Package: multiverse.internals (via r-universe)

October 2, 2024

Title Internal Infrastructure for R-multiverse

Description R-multiverse requires this internal infrastructure package
to automate contribution reviews and populate universes.

Version 0.2.13
License MIT + file LICENSE

URL https://github.com/r-multiverse/multiverse.internals

BugReports https://github.com/r-multiverse/multiverse.internals/issues
Depends R (>=3.6)

Imports gh, igraph, jsonlite, nanonext, pkgsearch, stats, utils,
vetrs, yaml

Suggests gert, testthat (>= 3.0.0)

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Config/testthat/edition 3

Repository https://test.r-universe.dev

RemoteUrl https://github.com/r-multiverse/multiverse.internals
RemoteRef 0.2.13

RemoteSha 63e2b5db98e12e9cdee1db22011d365122£22610

Contents

issues_checks e e
issues_dependencies e
1SSUES_dESCIIPtiONS o v i i e e e e e e e e e e e e
ISSUES_VETSIONS . . . v v v v v e o e
meta_checks e e
meta_packages

https://github.com/r-multiverse/multiverse.internals
https://github.com/r-multiverse/multiverse.internals/issues

2 issues_checks

propose_snapshot e e e 8
1ecOrd_dSSUES v v o o e e e e 9
1eCOrd_VETSIONS . . . o v v v o o e e e e 10
review_pull_request 12
review_pull_requests e e e e e e 13
Staging_is_active e 14
update_staging e e e e e 14

Index 16

issues_checks Report issues from R-universe package check results.
Description

Check R-universe package check results.

Usage

issues_checks(meta = meta_checks())

Arguments

meta A data frame with R-universe package check results returned by meta_checks ().

Details
issues_checks() reads output from the R-universe check API to scan all R-multiverse packages
for issues that may have happened during building and testing.
Value
A named list of information about packages which do not comply with DESCRPTION checks. Each
name is a package name, and each element contains specific information about non-compliance.
Package issues

Functions like issues_versions() and issues_descriptions() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_*() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_issues() gathers to-
gether all the issues about R-multiverse packages.

See Also

Other issues: issues_dependencies(), issues_descriptions(), issues_versions()

https://r-multiverse.org/multiverse.internals/reference/index.html

issues_dependencies 3

Examples
meta <- meta_checks(repo = "https://wlandau.r-universe.dev")
issues <- issues_checks(meta = meta)
str(issues)

issues_dependencies Report package dependency issues

Description

Flag packages which have issues in their strong dependencies (Imports:, Depends:, and LinkingTo:
in the DESCRIPTION.) These include indirect/upstream dependencies, as well, not just the explicit
mentions in the DESCRIPTION file.

Usage

issues_dependencies(packages, meta = meta_packages(), verbose = FALSE)

Arguments
packages Character vector of names of packages with other issues.
meta A data frame with R-universe package check results returned by meta_checks ().
verbose TRUE to print progress while checking issues with dependencies, FALSE other-
wise.
Value

A nested list of problems triggered by dependencies. The names of top-level elements are packages
affected downstream. The value of each top-level element is a list whose names are Each element
of this inner list is a character vector of relevant dependencies of the downstream package.

For example, consider a linear dependency graph where crew.cluster depends on crew, crew
depends on mirai, and mirai depends on nanonext. We represent the graph like this: nanonext
->mirai ->crew -> crew.cluster. If nanonext has an issue, then issues_dependencies()
returns list(crew.cluster = list(nanonext = "crew"), ...), where ... stands for additional
named list entries. From this list, we deduce that nanonext is causing an issue affecting crew.cluster
through the direct dependency on crew.

The choice in output format from issues_dependencies() allows package maintainers to more
easily figure out which direct dependencies are contributing issues and drop those direct dependen-
cies if necessary.

Package issues

Functions like issues_versions() and issues_descriptions() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_x() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_issues() gathers to-
gether all the issues about R-multiverse packages.

https://r-multiverse.org/multiverse.internals/reference/index.html

4 issues_descriptions

See Also

Other issues: issues_checks(), issues_descriptions(), issues_versions()

Examples
meta <- meta_packages(repo = "https://wlandau.r-universe.dev")
issues_dependencies(packages = character(@L), meta = meta)
issues_dependencies(packages = "crew.aws.batch”, meta = meta)
issues_dependencies(packages = "nanonext”, meta = meta)
issues_dependencies(packages = "crew”, meta = meta)
issues_dependencies(packages = c("crew”, "mirai”), meta = meta)

issues_descriptions Report DESCRIPTION file issues.

Description

Report issues with the DESCRIPTION files of packages.

Usage

issues_descriptions(meta = meta_packages())

Arguments

meta A data frame with R-universe package check results returned by meta_checks ().

Details

issues_descriptions() scans downloaded metadata from the PACKAGES. json file of an R uni-
verse and scans for specific issues in a package’s description file:

1. The presence of a "Remotes” field.

2. There is a security advisory at https://github.com/RConsortium/r-advisory-database
for the given package version.

Value

A named list of information about packages which do not comply with DESCRPTION checks. Each
name is a package name, and each element contains specific information about non-compliance.

Package issues

Functions like issues_versions() and issues_descriptions() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_x() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_issues() gathers to-
gether all the issues about R-multiverse packages.

https://github.com/RConsortium/r-advisory-database
https://r-multiverse.org/multiverse.internals/reference/index.html

issues_versions 5

See Also

Other issues: issues_checks(), issues_dependencies(), issues_versions()

Examples
meta <- meta_packages(repo = "https://wlandau.r-universe.dev")
issues <- issues_descriptions(meta = meta)
str(issues)
issues_versions Check package versions.
Description

Check package version number history for compliance.

Usage

issues_versions(versions)

Arguments
versions Character of length 1, file path to a JSON manifest tracking the history of re-
leased versions of packages.
Details

This function checks the version number history of packages in R-multiverse and reports any pack-
ages with issues. The current released version of a given package must be unique, and it must be
greater than all the versions of all the previous package releases.

Value

A named list of information about packages which do not comply with version number history
checks. Each name is a package name, and each element contains specific information about version
non-compliance: the current version number, the current version hash, and the analogous versions
and hashes of the highest-versioned release recorded.

Package issues

Functions like issues_versions() and issues_descriptions() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_*() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_issues() gathers to-
gether all the issues about R-multiverse packages.

See Also

Other issues: issues_checks(), issues_dependencies(), issues_descriptions()

https://r-multiverse.org/multiverse.internals/reference/index.html

Examples

lines <- c(

)

e
\"package\": \"package_unmodified\"”,"”,
\"version_current\”: \"1.0.0\",",

" \"hash_current\": \"hash_1.0.0\",",

" \"version_highest\": \"1.0.0\",",

" \"hash_highest\": \"hash_1.0.0\"",
"3,

" {",

\"package\": \"version_decremented\”,",
\"version_current\”: \"0.0.1\",",

" \"hash_current\"”: \"hash_0.0.1\",",

" \"version_highest\": \"1.0.0\",",

" \"hash_highest\": \"hash_1.0.0\"",
"3,

" A{",

\"package\": \"version_incremented\",",
\"version_current\"”: \"2.0.0\",",

" \"hash_current\”: \"hash_2.0.0\",",

" \"version_highest\": \"2.0.0\",",

" \"hash_highest\": \"hash_2.0.0\"",
",

\"package\": \"version_unmodified\”,"”,
\"version_current\”: \"1.0.0\",",

" \"hash_current\": \"hash_1.0.0-modified\",",

" \"version_highest\": \"1.0.0\",",
" \"hash_highest\": \"hash_1.0.0\"",

" ”
’

”:l“

versions <- tempfile()
writeLines(lines, versions)

out <- issues_versions(versions)
str(out)

meta_checks

meta_checks

List metadata about R-universe package checks

Description

List package checks results reported by the R-universe package API.

Usage

meta_checks(repo = "https://community.r-multiverse.org")

meta_packages 7

Arguments

repo Character of length 1, URL of the package repository. R-multiverse uses "https://community.r-multi

Value

A data frame with one row per package and columns with package check results.

See Also

Other meta: meta_packages()

Examples
meta_checks(repo = "https://wlandau.r-universe.dev")
meta_packages List package metadata
Description

List package metadata in an R universe.

Usage

meta_packages(repo = "https://community.r-multiverse.org")
Arguments

repo Character of length 1, URL of the package repository. R-multiverse uses "https://community.r-multi
Value

A data frame with one row per package and columns with package metadata.

See Also

Other meta: meta_checks()

Examples

meta_packages(repo = "https://wlandau.r-universe.dev")

8 propose_snapshot

propose_snhapshot Propose snapshot

Description

Propose a Production snapshot of Staging.

Usage

propose_snapshot(
path_staging,

repo_staging = "https://staging.r-multiverse.org”,
types = c("src”, "win"”, "mac"),
r_versions = NULL,
mock = NULL
)
Arguments

path_staging Character string, directory path to the source files of the staging universe.
repo_staging Character string, URL of the staging universe.

types Character vector, what to pass to the types field in the snapshot API URL.
Controls the types of binaries and documentation included in the snapshot.

r_versions Character vector of major.minor versions of R to download binaries. For ex-
ample, r_versions =c("4.4", "4.3"). Set to NULL to let R-universe choose
default versions.

mock For testing purposes only, a named list of data frames for inputs to various inter-
mediate functions.

Details

propose_snapshot () proposes a snapshot of Staging to migrate to Production. The recommended
snapshot is the list of packages for which (1) the build and check results of the current release are
in Staging, and (2) there are no issues. Writes snapshot. json with an R-universe-like manifest
of the packages recommended for the snapshot, and a snapshot.url file containing an R-universe
snapshot API URL to download those packages. Both these files are written to the directory given
by the path_staging argument.

Value

NULL (invisibly). Called for its side effects. propose_snapshot() writes snapshot.json with
an R-universe-like manifest of the packages recommended for the snapshot, and a snapshot.url
file containing an R-universe snapshot API URL to download those packages. Both these files are
written to the directory given by the path_staging argument.

record_issues 9

See Also

Other staging: staging_is_active(), update_staging()

Examples

Not run:
url_staging = "https://github.com/r-multiverse/staging”
path_staging <- tempfile()
gert::git_clone(url = url_staging, path = path_staging)
propose_snapshot (

path_staging = path_staging,

repo_staging = "https://staging.r-multiverse.org”

)

End(Not run)

record_issues Record package issues.

Description

Record R-multiverse package issues in package-specific JSON files.

Usage
record_issues(
repo = "https://community.r-multiverse.org”,
versions = "versions.json",
output = "issues”,
mock = NULL,
verbose = FALSE
)
Arguments
repo Character of length 1, URL of the package repository. R-multiverse uses "https://community.r-multi
versions Character of length 1, file path to a JSON manifest tracking the history of re-
leased versions of packages.
output Character of length 1, file path to the folder to record new package issues. Each
call to record_issues() overwrites the contents of the repo.
mock For testing purposes only, a named list of data frames for inputs to various inter-
mediate functions.
verbose TRUE to print progress while checking issues with dependencies, FALSE other-

wise.

10 record_versions

Value

NULL (invisibly).

Package issues

Functions like issues_versions() and issues_descriptions() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_*() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_issues() gathers to-
gether all the issues about R-multiverse packages.

Issue files

For each package with observed problems, record_issues() writes an issue file. This issue file is
a JSON list with one element per type of failing check. Each element has an informative name (for
example, checks, descriptions, or versions) and a list of diagnostic information.

Each issue file also has a date field. This date the day that an issue was first noticed. It automatically
resets the next time all package are resolved.

Examples

repo <- "https://wlandau.r-universe.dev”
output <- tempfile()
versions <- tempfile()
record_versions(
versions = versions,
repo = repo
)
record_issues(
repo = repo,
versions = versions,
output = output

)
files <- list.files(output)
print(files)

package <- head(files, n = 1)
if (length(package)) {
print(package)
}
if (length(package)) {
print(readLines(file.path(output, package)))
}

record_versions Record the manifest of package versions.

Description

Record the manifest of versions of packages and their hashes.

https://r-multiverse.org/multiverse.internals/reference/index.html

record_versions 11

Usage
record_versions(
versions = "versions.json”,
repo = "https://community.r-multiverse.org”,
current = multiverse.internals::get_current_versions(repo = repo)
)
Arguments
versions Character of length 1, file path to a JSON manifest tracking the history of re-
leased versions of packages.
repo Character of length 1, URL of the package repository. R-multiverse uses "https://community.r-multi
current A data frame of current versions and hashes of packages in repo. This argument
is exposed for testing only.
Details

This function tracks a manifest containing the current version, the current hash, the highest version
ever released, and the hash of the highest version ever released. issues_versions() uses this
information to determine whether the package complies with best practices for version numbers.

Value

NULL (invisibly). Writes a package version manifest and a manifest of version issues as JSON files.

Package issues

Functions like issues_versions() and issues_descriptions() perform health checks for all
packages in R-multiverse. For a complete list of checks, see the issues_*() functions listed at
https://r-multiverse.org/multiverse.internals/reference/index.html. record_versions()
updates the version number history of releases in R-multiverse, and record_issues() gathers to-
gether all the issues about R-multiverse packages.

Examples

R-multiverse uses https://community.r-multiverse.org as the repo.
repo <- "https://wlandau.r-universe.dev"” # just for testing and examples
output <- tempfile()
versions <- tempfile()
First snapshot:
record_versions(
versions = versions,
repo = repo
)
readLines(versions)
In subsequent snapshots, we have historical information about versions.
record_versions(
versions = versions,
repo = repo

)

https://r-multiverse.org/multiverse.internals/reference/index.html

12 review_pull_request

readLines(versions)

review_pull_request Review a pull request.

Description

Review a pull request to add packages to packages. json.

Usage
review_pull_request(owner = "r-multiverse”, repo = "contributions”, number)
Arguments
owner Character of length 1, name of the package repository owner.
repo Character of length 1, URL of the package repository. R-multiverse uses "https://community.r-multi
number Positive integer of length 1, index of the pull request in the repo.
Value

NULL (invisibly).

Testing
Testing of this function unfortunately needs to be manual. Test cases:
1. Add a package correctly (automatically merge).
. Add a bad URL (manual review).
. Change a URL (manual review).

2
3
4. Add afile in a forbidden place (close).
5

. Add a custom JSON file which can be parsed (manual review).

See Also

Other pull request reviews: review_pull_requests()

review_pull_requests 13

review_pull_requests Review pull requests.

Description

Review pull requests which add packages to packages. json.

Usage

review_pull_requests(owner = "r-multiverse”, repo = "contributions”)
Arguments

owner Character of length 1, name of the package repository owner.

repo Character of length 1, URL of the package repository. R-multiverse uses "https://community.r-multi
Value

NULL (invisibly).

Testing

Testing of this function unfortunately needs to be manual. Test cases:

1. Add a package correctly (automatically merge).
2. Add a bad URL (manual review).

3. Change a URL (manual review).

4. Add a file in a forbidden place (close).

5. Add a custom JSON file which can be parsed (manual review).

See Also

Other pull request reviews: review_pull_request()

14 update_staging

staging_is_active Check if the stating universe is active.

Description

Check if the stating universe is active.

Usage

staging_is_active(
start = c("01-15", "04-15", "@7-15", "10-15"),
today = Sys.Date()

)
Arguments
start Character vector of "%m-%d" dates that the staging universe becomes active.
Staging will then last for a full calendar month. For example, if you supply a
start date of "@1-15", then the staging period will include all days from "01-15"
through "02-14" and not include "@2-15".
today Character string with today’s date in "%Y-%m-%d" format or an object convertible
to POSIXIt format.
Value

TRUE if the staging universe is active, FALSE otherwise.

See Also

Other staging: propose_snapshot(), update_staging()

Examples

staging_is_active()

update_staging Update staging

Description

Update the staging universe.

update_staging 15

Usage

update_staging(
path_staging,
path_community,

repo_community = "https://community.r-multiverse.org”,
mock = NULL
)
Arguments

path_staging Character string, directory path to the source files of the staging universe.
path_community Character string, directory path to the source files of the community universe.
repo_community Character string, URL of the community universe.

mock For testing purposes only, a named list of data frames for inputs to various inter-
mediate functions.

Details

update_staging() controls how packages enter and leave the staging universe. It updates the
staging packages. json manifest depending on the contents of the community universe and issues
with package checks.

Value

NULL (invisibly)

See Also

Other staging: propose_shapshot(), staging_is_active()

Examples
Not run:
url_staging = "https://github.com/r-multiverse/staging”
url_community = "https://github.com/r-multiverse/community”

path_staging <- tempfile()
path_community <- tempfile()
gert::git_clone(url = url_staging, path = path_staging)
gert::git_clone(url = url_community, path = path_community)
update_staging(

path_staging = path_staging,

path_community = path_community,

repo_community = "https://community.r-multiverse.org”

)

End(Not run)

Index

x check propose_snapshot(), 8
record_issues, 9

x data record_issues, 9
record_issues, 9 record_issues(), 2-5, 10, 11

* issues record_versions, 10
issues_checks, 2 record_versions(), 2-5, 10, 11
issues_dependencies, 3 review_pull_request, 12, /3
issues_descriptions, 4 review_pull_requests, 12, 13

issues_versions, 5

* management
record_issues, 9

* meta
meta_checks, 6
meta_packages, 7

* package check data management
record_versions, 10

+ package
record_issues, 9

* pull request reviews
review_pull_request, 12
review_pull_requests, 13

* staging
propose_snapshot, 8
staging_is_active, 14
update_staging, 14

staging_is_active, 9, 14, 15

update_staging, 9, 14, 14
update_staging(), 15

issues_checks, 2,4, 5
issues_checks(), 2
issues_dependencies, 2, 3,5
issues_dependencies(), 3
issues_descriptions, 2,4,4, 5
issues_descriptions(), 2-5, 10, 11
issues_versions, 2,4, 5,5
issues_versions(), 2-5, 10, 11

meta_checks, 6, 7
meta_checks(), 24
meta_packages, 7, 7
propose_snapshot, 8, 14, 15

16

	issues_checks
	issues_dependencies
	issues_descriptions
	issues_versions
	meta_checks
	meta_packages
	propose_snapshot
	record_issues
	record_versions
	review_pull_request
	review_pull_requests
	staging_is_active
	update_staging
	Index

