Package: multiverse.internals (via r-universe)

January 9, 2026

Title Internal Infrastructure for R-multiverse

Description R-multiverse requires this internal infrastructure package
to automate contribution reviews and populate universes.

Version 1.1.10
License MIT + file LICENSE

URL https://r-multiverse.org/multiverse.internals/,

https://github.com/r-multiverse/multiverse.internals

BugReports https://github.com/r-multiverse/multiverse.internals/issues
Depends R (>=4.5.0)

Imports cli, desc, gh, igraph, jsonlite, nanonext, pkgsearch, R.utils,
rversions, stats, tools, utils, vctrs, yaml

Suggests gert, testthat (>=3.0.0)

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.3

Config/testthat/edition 3

Config/pak/sysreqs git libglpk-dev libxml2-dev libssl-dev
Repository https://test.r-universe.dev

Date/Publication 2026-01-06 21:31:59 UTC

RemoteUrl https://github.com/r-multiverse/multiverse.internals
RemoteRef 1.1.10

RemoteSha 0b6af6eb06221df195¢2735dedf83052360a1bc9

https://r-multiverse.org/multiverse.internals/
https://github.com/r-multiverse/multiverse.internals
https://github.com/r-multiverse/multiverse.internals/issues

2 filter_meta
Contents
filter_meta e 2
freeze_dependencies 3
INterpret_Statuso e e e e e 4
1Ssues_adviSOries e e e 5
issues_dependencies 5
1ISSUES_lICENSES 7
ISSUES_TEMOLES . . o o o o v v e e e e e e e e e 7
issues r cmd_check L e 8
issues_synchronization Lo 9
ISSUES_VETSIONS .« v v v v o v e e e e e e e e e e e e e e e e e 10
issues_version_conflicts L e 11
meta_packages 12
meta_snapshot e 13
rclone_includes L e e 13
record_nonstandard_licenses e 14
record_Status e e 15
1eCOrd_VEISIONS v v v v o e e e e e e e e e e 16
review_lICENSE e e e 17
TeVIEW_Package e e e e e 18
review_pull_request e e e e 19
review_pull_requests e e e e e e 20
stage_candidates L 20
update_statuso e e e 21
update_topiCs e e e e e 22
Index 24
filter_meta Filter PACKAGES and PACKAGES. gz metadata files.
Description
Filter the PACKAGES and PACKAGES. gz files to only list certain packages.
Usage
filter_meta(path_meta, path_staging)
Arguments
path_meta Directory path where PACKAGES and PACKAGES . gz files reside locally.

path_staging Path to a GitHub clone of the Staging universe.

See Also

Other staging: freeze_dependencies(), rclone_includes(), stage_candidates()

freeze_dependencies 3

Examples

Not run:
path_meta <- tempfile()
dir.create(path_meta)
mock <- system.file(
file.path("mock”, "meta"),
package = "multiverse.internals”,
mustWork = TRUE
)
file.copy(mock, path_meta, recursive = TRUE)
path_staging <- tempfile()
url_staging <- "https://github.com/r-multiverse/staging”
gert::git_clone(url = url_staging, path = path_staging)
filter_meta(path_meta, path_staging)

End(Not run)

freeze_dependencies Freeze dependencies

Description

Freeze the targeted versions of base R and CRAN packages.

Usage

freeze_dependencies(path_staging, path_community)

Arguments

path_staging Character string, directory path to the source files of the Staging universe.

path_community Character string, local directory path to the clone of the Community universe
GitHub repository.

Details

freeze_dependencies() runs during the month-long dependency freeze phase of Staging in which
base R and CRAN packages are locked in the Staging universe until after the next Production
snapshot. This establishes checks in the Staging universe using the exact set of dependencies that
will be used in the candidate freeze (see stage_candidates()).

freeze_dependencies() copies the Community repository packages. json into the Staging repos-
itory to reset the Staging process. It also writes a config. json file with the date of the targeted
CRAN snapshot.

Value

NULL (invisibly)

4 interpret_status

See Also

Other staging: filter_meta(), rclone_includes(), stage_candidates()

Examples
Not run:
url_staging = "https://github.com/r-multiverse/staging”
url_community = "https://github.com/r-multiverse/community”

path_staging <- tempfile()
path_community <- tempfile()
gert::git_clone(url = url_staging, path =
gert::git_clone(url = url_community, path
freeze_dependencies(
path_staging = path_staging,
path_community = path_community

)

path_staging)
= path_community)

End(Not run)

interpret_status Interpret the status of a package

Description

Summarize the status of a package in human-readable text.

Usage

interpret_status(package, status)

Arguments
package Character string, name of the package.
status A list with one status entry per package. Obtained by reading the results of
record_status().
Value

A character string summarizing the status of a package in prose.

See Also

Other status: update_status()

issues_advisories 5

issues_advisories Report package advisories

Description
Report packages whose current versions have advisories in the R Consortium Advisory Database:
https://github.com/RConsortium/r-advisory-database

Usage

issues_advisories(meta = meta_packages())

Arguments

meta Package metadata from meta_packages().

Value

A data frame with one row for each problematic package and columns with details.

See Also
Other issues: issues_dependencies(), issues_licenses(), issues_r_cmd_check(), issues_remotes(),

issues_synchronization(), issues_version_conflicts(), issues_versions()

Examples

Not run:
issues_advisories()

End(Not run)

issues_dependencies Report package dependency issues

Description

Flag packages which have issues in their strong dependencies (Imports:, Depends:, and LinkingTo:
in the DESCRIPTION.) These include indirect/upstream dependencies, as well, not just the explicit
mentions in the DESCRIPTION file.

Usage

issues_dependencies(packages, meta = meta_packages(), verbose = FALSE)

https://github.com/RConsortium/r-advisory-database

6 issues_dependencies

Arguments

packages Character vector of names of packages with other issues.

meta Package metadata from meta_packages().

verbose TRUE to print progress while checking dependency status, FALSE otherwise.
Value

A data frame with one row for each package impacted by upstream dependencies. Each element of
the dependencies column is a nested list describing the problems upstream.

To illustrate the structure of this list, suppose Package tarchetypes depends on package targets,
and packages jagstargets and stantargets depend on tarchetypes. In addition, package
targets has a problem in R CMD check which might cause problems in tarchetypes and packages
downstream.

status_dependencies() represents this information in the following list:

list(
jagstargets = list(targets = "tarchetypes”),
tarchetypes = list(targets = character(0)),
stantargets = list(targets = "tarchetypes”)
)

In general, the returned list is of the form:

list(
impacted_reverse_dependency = list(
upstream_culprit = c("direct_dependency_1", "direct_dependency_2")
)
)

where upstream_culprit causes problems in impacted_reverse_dependency through direct de-
pendencies direct_dependency_1 and direct_dependency_2.

See Also
Otherissues: issues_advisories(), issues_licenses(), issues_r_cmd_check(), issues_remotes(),

issues_synchronization(), issues_version_conflicts(), issues_versions()

Examples

Not run:
issues_dependencies(packages = "targets"”)

End(Not run)

issues_licenses 7

issues_licenses Report package license issues

Description

Report packages without standard free and open-source licenses.

Usage

issues_licenses(meta = meta_packages())

Arguments

meta Package metadata from meta_packages().

See Also
Other issues: issues_advisories(), issues_dependencies(), issues_r_cmd_check(), issues_remotes(),

issues_synchronization(), issues_version_conflicts(), issues_versions()

Examples

Not run:
issues_licenses()

End(Not run)

issues_remotes Report packages with Remotes: fields.

Description

Report packages with Remotes: fields in the DESCRIPTION file.

Usage

issues_remotes(meta = meta_packages())

Arguments

meta Package metadata from meta_packages().

See Also

Otherissues: issues_advisories(), issues_dependencies(), issues_licenses(), issues_r_cmd_check(),
issues_synchronization(), issues_version_conflicts(), issues_versions()

8 issues_r_cmd_check

Examples

Not run:
issues_remotes()

End(Not run)

issues_r_cmd_check R-universe package R CMD check issues.

Description

Report issues from R CMD check on R-universe.

Usage

issues_r_cmd_check(meta = meta_packages())

Arguments

meta Package metadata from meta_packages().

Details
issues_r_cmd_check() reads output from the R-universe R CMD check results API to scan all
R-multiverse packages for status that may have happened during building and testing.

Value
A data frame with one row for each problematic package and columns for the package names and
R CMD check issues.

Package status

Functions like issues_versions() and issues_r_cmd_check() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_*() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_status() gathers to-
gether all the status about R-multiverse packages.

See Also

Otherissues: issues_advisories(), issues_dependencies(), issues_licenses(), issues_remotes(),
issues_synchronization(), issues_version_conflicts(), issues_versions()

Examples

Not run:
issues_r_cmd_check()

End(Not run)

https://r-multiverse.org/multiverse.internals/reference/index.html

issues_synchronization 9

issues_synchronization
Report package check synchronization issues.

Description
Ensure the reported R-universe checks are synchronized. Report the packages whose checks have
not been synchronized.

Usage

issues_synchronization(meta = meta_packages(), verbose = FALSE)

Arguments
meta Package metadata from meta_packages().
verbose TRUE to print progress messages, FALSE otherwise.
Details

R-universe automatically rechecks downstream packages if an upstream dependency increments
its version number. R-multiverse needs to wait for these downstream checks to finish before it
makes decisions about accepting packages into Production. issues_synchronization() scrapes
the GitHub Actions API to find out if any R-universe checks are still running for a package. In
addition, to give rechecks enough time to post on GitHub Actions, it flags packages published
within the last 5 minutes.

Value

A tibble with one row per package and the following columns:

* package: Name of the package.

* synchronization: Synchronization status: "success" if the checks are synchronized, "incomplete”
if checks are still running on R-universe GitHub Actions, and "recent” if the package was
last published so recently that downstream checks may not have started yet.

See Also

Other issues: issues_advisories(), issues_dependencies(), issues_licenses(), issues_r_cmd_check(),
issues_remotes(), issues_version_conflicts(), issues_versions()

Examples
Not run:
meta <- meta_packages(repo = "https://wlandau.r-universe.dev")

issues_synchronization(meta)

End(Not run)

10 issues_versions

issues_versions Package version issues.

Description

Check package version number history for compliance.

Usage

issues_versions(versions)

Arguments
versions Character of length 1, file path to a JSON manifest tracking the history of re-
leased versions of packages.
Details

This function checks the version number history of packages in R-multiverse and reports any pack-
ages with issues. The current released version of a given package must be unique, and it must be
greater than all the versions of all the previous package releases.

Value

A data frame with one row for each problematic package and columns with the package names and
version issues.

See Also

Other issues: issues_advisories(), issues_dependencies(), issues_licenses(), issues_r_cmd_check(),
issues_remotes(), issues_synchronization(), issues_version_conflicts()

Examples

lines <- c(
I
"{",
\"package\": \"package_unmodified\"”,",
\"version_current\": \"1.0.0\",",
" \"hash_current\"”: \"hash_1.0.0\",",
" \"version_highest\": \"1.0.0\",",
" \"hash_highest\": \"hash_1.0.0\"",
B P
" {,
\"package\": \"version_decremented\”,"”,
\"version_current\": \"0.0.1\",",
" \"hash_current\": \"hash_0.0.1\",",
" \"version_highest\": \"1.0.0\",",
" \"hash_highest\": \"hash_1.0.0\"",

issues_version_conflicts 11

"3,

\"package\": \"version_incremented\”,",

\"version_current\": \"2.0.0\",",

" \"hash_current\": \"hash_2.0.0\",",

" \"version_highest\": \"2.0.0\",",

" \"hash_highest\": \"hash_2.0.0\"",

"3,

" A{",

\"package\": \"version_unmodified\"”,"”,
" \"version_current\": \"1.0.0\",",
" \"hash_current\"”: \"hash_1.0.0-modified\",",
" \"version_highest\": \"1.0.0\",",
" \"hash_highest\": \"hash_1.0.0\"",
",
"y

)

versions <- tempfile()

writeLines(lines, versions)

out <- issues_versions(versions)

str(out)

issues_version_conflicts
Report packages with version conflicts in another repository.

Description

Report packages with higher versions in different repositories. A higher version in a different
repository could cause that repository to override R-multiverse in install.packages().

Usage

issues_version_conflicts(meta = meta_packages(), repo = "cran")
Arguments

meta Package metadata from meta_packages().

repo Character string naming the repository to compare versions.
Value

A data frame with one row for each problematic package and columns with details.

See Also

Otherissues: issues_advisories(), issues_dependencies(), issues_licenses(), issues_r_cmd_check(),
issues_remotes(), issues_synchronization(), issues_versions()

12

Examples

Not run:
issues_version_conflicts()

End(Not run)

meta_packages

meta_packages List package metadata

Description

List package metadata in an R universe.

Usage

meta_packages(repo = "https://community.r-multiverse.org")
Arguments

repo URL of the repository to query.
Value

A data frame with one row per package and columns with package metadata.

See Also

Other meta: meta_snapshot ()

Examples

Not run:
meta_packages()

End(Not run)

meta_snapshot

13

meta_snapshot Snapshot metadata

Description

Show the metadata for the current targeted Production snapshot.

Usage

meta_snapshot(today = Sys.Date())

Arguments

today An object that as.Date() can convert to class "Date”.

Value

A data frame with one row and columns with metadata about the targeted snapshot.

See Also

Other meta: meta_packages()

Examples

meta_snapshot(today = Sys.Date())

rclone_includes Write Rclone includes.

Description

Write text files to pass to the --include-from flag in Rclone when uploading snapshots.

Usage

rclone_includes(path_staging)

Arguments

path_staging Character string, directory path to the source files of the Staging universe.

See Also

Other staging: filter_meta(), freeze_dependencies(), stage_candidates()

14 record_nonstandard_licenses

Examples

Not run:

url_staging = "https://github.com/r-multiverse/staging”
path_staging <- tempfile()

path_community <- tempfile()

gert::git_clone(url = url_staging, path = path_staging)
stage_candidates(path_staging = path_staging)
rclone_includes(path_staging)

End(Not run)

record_nonstandard_licenses

Record nonstandard licenses

Description

R-multiverse packages must have valid free and open-source (FOSS) licenses to protect the intel-
lectual property rights of the package owners (c.f. https://en.wikipedia.org/wiki/Free_and_

open-source_software). record_nonstandard_licenses() records packages with nonstandard
licenses.

Usage

record_nonstandard_licenses(
path_status = "status.json",
path_nonstandard_licenses = "nonstandard_licenses.json"

)

Arguments

path_status Character string, local path to the status. json file of the repository.
path_nonstandard_licenses

Character string, output path to write JSON data with the names and licenses of
packages with non-standard licenses.

Value

NULL (invisibly). Called for its side effects.

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software

record_status 15

record_status Record package status.

Description

Record R-multiverse package status in package-specific JSON files.

Usage
record_status(
repo = "https://community.r-multiverse.org”,
versions = "versions.json",
output = "status.json",
staging = NULL,
mock = NULL,
verbose = FALSE
)
Arguments
repo URL of the repository to query.
versions Character of length 1, file path to a JSON manifest tracking the history of re-
leased versions of packages.
output Character string, file path to the JSON file to record new package status. Each
call to record_status() overwrites the contents of the file.
staging Character string, file path to the JSON manifest of package versions in the Stag-
ing universe. Used to identify staged packages. Set to NULL (default) to ignore
when processing the Community universe.
mock For testing purposes only, a named list of data frames for inputs to various inter-
mediate functions.
verbose TRUE to print progress while checking dependency status, FALSE otherwise.
Value

NULL (invisibly).

Package status

Functions like issues_versions() and issues_r_cmd_check() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_x() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_status() gathers to-
gether all the status about R-multiverse packages.

https://r-multiverse.org/multiverse.internals/reference/index.html

16 record_versions

Examples

Not run:

output <- tempfile()

versions <- tempfile()

repo <- "https://community.r-multiverse.org"
record_versions(versions = versions, repo = repo)
record_status(repo = repo, versions = versions, output = output)
writeLines(readLines(output))

End(Not run)

record_versions Record the manifest of package versions.

Description

Record the manifest of versions of packages and their hashes.

Usage
record_versions(
versions = "versions.json",
repo = "https://community.r-multiverse.org”,
current = multiverse.internals::get_current_versions(repo = repo)
)
Arguments
versions Character of length 1, file path to a JSON manifest tracking the history of re-
leased versions of packages.
repo URL of the repository to query.
current A data frame of current versions and hashes of packages in repo. This argument
is exposed for testing only.
Details

This function tracks a manifest containing the current version, the current hash, the highest version
ever released, and the hash of the highest version ever released. issues_versions() uses this
information to determine whether the package complies with best practices for version numbers.

Value

NULL (invisibly). Writes version information to a JSON file.

review_license 17

Package status

Functions like issues_versions() and issues_r_cmd_check() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_x() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_status() gathers to-
gether all the status about R-multiverse packages.

Examples

Not run:

output <- tempfile()

versions <- tempfile()

First snapshot:

record_versions(
versions = versions,
repo = repo

)

readLines(versions)

In subsequent snapshots, we have historical information about versions.

record_versions(
versions = versions,
repo = repo

)

readLines(versions)

End(Not run)

review_license Review a package license.

Description

Review a package license string from the DESCRIPTION file to make sure the package has a valid
free open-source (FOSS) license. This is vital to make sure R-multiverse has legal permission to
distribute the package source code.

Usage

review_license(license)

Arguments

license Character string with the "License: " field of the DESCRIPTION file of the pack-
age in question.

https://r-multiverse.org/multiverse.internals/reference/index.html

18 review_package

Value

Invisibly returns TRUE if the package has a valid free open-source (FOSS) license according to
tools::analyze_license(). FALSE otherwise. review_license() also prints an R console
message to the communicate the result. Licenses for which review_license() returns FALSE
are prohibited in R-multiverse.

See Also

Other Manual package reviews: review_package()

Examples

review_license("MIT + file LICENSE")
review_license("just file LICENSE")

review_package Review a package.

Description

Review a package for registration in R-multiverse.

Usage

review_package(name, url, advisories = NULL)

Arguments
name Character string, name of the package to check.
url Either a character string with the package URL or a custom JSON string with a
package entry.
advisories Character vector of names of packages with advisories in the R Consortium
Advisory Database. If NULL, then review_package_text () downloads the ad-
visory database and checks if the package has a vulnerability listed there. The
advisory database is cached internally for performance.
Details

review_package () runs all the checks from https://r-multiverse.org/review.html#automatic-acceptance
that can be done using the package name and source code repository URL.

Value

Invisibly returns TRUE if there is a problem with the package entry, otherwise FALSE if there are no
issues. In either case, review_package() prints an R console message with the result.

For security reasons, review_package () might only print the first finding it encounters. If that hap-
pens, there will be an informative note at the end of the console message, and compliance with R-
multiverse policies will need to be checked manually. In particular, please use review_license()
to check the "License: " field in the package DESCRIPTION file.

https://r-multiverse.org/review.html#automatic-acceptance

review_pull_request 19

See Also

Other Manual package reviews: review_license()

Examples
review_package(
name = "webchem”,
url = "https://github.com/ropensci/webchem”
)
review_package(
name = "polars”,
url = "https://github.com/pola-rs/r-polars”
)

review_pull_request Review an R-multiverse contribution pull request.

Description

Review a pull request to add packages to R-multiverse.

Usage
review_pull_request(
owner = "r-multiverse”,
repo = "contributions”,
number,

advisories = NULL,
organizations = NULL

)
Arguments
owner Character of length 1, name of the package repository owner.
repo URL of the repository to query.
number Positive integer of length 1, index of the pull request in the repo.
advisories Character vector of names of packages with advisories in the R Consortium

Advisory Database. If NULL, the function reads the database.

organizations Character vector of names of GitHub organizations. Pull requests from authors
who are not members of at least one of these organizations will be flagged for
manual review. If NULL, the function reads the list of trusted organizations.

Value

NULL (invisibly).

20 stage_candidates

See Also

Other Automated package reviews: review_pull_requests()

review_pull_requests Review R-multiverse contribution pull requests.

Description

Review pull requests which add packages to packages. json.

Usage
review_pull_requests(owner = "r-multiverse”, repo = "contributions”)
Arguments
owner Character of length 1, name of the package repository owner.
repo URL of the repository to query.
Value

NULL (invisibly).

See Also

Other Automated package reviews: review_pull_request()

stage_candidates Stage release candidates

Description

Stage release candidates for the targeted Production snapshot.

Usage

stage_candidates(path_staging)

Arguments

path_staging Character string, directory path to the source files of the Staging universe.

update_status 21

Details

stage_candidates() implements the candidate freeze during the month-long period prior to the
Production snapshot. Packages that pass R-multiverse checks are frozen (not allowed to update
further) and staged for Production. Packages with at least one failing not staged for Production, and
maintainers can update them with new source code releases.

stage_candidates() writes packages. json to control contents of the Staging universe.

Value

NULL (invisibly)

See Also

Other staging: filter_meta(), freeze_dependencies(), rclone_includes()

Examples

Not run:

url_staging <- "https://github.com/r-multiverse/staging”
path_staging <- tempfile()

gert::git_clone(url = url_staging, path = path_staging)
stage_candidates(path_staging = path_staging)

End(Not run)

update_status Update the package status repository

Description

Update the repository which reports the status on individual packages.

Usage

update_status(path_status, path_staging, path_community)

Arguments
path_status Character string, directory path to the source files of the package status reposi-
tory.

path_staging Character string, local directory path to the clone of the Staging universe GitHub
repository.

path_community Character string, local directory path to the clone of the Community universe
GitHub repository.

See Also

Other status: interpret_status()

22 update_topics

Examples

Not run:
url_staging <- "https://github.com/r-multiverse/staging”
url_community <- "https://github.com/r-multiverse/community"”
url_status <- "https://github.com/r-multiverse/status”
path_status <- tempfile()
path_staging <- tempfile()
path_community <- tempfile()
gert::git_clone(url = url_status, path = path_status)
gert::git_clone(url = url_staging, path = path_staging)
gert::git_clone(url = url_community, path = path_community)
update_status(

path_status = path_status,

path_staging = path_staging,

path_community = path_community
)
writelLines(

readLines(

file.path(path_status, "community”, "multiverse.internals.html"”)

)
)
writelLines(

readLines(

file.path(path_status, "community”, "multiverse.internals.xml")

)

)

End(Not run)

update_topics Update topics

Description

Update the list of packages for each R-multiverse topic.

Usage

update_topics(path, repo = "https://community.r-multiverse.org”, mock = NULL)

Arguments
path Character string, local file path to the topics repository source code.
repo Character string, URL of the Community universe.
mock List of named objects for testing purposes only.

Value

NULL (invisibly). Called for its side effects.

update_topics

Examples

Not run:

path <- tempfile()
gert::git_clone("https://github.com/r-multiverse/topics”, path = path)
update_topics(path = path, repo = "https://community.r-multiverse.org")

End(Not run)

23

Index

+* Automated package reviews
review_pull_request, 19
review_pull_requests, 20

* Manual package reviews
review_license, 17
review_package, 18

x check
record_status, 15

* data
record_status, 15

* issues
issues_advisories, 5
issues_dependencies, 5
issues_licenses, 7
issues_r_cmd_check, 8
issues_remotes, 7
issues_synchronization, 9
issues_version_conflicts, 11
issues_versions, 10

* management
record_status, 15

* meta
meta_packages, 12
meta_snapshot, 13

+ package check data management
record_versions, 16

+ package
record_status, 15

* staging
filter_meta, 2
freeze_dependencies, 3
rclone_includes, 13
stage_candidates, 20

* status
interpret_status, 4
update_status, 21

* topics
update_topics, 22

as.Date(), I3

24

filter_meta, 2,4, 13,21
freeze_dependencies, 2, 3, 13, 21
freeze_dependencies(), 3

interpret_status, 4, 21
issues_advisories, 5, 6-11
issues_dependencies, 5, 5, 711
issues_licenses, 5, 6,7, 7-11
issues_r_cmd_check, 5-7, 8, 9-11
issues_r_cmd_check(), 8, 15, 17
issues_remotes, 5, 6,7, 7—11

issues_synchronization, 5-8, 9, 10, 11

issues_synchronization(), 9
issues_version_conflicts, 5-10, 11
issues_versions, 5-9, 10, 11
issues_versions(), 8, 15-17

meta_packages, 12, 13
meta_packages(), 5-9, 11
meta_snapshot, 12, 13

rclone_includes, 2, 4, 13, 21
record_nonstandard_licenses, 14
record_nonstandard_licenses(), /4
record_status, 15
record_status(), 4,8, 15,17
record_versions, 16
record_versions(), 8, 15,17
review_license, 17, 19
review_license(), I8
review_package, 18, I8
review_package(), I8
review_pull_request, 19, 20
review_pull_requests, 20, 20

stage_candidates, 2, 4, 13, 20
stage_candidates(), 3, 21

tools::analyze_license(), I8

update_status, 4, 21
update_topics, 22

	filter_meta
	freeze_dependencies
	interpret_status
	issues_advisories
	issues_dependencies
	issues_licenses
	issues_remotes
	issues_r_cmd_check
	issues_synchronization
	issues_versions
	issues_version_conflicts
	meta_packages
	meta_snapshot
	rclone_includes
	record_nonstandard_licenses
	record_status
	record_versions
	review_license
	review_package
	review_pull_request
	review_pull_requests
	stage_candidates
	update_status
	update_topics
	Index

