Examples

' 1

specifying objects via

n<-3
m<-mirai(x +y + 2, x =2,y =n)
m

m$data

mirai_map

Sys.sleep(0.2)
m$data
passing the calling environment to ' '
df1 <- data.frame(a =1, b = 2)
df2 <- data.frame(a = 3, b = 1)
df_matrix <- function(x, y) {
mirai(as.matrix(rbind(x, y)), environment(), .timeout = 1000)
3
m <- df_matrix(df1, df2)
m[]

using unresolved()
m <- mirai(

{

res <- rnorm(n)
res / rev(res)

h

n = le6
)
while (unresolved(m)) {

cat("unresolved\n")

Sys.sleep(0.1)
3
str(m$data)
evaluating scripts using source() in '
n <- 10L
file <- tempfile()
cat("r <= rnorm(n)"”, file = file)
m <- mirai({source(file); r}, file = file, n = n)
call_mirai(m)$data
unlink(file)

.expr'

use source(local = TRUE) when passing in local variables via '.args'

n <- 1oL

file <- tempfile()

cat("r <- rnorm(n)", file = file)

m <- mirai({source(file, local = TRUE); r}, .args = list(file = file, n = n))
call_mirai(m)$data

unlink(file)

passing a language object to '.expr' and a named list to '.args'
expr <- quote(a + b + 2)

args <- list(a =2, b = 3)

m <- mirai(.expr = expr, .args = args)

collect_mirai(m)

mirai_map mirai Map

30 mirai_map

Description

Asynchronous parallel map of a function over a list or vector using mirai, with optional promises
integration. Performs multiple map over the rows of a dataframe or matrix.

Usage
mirai_map(.x, .f, ..., .args = list(), .promise = NULL, .compute = NULL)
Arguments

X a list or atomic vector. Also accepts a matrix or dataframe, in which case multi-
ple map is performed over its rows.

f a function to be applied to each element of . x, or row of . x as the case may be.
(optional) named arguments (name = value pairs) specifying objects referenced,
but not defined, in . f.

.args (optional) further constant arguments to . f, provided as a list.

.promise (optional) if supplied, registers a promise against each mirai. Either a function,
supplied to the onFulfilled argument of promises: : then() or alist of 2 func-
tions, supplied respectively to onFulfilled and onRejected of promises: : then().
Using this argument requires the promises package.

.compute character value for the compute profile to use (each has its own independent set
of daemons), or NULL to use the *default’ profile.

Details

Sends each application of function .f on an element of .x (or row of .x) for computation in a
separate mirai() call. If . x is named, names are preserved.

This simple and transparent behaviour is designed to make full use of mirai scheduling to minimise
overall execution time.

Facilitates recovery from partial failure by returning all *miraiError’ / ’errorValue’ as the case may
be, thus allowing only failures to be re-run.

This function requires daemons to have previously been set, and will error otherwise.

Value

A ’mirai_map’ (list of *mirai’ objects).

Collection Options

x[] collects the results of a *mirai_map’ x and returns a list. This will wait for all asynchronous
operations to complete if still in progress, blocking but user-interruptible.

x[.flat] collects and flattens map results to a vector, checking that they are of the same type to
avoid coercion. Note: errors if an ’errorValue’ has been returned or results are of differing type.

x[.progress] collects map results whilst showing a progress bar from the cli package, if installed,
with completion percentage and ETA, or else a simple text progress indicator. Note: if the map
operation completes too quickly then the progress bar may not show at all.

mirai_map 31

x[.stop] collects map results applying early stopping, which stops at the first failure and cancels
remaining operations.

The options above may be combined in the manner of:
x[.stop, .progress] which applies early stopping together with a progress indicator.

Multiple Map

If . x is a matrix or dataframe (or other object with *dim’ attributes), multiple map is performed over
its rows. Character row names are preserved as names of the output.

This allows map over 2 or more arguments, and . f should accept at least as many arguments as
there are columns. If the dataframe has names, or the matrix column dimnames, named arguments
are provided to . f.

To map over columns instead, first wrap a dataframe in as.list(), or transpose a matrix using

t Q).

Nested Maps

At times you way wish to run maps within maps. To do this, the function provided to the outer
map needs to include a call to daemons () to set daemons used by the inner map. To guard against
inadvertently spawning an excessive number of daemons on the same machine, attempting to launch
local daemons within a map using daemons(n) will error.

A legitimate use of this pattern however is when the outer daemons are launched on remote ma-

chines, and you then wish to launch daemons locally on each of those machines. In this case, use the

following solution: instead of a single call to daemons (n) make 2 separate calls to daemons(url = local_url()); launch_.
This is equivalent, and is permitted from within a map.

Examples

daemons (4)

perform and collect mirai map
mm <- mirai_map(c(a =1, b =2, ¢ = 3), rnorm)
mm

mm[]

map with constant args specified via '.args'
mirai_map(1:3, rnorm, .args = list(n =5, sd = 2))[]
flatmap with helper function passed via ' !
mirai_map(

10%(0:9),

function(x) rnorm(1L, valid(x)),

valid = function(x) min(max(x, @L), 100L)
Y[.flat]

unnamed matrix multiple map: arguments passed to function by position
(mat <- matrix(1:4, nrow = 2L))

mirai_map(mat, function(x =10, y =0, z =0) x +y + z)[.flat]

named matrix multiple map: arguments passed to function by name

32 on_daemon

(mat <- matrix(1:4, nrow = 2L, dimnames = list(c("a", "b"), c("y", "z"))))
mirai_map(mat, function(x =10, y =@, z = 0) x +y + z)[.flat]

dataframe multiple map: using a function taking ' ' arguments
df <- data.frame(a = c("Aa", "Bb"), b = c(1L, 4L))
mirai_map(df, function(...) sprintf("%s: %d", ...))[.flat]

indexed map over a vector (using a dataframe)

v <- c("egg", "got”, "ten"”, "nap"”, "pie")
mirai_map(

data.frame(1:length(v), v),

sprintf,

.args = list(fmt = "%d_%s")
Y[.flat]

return a 'mirai_map' object, check for resolution, collect later
mp <- mirai_map(2:4, function(x) runif (1L, x, x + 1))
unresolved(mp)

mp

mp[.flat]

unresolved(mp)

progress indicator counts up from @ to 4 seconds
res <- mirai_map(1:4, Sys.sleep)[.progress]

stops early when second element returns an error

nan

tryCatch(mirai_map(list(1, "a", 3), sum)[.stop], error = identity)

daemons (@)

promises example that outputs the results, including errors, to the console
daemons (1, dispatcher = FALSE)
ml <- mirai_map(
1:30,
function(i) {Sys.sleep(0.1); if (i == 30) stop(i) else i},
.promise = list(
function(x) cat(paste(x, "")),
function(x) { cat(conditionMessage(x), "\n"); daemons(@) }
)
)

on_daemon On Daemon

Description

Returns a logical value, whether or not evaluation is taking place within a mirai call on a daemon.

race_mirai 33

Usage

on_daemon()

Value

Logical TRUE or FALSE.

Examples

on_daemon()
mirai(mirai::on_daemon())[]

race_mirai mirai (Race)

Description

Accepts a list of 'mirai’ objects, such as those returned by mirai_map(). Waits for the next *mirai’
to resolve if at least one is still in progress, blocking but user-interruptible. If none of the objects
supplied are unresolved, the function returns immediately.

Usage

race_mirai(x)

Arguments

X a ’mirai’ object, or list of *mirai’ objects.

Details

All of the *mirai’ objects supplied must belong to the same compute profile - the currently-active
one i.e. *default’ unless within a with_daemons() or local_daemons() scope.

Value

The passed object (invisibly).

See Also

call_mirai()

34 register_serial

Examples

daemons(2)

ml <- mirai(Sys.sleep(0.2))
m2 <- mirai(Sys.sleep(0.1))
start <- Sys.time()
race_mirai(list(m1, m2))
Sys.time() - start
race_mirai(list(m1, m2))
Sys.time() - start

daemons (@)

register_serial Register Serialization Configuration

Description

Registers a serialization configuration, which may be set to perform custom serialization and un-
serialization of normally non-exportable reference objects, allowing these to be used seamlessly
between different R sessions. Once registered, the functions apply to all daemons () calls where the
serial argument is NULL.

Usage

register_serial(class, sfunc, ufunc)

Arguments
class a character string (or vector) of the class of object custom serialization functions
are applied to, e.g. 'ArrowTabular' or c('torch_tensor', '"ArrowTabular').
sfunc a function (or list of functions) that accepts a reference object inheriting from
class and returns a raw vector.
ufunc a function (or list of functions) that accepts a raw vector and returns a reference
object.
Value

Invisible NULL.

remote_config 35

remote_config Generic Remote Launch Configuration

Description

Provides a flexible generic framework for generating the shell commands to deploy daemons re-
motely.

Usage

remote_config(
command = NULL,

args = C("”, H'H),
rscript = "Rscript”,
quote = FALSE
)
Arguments
command the command used to effect the daemon launch on the remote machine as a char-
acter string (e.g. "ssh"). Defaults to "ssh” for ssh_config, although may be
substituted for the full path to a specific SSH application. The default NULL for
remote_config does not carry out any launches, but causes launch_remote()
to return the shell commands for manual deployment on remote machines.
args (optional) arguments passed to command, as a character vector that must include
"." as an element, which will be substituted for the daemon launch command.
Alternatively, a list of such character vectors to effect multiple launches (one for
each list element).
rscript filename of the R executable. Use the full path of the Rscript executable on the
remote machine if necessary. If launching on Windows, "Rscript” should be
replaced with "Rscript.exe”.
quote logical value whether or not to quote the daemon launch command (not required
for Slurm "srun” for example, but required for Slurm "sbatch” or "ssh").
Value

A list in the required format to be supplied to the remote argument of daemons () or launch_remote().

See Also

ssh_config() for SSH launch configurations, or cluster_config() for cluster resource manager
launch configurations.

36 require_daemons

Examples

Slurm srun example
remote_config(

command = "srun”,

args = c("--mem 512", "-n 1", "."),

rscript = file.path(R.home("bin"), "Rscript”)
)

SSH requires 'quote = TRUE'
remote_config(

command = "/usr/bin/ssh”,
args = c("-fTp 22 10.75.32.90", "."),
quote = TRUE

)

can be used to start local daemons with special configurations
remote_config(

command = "Rscript”,
rscript = "--default-packages=NULL --vanilla”
)
require_daemons Require Daemons
Description

Returns TRUE invisibly only if daemons are set, otherwise produces an informative error for the user
to set daemons, with a clickable function link if the cli package is available.

Usage

require_daemons(.compute = NULL, call = environment())

Arguments
.compute character value for the compute profile to use (each has its own independent set
of daemons), or NULL to use the *default’ profile.
call (only used if the cli package is installed) the execution environment of a cur-
rently running function, e.g. environment(). The function will be mentioned
in error messages as the source of the error.
Value

Invisibly, logical TRUE, or else errors.

serial_config 37

Examples

daemons(sync = TRUE)
(require_daemons())
daemons (0)

serial_config Create Serialization Configuration

Description

Returns a serialization configuration, which may be set to perform custom serialization and unserial-
ization of normally non-exportable reference objects, allowing these to be used seamlessly between
different R sessions. Once set by passing to the serial argument of daemons (), the functions apply
to all mirai requests for that compute profile.

Usage

serial_config(class, sfunc, ufunc)

Arguments
class a character string (or vector) of the class of object custom serialization functions
are applied to, e.g. 'ArrowTabular' orc('torch_tensor', 'ArrowTabular').
sfunc a function (or list of functions) that accepts a reference object inheriting from
class and returns a raw vector.
ufunc a function (or list of functions) that accepts a raw vector and returns a reference
object.
Details

This feature utilises the "refhook’ system of R native serialization.

Value

A list comprising the configuration. This should be passed to the serial argument of daemons().

Examples

cfg <- serial_config("test_cls"”, function(x) serialize(x, NULL), unserialize)
cfg

cfg2 <- serial_config(
c("class_one"”, "class_two"),
list(function(x) serialize(x, NULL), function(x) serialize(x, NULL)),
list(unserialize, unserialize)

)

cfg2

38 ssh_config

ssh_config SSH Remote Launch Configuration

Description

Generates a remote configuration for launching daemons over SSH, with the option of SSH tun-

nelling.
Usage
ssh_config(
remotes,
tunnel = FALSE,
timeout = 10,
command = "ssh",
rscript = "Rscript”
)
Arguments
remotes the character URL or vector of URLs to SSH into, using the ’ssh://” scheme and
including the port open for SSH connections (defaults to 22 if not specified),
e.g. ’ssh://10.75.32.90:22’ or ’ssh://nodename’.
tunnel logical value, whether to use SSH tunnelling. If TRUE, requires the daemons ()
url hostname to be *127.0.0.1°. See the *SSH Tunnelling’ section below for
further details.
timeout maximum time in seconds allowed for connection setup.
command the command used to effect the daemon launch on the remote machine as a char-
acter string (e.g. "ssh"). Defaults to "ssh” for ssh_config, although may be
substituted for the full path to a specific SSH application. The default NULL for
remote_config does not carry out any launches, but causes launch_remote ()
to return the shell commands for manual deployment on remote machines.
rscript filename of the R executable. Use the full path of the Rscript executable on the
remote machine if necessary. If launching on Windows, "Rscript” should be
replaced with "Rscript.exe”.
Value

A list in the required format to be supplied to the remote argument of daemons () or launch_remote().

SSH Direct Connections

The simplest use of SSH is to execute the daemon launch command on a remote machine, for it to
dial back to the host / dispatcher URL.

It is assumed that SSH key-based authentication is already in place. The relevant port on the host
must also be open to inbound connections from the remote machine, and is hence suitable for use
within trusted networks.

ssh_config 39

SSH Tunnelling

Use of SSH tunnelling provides a convenient way to launch remote daemons without requiring the
remote machine to be able to access the host. Often firewall configurations or security policies may
prevent opening a port to accept outside connections.

In these cases SSH tunnelling offers a solution by creating a tunnel once the initial SSH connection
is made. For simplicity, this SSH tunnelling implementation uses the same port on both host and
daemon. SSH key-based authentication must already be in place, but no other configuration is
required.

To use tunnelling, set the hostname of the daemons() url argument to be *127.0.0.1’. Using
local_url() with tcp = TRUE also does this for you. Specifying a specific port to use is optional,
with a random ephemeral port assigned otherwise. For example, specifying "tcp://127.0.0.1:5555°
uses the local port *5555’ to create the tunnel on each machine. The host listens to 127.0.0.1:5555°
on its machine and the remotes each dial into *127.0.0.1:5555’ on their own respective machines.

This provides a means of launching daemons on any machine you are able to access via SSH, be it
on the local network or the cloud.

See Also

cluster_config() for cluster resource manager launch configurations, or remote_config() for
generic configurations.

Examples

direct SSH example
ssh_config(c("ssh://10.75.32.90:222", "ssh://nodename”), timeout = 5)

SSH tunnelling example
ssh_config(c("ssh://10.75.32.90:222", "ssh://nodename”), tunnel = TRUE)

Not run:

launch daemons on the remote machines 10.75.32.90 and 10.75.32.91 using
SSH, connecting back directly to the host URL over a TLS connection:
daemons (

n=1,

url = host_url(tls = TRUE),

remote = ssh_config(c("ssh://10.75.32.90:222", "ssh://10.75.32.91:222"))
)

launch 2 daemons on the remote machine 10.75.32.9@ using SSH tunnelling:
daemons (

n=2,

url = local_url(tcp = TRUE),

remote = ssh_config("”ssh://10.75.32.90", tunnel = TRUE)
)

End(Not run)

40 status

status Status Information

Description

Retrieve status information for the specified compute profile, comprising current connections and
daemons status.

Usage

status(.compute = NULL)

Arguments
.compute character value for the compute profile to query, or NULL to query the ’default’
profile.
or a 'miraiCluster’ to obtain its status.
Value

A named list comprising:

* connections - integer number of active daemon connections.

» daemons - character URL at which host / dispatcher is listening, or else @L if daemons have
not yet been set.

* mirai (present only if using dispatcher) - a named integer vector comprising: awaiting -
number of tasks queued for execution at dispatcher, executing - number of tasks sent to a
daemon for execution, and completed - number of tasks for which the result has been received
(either completed or cancelled).

See Also

info() for more succinct information statistics.

Examples

status()

daemons(url = "tcp://[::1]:0")
status()

daemons (@)

stop_mirai 41

stop_mirai mirai (Stop)

Description

Stops a “mirai’ if still in progress, causing it to resolve immediately to an "errorValue’ 20 (Operation
canceled).

Usage

stop_mirai(x)

Arguments

X a 'mirai’ object, or list of *mirai’ objects.

Details

Using dispatcher allows cancellation of *mirai’. In the case that the *mirai’ is awaiting execution, it
is discarded from the queue and never evaluated. In the case it is already in execution, an interrupt
will be sent.

A successful cancellation request does not guarantee successful cancellation: the task, or a portion
of it, may have already completed before the interrupt is received. Even then, compiled code is not
always interruptible. This should be noted, particularly if the code carries out side effects during
execution, such as writing to files, etc.

Value

Logical TRUE if the cancellation request was successful (was awaiting execution or in execution),
or else FALSE (if already completed or previously cancelled). Will always return FALSE if not
using dispatcher.

Or a vector of logical values if supplying a list of *mirai’, such as those returned by mirai_map().

Examples

m <- mirai(Sys.sleep(n), n = 5)
stop_mirai(m)
m$data

42 with.miraiDaemons

unresolved Query if a mirai is Unresolved

Description
Query whether a “mirai’, *mirai’ value or list of *mirai’ remains unresolved. Unlike call_mirai(),
this function does not wait for completion.

Usage

unresolved(x)

Arguments

X a ’mirai’ object or list of “mirai’ objects, or a “mirai’ value stored at $data.

Details

Suitable for use in control flow statements such as while or if.

Value

Logical TRUE if x is an unresolved 'mirai’ or “mirai’ value or the list contains at least one unre-
solved 'mirai’, or FALSE otherwise.

Examples

m <- mirai(Sys.sleep(0.1))
unresolved(m)
Sys.sleep(@.3)
unresolved(m)

with.miraiDaemons With Mirai Daemons

Description

Evaluate an expression with daemons that last for the duration of the expression. Ensure each mirai
within the statement is explicitly called (or their values collected) so that daemons are not reset
before they have all completed.

Usage

S3 method for class 'miraiDaemons'
with(data, expr, ...)

with_daemons 43

Arguments
data a call to daemons ().
expr an expression to evaluate.
not used.
Details

This function is an S3 method for the generic with() for class *'miraiDaemons’.

Value

The return value of expr.

Examples

with(
daemons (2, dispatcher = FALSE),
{
ml <- mirai(Sys.getpid())
m2 <- mirai(Sys.getpid())
cat(m1[], m2[1, "\n")
}
)

status()

with_daemons With Daemons

Description

Evaluate an expression using a specific compute profile.

Usage

with_daemons(.compute, expr)

local_daemons(.compute, frame = parent.frame())

Arguments
.compute character value for the compute profile to use (each has its own independent set
of daemons), or NULL to use the ’default’ profile.
expr an expression to evaluate.

frame the frame (environment) to which the daemons compute profile is scoped.

44 with_daemons

Details

Will error if the specified compute profile is not yet set up.

Value

For with_daemons: the return value of expr.
For local_daemons: invisible NULL.

Examples

daemons (1, dispatcher = FALSE, .compute = "cpu")
daemons (1, dispatcher = FALSE, .compute = "gpu")

with_daemons("cpu”, {

s1 <- status()

ml <- mirai(Sys.getpid())
»

with_daemons("gpu”, {
s2 <- status()
m2 <- mirai(Sys.getpid())
m3 <- mirai(Sys.getpid(), .compute = "cpu")
local_daemons("cpu")
m4 <- mirai(Sys.getpid())
»

s1$daemons
mi[]

s2$daemons
m2[] # different to ml

m3[] # same as m1l
m4[] # same as mil

with_daemons("cpu”, daemons(0))
with_daemons("gpu”, daemons(0))

Index

as.list(), 31
as.promise.mirai, 3
as.promise.mirai_map, 4

call_mirai, 5

call_mirai(), 28, 33,42
cluster_config, 7
cluster_config(), 12, 15, 24, 25, 35, 39
collect_mirai, 8

daemon, 10

daemon(), 13, 14,17, 24

daemons, 12

daemons(), 3,7,10, 11, 14,17, 19, 20, 24, 26,
28, 31, 34, 35, 37-39, 43

daemons_set, 16

dispatcher, 17

dispatcher(), 14

everywhere, 18
everywhere(), 19

host_url, 20
host_url(), 12, 14

info, 21

info(), 40

is_error_value (is_mirai_error), 23
is_error_value(), 6, 9, 28

is_mirai, 22

is_mirai_error, 23
is_mirai_error(), 6,9, 28
is_mirai_interrupt (is_mirai_error), 23
is_mirai_map (is_mirai), 22

launch_local, 24
launch_local(), 3,11, 14
launch_remote (launch_local), 24
launch_remote(), 7, 14, 15, 26, 35, 38
local_daemons (with_daemons), 43
local_daemons(), 15, 33

45

local_url (host_url), 20
local_url(), 39

make_cluster, 25
mirai, 27
mirai(), 10, 12-15, 30
mirai-package, 2
mirai_map, 29
mirai_map(), 6, 9, 33, 41

on_daemon, 32

parallel::clusterApply(), 25
parallel::makeCluster(), 26
parallel: :parLapply(), 25

race_mirai, 33

race_mirai(), 6
register_serial, 34
register_serial(), I3
remote_config, 35
remote_config(), 7, 12, 15, 24-26, 39
require_daemons, 36

serial_config, 37
serial_config(), 13
ssh_config, 38
ssh_config(), 7, 12, 15, 24-26, 35
status, 40

status(), 14, 21, 26
stop_cluster (make_cluster), 25
stop_mirai, 41
stop_mirai(), 14, 28

tQ), 31

unresolved, 42
unresolved(), 6, 9, 28

with(), 43
with.miraiDaemons, 42
with_daemons, 43
with_daemons(), 15, 33

	mirai-package
	as.promise.mirai
	as.promise.mirai_map
	call_mirai
	cluster_config
	collect_mirai
	daemon
	daemons
	daemons_set
	dispatcher
	everywhere
	host_url
	info
	is_mirai
	is_mirai_error
	launch_local
	make_cluster
	mirai
	mirai_map
	on_daemon
	race_mirai
	register_serial
	remote_config
	require_daemons
	serial_config
	ssh_config
	status
	stop_mirai
	unresolved
	with.miraiDaemons
	with_daemons
	Index

