
Package: polars (via r-universe)
January 21, 2026

Title R Bindings for the 'polars' Rust Library
Version 1.8.0
Description Lightning-fast 'DataFrame' library written in 'Rust'.

Convert R data to 'Polars' data and vice versa. Perform fast,
lazy, larger-than-memory and optimized data queries. 'Polars'
is interoperable with the package 'arrow', as both are based on
the 'Apache Arrow' Columnar Format.

License MIT + file LICENSE

URL https://pola-rs.github.io/r-polars/,
https://github.com/pola-rs/r-polars,
https://rpolars.r-universe.dev/polars

BugReports https://github.com/pola-rs/r-polars/issues
Depends R (>= 4.3)
Imports rlang (>= 1.1.0), S7 (>= 0.2.1)
Suggests arrow, bit64, blob, carrier (>= 0.2.0), cli, clock, curl,

data.table, ggplot2, hms, jsonlite, knitr, mirai (>= 2.3.0),
nanoarrow (>= 0.6.0), nycflights13, patrick (>= 0.3.0), pillar,
pkgload, purrr (>= 1.1.0), reticulate (>= 1.43.0), rmarkdown,
testthat (>= 3.3.2), tibble (>= 3.3.0), vctrs, withr

VignetteBuilder knitr
Config/Needs/dev devtools, lifecycle, readr, glue, RcppTOML, smvr
Config/Needs/lint fs, lintr
Config/Needs/website etiennebacher/altdoc, future.apply
Config/polars/lib-version 1.7.1-rc.1
Config/testthat/edition 3
Config/testthat/parallel true
Config/testthat/start-first lazyframe-frame, *-s3-base,

polars_options, expr-expr, expr-*
Encoding UTF-8

1

https://pola-rs.github.io/r-polars/
https://github.com/pola-rs/r-polars
https://rpolars.r-universe.dev/polars
https://github.com/pola-rs/r-polars/issues

2 Contents

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.3
SystemRequirements Cargo (Rust's package manager), rustc
Config/pak/sysreqs libclang-dev
Repository https://test.r-universe.dev
Date/Publication 2026-01-21 14:51:34 UTC
RemoteUrl https://github.com/pola-rs/r-polars
RemoteRef v1.8.0
RemoteSha 99552d9ec454d69119fa22c84e1783803819c1f3

Contents
as.data.frame.polars_data_frame . 17
as.list.polars_data_frame . 19
as_nanoarrow_array_stream.polars_data_frame 22
as_polars_df . 24
as_polars_expr . 27
as_polars_lf . 30
as_polars_series . 31
as_tibble.polars_data_frame . 36
check_polars . 39
cs . 43
cs__all . 44
cs__alpha . 45
cs__alphanumeric . 46
cs__array . 47
cs__binary . 48
cs__boolean . 49
cs__by_dtype . 49
cs__by_index . 50
cs__by_name . 51
cs__categorical . 52
cs__contains . 53
cs__date . 54
cs__datetime . 54
cs__decimal . 56
cs__digit . 56
cs__duration . 57
cs__empty . 58
cs__ends_with . 59
cs__enum . 60
cs__exclude . 61
cs__first . 62
cs__float . 63
cs__integer . 63

Contents 3

cs__last . 64
cs__list . 65
cs__matches . 66
cs__nested . 67
cs__numeric . 68
cs__signed_integer . 68
cs__starts_with . 69
cs__string . 70
cs__struct . 71
cs__temporal . 72
cs__time . 73
cs__unsigned_integer . 73
dataframe__bottom_k . 74
dataframe__cast . 75
dataframe__clear . 76
dataframe__clone . 77
dataframe__count . 78
dataframe__describe . 78
dataframe__drop . 79
dataframe__drop_nans . 80
dataframe__drop_nulls . 81
dataframe__equals . 82
dataframe__explode . 82
dataframe__fill_nan . 83
dataframe__fill_null . 84
dataframe__filter . 85
dataframe__gather_every . 85
dataframe__get_column . 86
dataframe__get_columns . 87
dataframe__get_column_index . 87
dataframe__glimpse . 88
dataframe__group_by . 89
dataframe__group_by_dynamic . 90
dataframe__hash_rows . 93
dataframe__head . 94
dataframe__is_duplicated . 95
dataframe__is_empty . 95
dataframe__is_unique . 96
dataframe__join . 96
dataframe__join_asof . 99
dataframe__join_where . 102
dataframe__lazy . 104
dataframe__map_columns . 104
dataframe__max . 105
dataframe__max_horizontal . 106
dataframe__mean . 106
dataframe__mean_horizontal . 107
dataframe__median . 107

4 Contents

dataframe__merge_sorted . 108
dataframe__min . 108
dataframe__min_horizontal . 109
dataframe__n_chunks . 109
dataframe__partition_by . 110
dataframe__pivot . 111
dataframe__quantile . 113
dataframe__rechunk . 113
dataframe__remove . 114
dataframe__rename . 115
dataframe__reverse . 116
dataframe__rolling . 116
dataframe__sample . 118
dataframe__select . 119
dataframe__select_seq . 119
dataframe__serialize . 120
dataframe__set_sorted . 121
dataframe__shift . 122
dataframe__slice . 123
dataframe__sort . 123
dataframe__std . 124
dataframe__sum . 125
dataframe__sum_horizontal . 125
dataframe__tail . 126
dataframe__top_k . 127
dataframe__to_dummies . 128
dataframe__to_series . 129
dataframe__to_struct . 129
dataframe__transpose . 130
dataframe__unique . 131
dataframe__unnest . 132
dataframe__unpivot . 133
dataframe__unstack . 134
dataframe__var . 135
dataframe__with_columns . 135
dataframe__with_columns_seq . 136
dataframe__with_row_index . 137
dataframe__write_csv . 138
dataframe__write_ipc . 140
dataframe__write_ipc_stream . 142
dataframe__write_json . 143
dataframe__write_ndjson . 143
dataframe__write_parquet . 144
datatype_expr__default_value . 146
datatype_expr__display . 148
datatype_expr__inner_dtype . 148
datatype_expr__matches . 149
datatype__to_dtype_expr . 150

Contents 5

expr_arr_agg . 150
expr_arr_all . 151
expr_arr_any . 152
expr_arr_arg_max . 152
expr_arr_arg_min . 153
expr_arr_contains . 153
expr_arr_count_matches . 154
expr_arr_eval . 155
expr_arr_explode . 156
expr_arr_first . 156
expr_arr_get . 157
expr_arr_join . 157
expr_arr_last . 158
expr_arr_len . 159
expr_arr_max . 159
expr_arr_median . 160
expr_arr_min . 160
expr_arr_n_unique . 161
expr_arr_reverse . 161
expr_arr_shift . 162
expr_arr_sort . 162
expr_arr_std . 163
expr_arr_sum . 163
expr_arr_to_list . 164
expr_arr_to_struct . 164
expr_arr_unique . 165
expr_arr_var . 166
expr_bin_contains . 166
expr_bin_decode . 167
expr_bin_encode . 168
expr_bin_ends_with . 169
expr_bin_reinterpret . 169
expr_bin_size . 170
expr_bin_starts_with . 171
expr_cat_get_categories . 172
expr_dt_add_business_days . 172
expr_dt_base_utc_offset . 174
expr_dt_cast_time_unit . 174
expr_dt_century . 175
expr_dt_combine . 176
expr_dt_convert_time_zone . 177
expr_dt_date . 177
expr_dt_day . 178
expr_dt_days_in_month . 179
expr_dt_dst_offset . 179
expr_dt_epoch . 180
expr_dt_hour . 180
expr_dt_iso_year . 181

6 Contents

expr_dt_is_leap_year . 182
expr_dt_microsecond . 182
expr_dt_millennium . 183
expr_dt_millisecond . 183
expr_dt_minute . 184
expr_dt_month . 185
expr_dt_month_end . 185
expr_dt_month_start . 186
expr_dt_nanosecond . 186
expr_dt_offset_by . 187
expr_dt_ordinal_day . 188
expr_dt_quarter . 189
expr_dt_replace . 190
expr_dt_replace_time_zone . 191
expr_dt_round . 192
expr_dt_second . 194
expr_dt_strftime . 194
expr_dt_time . 195
expr_dt_timestamp . 196
expr_dt_total_days . 197
expr_dt_total_hours . 197
expr_dt_total_microseconds . 198
expr_dt_total_milliseconds . 199
expr_dt_total_minutes . 200
expr_dt_total_nanoseconds . 200
expr_dt_total_seconds . 201
expr_dt_to_string . 202
expr_dt_truncate . 203
expr_dt_week . 204
expr_dt_weekday . 205
expr_dt_year . 206
expr_list_agg . 206
expr_list_all . 207
expr_list_any . 207
expr_list_arg_max . 208
expr_list_arg_min . 208
expr_list_concat . 209
expr_list_contains . 209
expr_list_count_matches . 210
expr_list_diff . 211
expr_list_drop_nulls . 211
expr_list_eval . 212
expr_list_explode . 213
expr_list_first . 213
expr_list_gather . 214
expr_list_gather_every . 215
expr_list_get . 216
expr_list_head . 217

Contents 7

expr_list_join . 217
expr_list_last . 218
expr_list_len . 219
expr_list_max . 219
expr_list_mean . 220
expr_list_median . 220
expr_list_min . 221
expr_list_n_unique . 221
expr_list_reverse . 222
expr_list_sample . 222
expr_list_set_difference . 223
expr_list_set_intersection . 224
expr_list_set_symmetric_difference . 225
expr_list_set_union . 226
expr_list_shift . 226
expr_list_slice . 227
expr_list_sort . 228
expr_list_std . 229
expr_list_sum . 229
expr_list_tail . 230
expr_list_to_array . 230
expr_list_to_struct . 231
expr_list_unique . 232
expr_list_var . 233
expr_meta_eq . 234
expr_meta_has_multiple_outputs . 234
expr_meta_is_column . 235
expr_meta_is_column_selection . 235
expr_meta_is_literal . 236
expr_meta_is_regex_projection . 237
expr_meta_ne . 237
expr_meta_output_name . 238
expr_meta_pop . 239
expr_meta_root_names . 239
expr_meta_serialize . 240
expr_meta_tree_format . 241
expr_meta_undo_aliases . 242
expr_name_keep . 242
expr_name_prefix . 243
expr_name_prefix_fields . 243
expr_name_replace . 244
expr_name_suffix . 245
expr_name_suffix_fields . 245
expr_name_to_lowercase . 246
expr_name_to_uppercase . 246
expr_struct_field . 247
expr_struct_json_encode . 248
expr_struct_rename_fields . 248

8 Contents

expr_struct_unnest . 249
expr_struct_with_fields . 250
expr_str_contains . 251
expr_str_contains_any . 252
expr_str_count_matches . 253
expr_str_decode . 253
expr_str_encode . 254
expr_str_ends_with . 255
expr_str_escape_regex . 256
expr_str_extract . 256
expr_str_extract_all . 257
expr_str_extract_groups . 258
expr_str_extract_many . 259
expr_str_find . 260
expr_str_find_many . 261
expr_str_head . 262
expr_str_join . 263
expr_str_json_decode . 264
expr_str_json_path_match . 265
expr_str_len_bytes . 265
expr_str_len_chars . 266
expr_str_normalize . 267
expr_str_pad_end . 267
expr_str_pad_start . 268
expr_str_replace . 268
expr_str_replace_all . 270
expr_str_replace_many . 271
expr_str_reverse . 272
expr_str_slice . 273
expr_str_split . 274
expr_str_splitn . 274
expr_str_split_exact . 275
expr_str_starts_with . 276
expr_str_strip_chars . 276
expr_str_strip_chars_end . 277
expr_str_strip_chars_start . 278
expr_str_strip_prefix . 278
expr_str_strip_suffix . 279
expr_str_strptime . 280
expr_str_tail . 282
expr_str_to_date . 283
expr_str_to_datetime . 284
expr_str_to_decimal . 285
expr_str_to_integer . 286
expr_str_to_lowercase . 287
expr_str_to_time . 287
expr_str_to_titlecase . 288
expr_str_to_uppercase . 289

Contents 9

expr_str_zfill . 289
expr__abs . 290
expr__add . 290
expr__agg_groups . 291
expr__alias . 292
expr__all . 292
expr__and . 293
expr__any . 294
expr__append . 295
expr__approx_n_unique . 295
expr__arccos . 296
expr__arccosh . 296
expr__arcsin . 297
expr__arcsinh . 297
expr__arctan . 298
expr__arctanh . 298
expr__arg_max . 299
expr__arg_min . 299
expr__arg_sort . 300
expr__arg_true . 300
expr__arg_unique . 301
expr__backward_fill . 301
expr__bitwise_and . 302
expr__bitwise_count_ones . 302
expr__bitwise_count_zeros . 303
expr__bitwise_leading_ones . 303
expr__bitwise_leading_zeros . 304
expr__bitwise_or . 304
expr__bitwise_trailing_ones . 305
expr__bitwise_trailing_zeros . 305
expr__bitwise_xor . 306
expr__bottom_k . 306
expr__bottom_k_by . 307
expr__cast . 308
expr__cbrt . 309
expr__ceil . 309
expr__clip . 310
expr__cos . 311
expr__cosh . 311
expr__cot . 312
expr__count . 312
expr__cumulative_eval . 313
expr__cum_count . 313
expr__cum_max . 314
expr__cum_min . 315
expr__cum_prod . 315
expr__cum_sum . 316
expr__cut . 317

10 Contents

expr__degrees . 318
expr__diff . 318
expr__dot . 319
expr__drop_nans . 319
expr__drop_nulls . 320
expr__entropy . 320
expr__eq . 321
expr__eq_missing . 321
expr__ewm_mean . 322
expr__ewm_mean_by . 323
expr__ewm_std . 325
expr__ewm_var . 326
expr__exclude . 328
expr__exp . 328
expr__explode . 329
expr__extend_constant . 330
expr__fill_nan . 330
expr__fill_null . 331
expr__filter . 332
expr__first . 332
expr__flatten . 333
expr__floor . 333
expr__floor_div . 334
expr__forward_fill . 334
expr__gather . 335
expr__gather_every . 336
expr__ge . 336
expr__get . 337
expr__gt . 338
expr__hash . 338
expr__has_nulls . 339
expr__head . 339
expr__hist . 340
expr__implode . 341
expr__index_of . 341
expr__interpolate . 342
expr__interpolate_by . 342
expr__is_between . 343
expr__is_close . 344
expr__is_duplicated . 345
expr__is_finite . 345
expr__is_first_distinct . 346
expr__is_in . 346
expr__is_infinite . 347
expr__is_last_distinct . 347
expr__is_nan . 348
expr__is_not_nan . 348
expr__is_not_null . 349

Contents 11

expr__is_null . 349
expr__is_unique . 350
expr__item . 350
expr__kurtosis . 351
expr__last . 352
expr__le . 353
expr__len . 353
expr__limit . 354
expr__log . 354
expr__log10 . 355
expr__log1p . 355
expr__lower_bound . 356
expr__lt . 356
expr__map_batches . 357
expr__max . 358
expr__max_by . 358
expr__mean . 359
expr__median . 359
expr__min . 360
expr__min_by . 360
expr__mod . 361
expr__mode . 361
expr__mul . 362
expr__nan_max . 363
expr__nan_min . 363
expr__ne . 364
expr__ne_missing . 364
expr__not . 365
expr__null_count . 366
expr__n_unique . 366
expr__or . 367
expr__over . 367
expr__pct_change . 369
expr__peak_max . 370
expr__peak_min . 370
expr__pow . 371
expr__product . 371
expr__qcut . 372
expr__quantile . 373
expr__radians . 374
expr__rank . 374
expr__rechunk . 376
expr__reinterpret . 376
expr__repeat_by . 377
expr__replace . 378
expr__replace_strict . 379
expr__reshape . 380
expr__reverse . 381

12 Contents

expr__rle . 382
expr__rle_id . 382
expr__rolling . 383
expr__rolling_kurtosis . 384
expr__rolling_max . 385
expr__rolling_max_by . 386
expr__rolling_mean . 388
expr__rolling_mean_by . 390
expr__rolling_median . 392
expr__rolling_median_by . 393
expr__rolling_min . 395
expr__rolling_min_by . 396
expr__rolling_quantile . 398
expr__rolling_quantile_by . 400
expr__rolling_rank . 402
expr__rolling_rank_by . 403
expr__rolling_skew . 405
expr__rolling_std . 406
expr__rolling_std_by . 408
expr__rolling_sum . 410
expr__rolling_sum_by . 411
expr__rolling_var . 413
expr__rolling_var_by . 414
expr__round . 416
expr__round_sig_figs . 417
expr__sample . 418
expr__search_sorted . 419
expr__set_sorted . 420
expr__shift . 420
expr__shrink_dtype . 421
expr__shuffle . 421
expr__sign . 422
expr__sin . 422
expr__sinh . 423
expr__skew . 423
expr__slice . 424
expr__sort . 425
expr__sort_by . 426
expr__sqrt . 427
expr__std . 428
expr__sub . 428
expr__sum . 429
expr__tail . 429
expr__tan . 430
expr__tanh . 430
expr__top_k . 431
expr__top_k_by . 431
expr__to_physical . 432

Contents 13

expr__true_div . 433
expr__unique . 434
expr__unique_counts . 435
expr__upper_bound . 435
expr__value_counts . 436
expr__var . 437
expr__xor . 437
groupby__agg . 438
groupby__having . 439
groupby__head . 439
groupby__len . 440
groupby__max . 441
groupby__mean . 441
groupby__median . 442
groupby__min . 442
groupby__n_unique . 443
groupby__quantile . 444
groupby__sum . 444
groupby__tail . 445
infer_polars_dtype . 446
knit_print.polars_data_frame . 448
lazyframe__bottom_k . 449
lazyframe__cast . 450
lazyframe__clear . 451
lazyframe__clone . 452
lazyframe__collect . 453
lazyframe__collect_schema . 455
lazyframe__count . 455
lazyframe__describe . 456
lazyframe__drop . 457
lazyframe__drop_nans . 458
lazyframe__drop_nulls . 459
lazyframe__explain . 459
lazyframe__explode . 461
lazyframe__fill_nan . 462
lazyframe__fill_null . 463
lazyframe__filter . 464
lazyframe__first . 465
lazyframe__gather_every . 465
lazyframe__group_by . 466
lazyframe__group_by_dynamic . 467
lazyframe__head . 470
lazyframe__interpolate . 471
lazyframe__join . 471
lazyframe__join_asof . 474
lazyframe__join_where . 477
lazyframe__last . 478
lazyframe__max . 479

14 Contents

lazyframe__mean . 479
lazyframe__median . 480
lazyframe__merge_sorted . 480
lazyframe__min . 481
lazyframe__null_count . 481
lazyframe__pivot . 482
lazyframe__profile . 484
lazyframe__quantile . 486
lazyframe__remove . 487
lazyframe__rename . 488
lazyframe__reverse . 489
lazyframe__rolling . 489
lazyframe__select . 491
lazyframe__select_seq . 492
lazyframe__serialize . 493
lazyframe__set_sorted . 494
lazyframe__shift . 494
lazyframe__sink_batches . 495
lazyframe__sink_csv . 498
lazyframe__sink_ipc . 502
lazyframe__sink_ndjson . 504
lazyframe__slice . 507
lazyframe__sort . 507
lazyframe__sql . 509
lazyframe__std . 510
lazyframe__sum . 510
lazyframe__tail . 511
lazyframe__top_k . 511
lazyframe__to_dot . 512
lazyframe__unique . 514
lazyframe__unnest . 515
lazyframe__unpivot . 516
lazyframe__var . 517
lazyframe__with_columns . 517
lazyframe__with_columns_seq . 518
lazyframe__with_row_index . 519
lazygroupby__agg . 520
lazygroupby__having . 521
lazygroupby__head . 522
lazygroupby__len . 522
lazygroupby__max . 523
lazygroupby__mean . 523
lazygroupby__median . 524
lazygroupby__min . 525
lazygroupby__n_unique . 525
lazygroupby__quantile . 526
lazygroupby__sum . 527
lazygroupby__tail . 527

Contents 15

parquet_statistics . 528
pl . 532
pl_api_register_series_namespace . 532
pl__all . 533
pl__all_horizontal . 534
pl__any . 535
pl__any_horizontal . 536
pl__arg_sort_by . 536
pl__arg_where . 538
pl__coalesce . 538
pl__col . 539
pl__collect_all . 540
pl__concat . 541
pl__concat_arr . 543
pl__concat_list . 544
pl__concat_str . 545
pl__cum_sum . 546
pl__DataFrame . 546
pl__date . 548
pl__datetime . 549
pl__datetime_range . 551
pl__datetime_ranges . 553
pl__date_range . 555
pl__date_ranges . 556
pl__dtype_of . 558
pl__duration . 559
pl__element . 560
pl__explain_all . 561
pl__first . 562
pl__int_range . 562
pl__int_ranges . 563
pl__last . 564
pl__LazyFrame . 564
pl__len . 565
pl__linear_space . 566
pl__linear_spaces . 567
pl__lit . 568
pl__max . 569
pl__max_horizontal . 570
pl__mean_horizontal . 571
pl__min . 571
pl__min_horizontal . 572
pl__nth . 573
pl__PartitionBy . 574
pl__read_csv . 576
pl__read_ipc . 579
pl__read_ipc_stream . 581
pl__read_ndjson . 582

16 Contents

pl__read_parquet . 584
pl__repeat_ . 587
pl__scan_csv . 588
pl__scan_ipc . 591
pl__scan_ndjson . 593
pl__scan_parquet . 595
pl__Series . 598
pl__show_versions . 599
pl__SQLContext . 599
pl__struct . 600
pl__sum . 601
pl__sum_horizontal . 602
pl__thread_pool_size . 602
pl__time_range . 603
pl__time_ranges . 604
pl__when . 606
polars_dtype . 608
polars_envvars . 610
polars_expr . 612
polars_info . 613
polars_options . 614
QueryOptFlags . 615
s3-arithmetic . 616
series_list_to_struct . 618
series_struct_unnest . 619
series_str_json_decode . 619
series_str_strptime . 620
series_str_to_datetime . 622
series_str_to_decimal . 623
series__alias . 624
series__chunk_lengths . 625
series__is_empty . 626
series__n_chunks . 626
series__rechunk . 627
series__serialize . 627
series__shrink_dtype . 628
series__to_frame . 629
series__to_r_vector . 629
sql_context__execute . 633
sql_context__register . 635
sql_context__register_many . 635
sql_context__tables . 636
sql_context__unregister . 637

Index 638

as.data.frame.polars_data_frame 17

as.data.frame.polars_data_frame
Export the polars object as an R DataFrame

Description

This S3 method is a shortcut for as_polars_df(x, ...)$to_struct()$to_r_vector(struct
= "dataframe").

Usage

S3 method for class 'polars_data_frame'
as.data.frame(

x,
...,
uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")

)

S3 method for class 'polars_lazy_frame'
as.data.frame(

x,
...,
uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")

)

Arguments

x A polars object
... Passed to as_polars_df().
uint8 [Experimental] Determine how to convert Polars’ UInt8 type values to R

type. One of the followings:
• "integer" (default): Convert to the R’s integer type.

18 as.data.frame.polars_data_frame

• "raw": Convert to the R’s raw type. If the value is null, export as
00.

int64 [Experimental] Determine how to convert Polars’ Int64, UInt32, or UInt64
type values to R type. One of the followings:
• "double" (default): Convert to the R’s double type. Accuracy may

be degraded.
• "character": Convert to the R’s character type.
• "integer": Convert to the R’s integer type. If the value is out of the

range of R’s integer type, export as NA_integer_.
• "integer64": Convert to the bit64::integer64 class. The bit64 pack-

age must be installed. If the value is out of the range of bit64::integer64,
export as bit64::NA_integer64_.

date [Experimental] Determine how to convert Polars’ Date type values to R
class. One of the followings:
• "Date" (default): Convert to the R’s Date class.
• "IDate": Convert to the data.table::IDate class.

time [Experimental] Determine how to convert Polars’ Time type values to R
class. One of the followings:
• "hms" (default): Convert to the hms::hms class. If the hms package

is not installed, a warning will be shown.
• "ITime": Convert to the data.table::ITime class. The data.table

package must be installed.
decimal [Experimental] Determine how to convert Polars’ Decimal type values to

R type. One of the followings:
• "double" (default): Convert to the R’s double type.
• "character": Convert to the R’s character type.

as_clock_class
[Experimental] A logical value indicating whether to export datetimes
and duration as the clock package’s classes.
• FALSE (default): Duration values are exported as difftime and date-

time values are exported as POSIXct. Accuracy may be degraded.
• TRUE: Duration values are exported as clock_duration, datetime with-

out timezone values are exported as clock_naive_time, and datetime
with timezone values are exported as clock_zoned_time. For this
case, the clock package must be installed. Accuracy will be main-
tained.

ambiguous [Experimental] Determine how to deal with ambiguous datetimes. Only
applicable when as_clock_class is set to FALSE and datetime without
timezone values are exported as POSIXct. Character vector or expression
containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a NA value

as.list.polars_data_frame 19

non_existent [Experimental] Determine how to deal with non-existent datetimes. Only
applicable when as_clock_class is set to FALSE and datetime without
timezone values are exported as POSIXct. One of the followings:
• "raise" (default): Throw an error
• "null": Return a NA value

Value

An R data frame

Examples
df <- as_polars_df(list(a = 1:3, b = 4:6))

as.data.frame(df)
as.data.frame(df$lazy())

as.list.polars_data_frame
Export the polars object as an R list

Description

These S3 methods call as_polars_df(x, ...)$get_columns() with rlang::set_names(),
or, as_polars_df(x, ...)$to_struct()$to_r_vector() |> as.list() depending on the
as_series argument.

Usage

S3 method for class 'polars_data_frame'
as.list(

x,
...,
as_series = TRUE,
uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
struct = c("dataframe", "tibble"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")

)

S3 method for class 'polars_lazy_frame'
as.list(

20 as.list.polars_data_frame

x,
...,
as_series = TRUE,
uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
struct = c("dataframe", "tibble"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")

)

Arguments

x A polars object
... Passed to as_polars_df().
as_series Whether to convert each column to an R vector or a Series. If TRUE

(default), return a list of Series, otherwise a list of vectors.
uint8 [Experimental] Determine how to convert Polars’ UInt8 type values to R

type. One of the followings:
• "integer" (default): Convert to the R’s integer type.
• "raw": Convert to the R’s raw type. If the value is null, export as

00.
int64 [Experimental] Determine how to convert Polars’ Int64, UInt32, or UInt64

type values to R type. One of the followings:
• "double" (default): Convert to the R’s double type. Accuracy may

be degraded.
• "character": Convert to the R’s character type.
• "integer": Convert to the R’s integer type. If the value is out of the

range of R’s integer type, export as NA_integer_.
• "integer64": Convert to the bit64::integer64 class. The bit64 pack-

age must be installed. If the value is out of the range of bit64::integer64,
export as bit64::NA_integer64_.

date [Experimental] Determine how to convert Polars’ Date type values to R
class. One of the followings:
• "Date" (default): Convert to the R’s Date class.
• "IDate": Convert to the data.table::IDate class.

time [Experimental] Determine how to convert Polars’ Time type values to R
class. One of the followings:
• "hms" (default): Convert to the hms::hms class. If the hms package

is not installed, a warning will be shown.
• "ITime": Convert to the data.table::ITime class. The data.table

package must be installed.

as.list.polars_data_frame 21

struct [Experimental] Determine how to convert Polars’ Struct type values to R
class. One of the followings:
• "dataframe" (default): Convert to the R’s data.frame class.
• "tibble": Convert to the tibble class. If the tibble package is not

installed, a warning will be shown.
decimal [Experimental] Determine how to convert Polars’ Decimal type values to

R type. One of the followings:
• "double" (default): Convert to the R’s double type.
• "character": Convert to the R’s character type.

as_clock_class
[Experimental] A logical value indicating whether to export datetimes
and duration as the clock package’s classes.
• FALSE (default): Duration values are exported as difftime and date-

time values are exported as POSIXct. Accuracy may be degraded.
• TRUE: Duration values are exported as clock_duration, datetime with-

out timezone values are exported as clock_naive_time, and datetime
with timezone values are exported as clock_zoned_time. For this
case, the clock package must be installed. Accuracy will be main-
tained.

ambiguous [Experimental] Determine how to deal with ambiguous datetimes. Only
applicable when as_clock_class is set to FALSE and datetime without
timezone values are exported as POSIXct. Character vector or expression
containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a NA value

non_existent [Experimental] Determine how to deal with non-existent datetimes. Only
applicable when as_clock_class is set to FALSE and datetime without
timezone values are exported as POSIXct. One of the followings:
• "raise" (default): Throw an error
• "null": Return a NA value

Details

Arguments other than x and as_series are passed to <Series>$to_r_vector(), so they
are ignored when as_series=TRUE.

Value

A list

See Also

• <DataFrame>$get_columns()

22 as_nanoarrow_array_stream.polars_data_frame

Examples

df <- as_polars_df(list(a = 1:3, b = 4:6))

as.list(df, as_series = TRUE)
as.list(df, as_series = FALSE)

as.list(df$lazy(), as_series = TRUE)
as.list(df$lazy(), as_series = FALSE)

as_nanoarrow_array_stream.polars_data_frame
Create a nanoarrow_array_stream from a Polars object

Description

Create a nanoarrow_array_stream from a Polars object

Usage

S3 method for class 'polars_data_frame'
as_nanoarrow_array_stream(

x,
...,
schema = NULL,
polars_compat_level = c("newest", "oldest")

)

S3 method for class 'polars_lazy_frame'
as_nanoarrow_array_stream(

x,
...,
schema = NULL,
polars_compat_level = c("newest", "oldest"),
maintain_order = FALSE,
chunk_size = NULL

)

S3 method for class 'polars_series'
as_nanoarrow_array_stream(

x,
...,
schema = NULL,
polars_compat_level = c("newest", "oldest")

)

as_nanoarrow_array_stream.polars_data_frame 23

Arguments

x A polars object
... Ignored.
schema [Experimental] An optional nanoarrow schema object. If specified, in-

terpret the nanoarrow schema as a corresponding polars dtype and then
convert the original object using <Series>$cast(). Note that the schema
of the returned object cannot be fully controlled because Polars does not
support all Arrow types.
For LazyFrame, this argument is not yet supported.

polars_compat_level
[Experimental] Determines the compatibility level when exporting Polars’
internal data structures. When specifying a new compatibility level, Po-
lars exports its internal data structures that might not be interpretable
by other Arrow implementations. The level can be specified as the name
(e.g., "newest") or as a scalar integer (Currently, 0 and 1 are supported).
• "newest" [Experimental] (default): Use the highest level, currently

same as 1 (Low compatibility).
• "oldest": Same as 0 (High compatibility).

maintain_order
[Experimental] Maintain the order in which data is processed. Setting
this to FALSE will be slightly faster.

chunk_size [Experimental] A positive integer or NULL (default). The number of rows
each chunk collected from the lazy computation before being sent to the
Arrow C stream. If NULL, Polars tries to compute an optimal chunk size
automatically.

Value

A nanoarrow array stream

See Also

• as_polars_series(<nanoarrow_array_stream>): Import an array stream as a Series
via the Arrow C stream interface.

Examples

Zero-copy round trip via nanoarrow
as_polars_series(letters[1:3], name = "letters") |>

nanoarrow::as_nanoarrow_array_stream() |>
as_polars_series()

Specify the schema
as_polars_series(1:3, name = "numbers") |>

nanoarrow::as_nanoarrow_array_stream(schema = nanoarrow::na_uint8()) |>
as_polars_series()

24 as_polars_df

DataFrame support
pl$DataFrame(a = 1:3, b = letters[1:3]) |>

nanoarrow::as_nanoarrow_array_stream() |>
as_polars_df()

Compatibility level
as_polars_series(letters[1:3]) |>

nanoarrow::as_nanoarrow_array_stream(polars_compat_level = 1) |>
nanoarrow::infer_nanoarrow_schema() |>
format()

as_polars_series(letters[1:3]) |>
nanoarrow::as_nanoarrow_array_stream(polars_compat_level = "oldest") |>
nanoarrow::infer_nanoarrow_schema() |>
format()

as_polars_df Create a Polars DataFrame from an R object

Description

The as_polars_df() function creates a polars DataFrame from various R objects. Because
Polars DataFrame can be converted to a struct type Series and vice versa, objects that
are converted to a struct type type Series by as_polars_series() are supported by this
function.

Usage

as_polars_df(x, ...)

Default S3 method:
as_polars_df(x, ...)

S3 method for class 'polars_series'
as_polars_df(x, ..., column_name = NULL, from_struct = TRUE)

S3 method for class 'polars_data_frame'
as_polars_df(x, ...)

S3 method for class 'polars_group_by'
as_polars_df(x, ...)

S3 method for class 'polars_lazy_frame'
as_polars_df(

x,
...,
engine = c("auto", "in-memory", "streaming"),

as_polars_df 25

optimizations = pl$QueryOptFlags(),
type_coercion = deprecated(),
predicate_pushdown = deprecated(),
projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),
comm_subplan_elim = deprecated(),
comm_subexpr_elim = deprecated(),
cluster_with_columns = deprecated(),
no_optimization = deprecated()

)

S3 method for class 'list'
as_polars_df(x, ...)

S3 method for class 'data.frame'
as_polars_df(x, ...)

S3 method for class '`NULL`'
as_polars_df(x, ...)

Arguments

x An R object.
... Additional arguments passed to the methods.
column_name A character or NULL. If not NULL, name/rename the Series column in the

new DataFrame. If NULL, the column name is taken from the Series name.
from_struct A logical. If TRUE (default) and the Series data type is a struct, the

<Series>$struct$unnest() method is used to create a DataFrame from
the struct Series. In this case, the column_name argument is ignored.

engine The engine name to use for processing the query. One of the followings:
• "auto" (default): Select the engine automatically. The "in-memory"

engine will be selected for most cases.
• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

predicate_pushdown
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

26 as_polars_df

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

comm_subplan_elim
[Deprecated] Use the comm_subplan_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

comm_subexpr_elim
[Deprecated] Use the comm_subexpr_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

cluster_with_columns
[Deprecated] Use the cluster_with_columns property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

no_optimization
[Deprecated] Use the optimizations argument with pl$QueryOptFlags()$no_optimizations()
instead.

Details

Default S3 method:
Basically, this method is a shortcut for as_polars_series(x, ...)$struct$unnest().
Before converting the object to a Series, the infer_polars_dtype() function is used to
check if the object can be converted to a struct dtype.

S3 method for list:
• The argument ... (except name) is passed to as_polars_series() for each element

of the list.
• All elements of the list must be converted to Series by as_polars_series().
• All of the Series must be converted to the same length, except for the case of length

1, which will be recycled to match the length of the other Series if they have a length
other than 1.

• The name of the each element is used as the column name of the DataFrame. For
unnamed elements, the column name will be an empty string "" or if the element is
a Series, the column name will be the name of the Series.

S3 method for data.frame:
• The argument ... (except name) is passed to as_polars_series() for each column.
• All columns must be converted to the same length of Series by as_polars_series().

S3 method for polars_series:
This is a shortcut for <Series>$to_frame() or <Series>$struct$unnest(), depending
on the from_struct argument and the Series data type. The column_name argument is
passed to the name argument of the $to_frame() method.

S3 method for polars_lazy_frame:
This is a shortcut for <LazyFrame>$collect().

as_polars_expr 27

Value

A polars DataFrame

See Also

• as.list(<polars_data_frame>): Export the DataFrame as an R list.
• as.data.frame(<polars_data_frame>): Export the DataFrame as an R data frame.

Examples
list
as_polars_df(list(a = 1:2, b = c("foo", "bar")))

data.frame
as_polars_df(data.frame(a = 1:2, b = c("foo", "bar")))

polars_series
s_int <- as_polars_series(1:2, "a")
s_struct <- as_polars_series(

data.frame(a = 1:2, b = c("foo", "bar")),
"struct"

)

Use the Series as a column
as_polars_df(s_int)
as_polars_df(s_struct, column_name = "values", from_struct = FALSE)

Unnest the struct data
as_polars_df(s_struct)

as_polars_expr Create a Polars expression from an R object

Description

The as_polars_expr() function creates a polars expression from various R objects. This
function is used internally by various polars functions that accept expressions. In most cases,
users should use pl$lit() instead of this function, which is a shorthand for as_polars_expr(x,
as_lit = TRUE). (In other words, this function can be considered as an internal implemen-
tation to realize the lit function of the Polars API in other languages.)

Usage

as_polars_expr(x, ...)

Default S3 method:
as_polars_expr(x, ..., keep_series = FALSE)

28 as_polars_expr

S3 method for class 'polars_expr'
as_polars_expr(x, ..., structify = deprecated())

S3 method for class 'character'
as_polars_expr(x, ..., as_lit = FALSE)

S3 method for class 'raw'
as_polars_expr(x, ..., raw_as_binary = TRUE)

S3 method for class '`NULL`'
as_polars_expr(x, ...)

Arguments

x An R object.
... Additional arguments passed to the methods.
keep_series A logical value indicating whether to treat the object as a Series or scalar

value. If TRUE, the output is ensured to be a Series literal even if the
length of the object is 1.

structify [Deprecated] A logical. If TRUE, convert multi-column expressions to a
single struct expression by calling pl$struct(). Otherwise (default),
done nothing. Deprecated since polars 1.1.0.

as_lit A logical value indicating whether to treat vector as literal values or
not. This argument is always set to TRUE when calling this function from
pl$lit(), and expects to return literal values. See examples for details.

raw_as_binary A logical value indicating whether to convert raw vector to a Binary type
scalar. If TRUE (default), the output is a Binary type scalar instead of
UInt8 type literal.

Details

Because R objects are typically mapped to Series, this function often calls as_polars_series()
internally. However, unlike R, Polars has scalars of length 1, so if an R object is converted
to a Series of length 1, this function get the first value of the Series and convert it to a
scalar literal. If you want to implement your own conversion from an R class to a Polars
object, define an S3 method for as_polars_series() instead of this function.

Default S3 method:
Create a Series by calling as_polars_series() and then convert that Series to an Expr.
If the length of the Series is 1, it will be converted to a scalar value.
Additional arguments ... are passed to as_polars_series().

S3 method for character:
If the as_lit argument is FALSE (default), this function will call pl$col() and the char-
acter vector is treated as column names. Otherwise, the default method is called.

S3 method for raw:
If the raw_as_binary argument is TRUE (default), the raw vector is converted to a Binary
type scalar. Otherwise, the default method is called.

as_polars_expr 29

S3 method for NULL:
NULL is converted to a Null type null literal.

Value

A polars expression

See Also

• as_polars_series(): R -> Polars type mapping is mostly defined by this function.

Examples
character
as_lit = FALSE (default)
as_polars_expr("a") # Same as `pl$col("a")`
as_polars_expr(c("a", "b")) # Same as `pl$col("a", "b")`

as_lit = TRUE
as_polars_expr(character(0), as_lit = TRUE)
as_polars_expr("a", as_lit = TRUE)
as_polars_expr(NA_character_, as_lit = TRUE)
as_polars_expr(c("a", "b"), as_lit = TRUE)

raw
as_polars_expr(as.raw(1))
as_polars_expr(as.raw(1), raw_as_binary = FALSE)
as_polars_expr(charToRaw("foo"))
as_polars_expr(charToRaw("foo"), raw_as_binary = FALSE)

NULL
as_polars_expr(NULL)

default method (for integer)
as_polars_expr(integer(0))
as_polars_expr(1L)
as_polars_expr(NA_integer_)
as_polars_expr(c(1L, 2L))

default method (for double)
as_polars_expr(double(0))
as_polars_expr(1)
as_polars_expr(NA_real_)
as_polars_expr(c(1, 2))

default method (for list)
as_polars_expr(list())
as_polars_expr(list(1))
as_polars_expr(list(1, 2))

default method (for Date)
as_polars_expr(as.Date(integer(0)))
as_polars_expr(as.Date("2021-01-01"))

30 as_polars_lf

as_polars_expr(as.Date(c("2021-01-01", "2021-01-02")))

default method (for Series)
as_polars_series(1) |>

as_polars_expr()

polars_expr
as_polars_expr(pl$col("a", "b"))

as_polars_lf Create a Polars LazyFrame from an R object

Description

The as_polars_lf() function creates a LazyFrame from various R objects. It is basically
a shortcut for as_polars_df(x, ...) with the $lazy()method.

Usage

as_polars_lf(x, ...)

Default S3 method:
as_polars_lf(x, ...)

S3 method for class 'polars_lazy_frame'
as_polars_lf(x, ...)

Arguments

x An R object.

... Additional arguments passed to the methods.

Details

Default S3 method:
Create a DataFrame by calling as_polars_df() and then create a LazyFrame from the
DataFrame. Additional arguments ... are passed to as_polars_df().

Value

A polars LazyFrame

as_polars_series 31

as_polars_series Create a Polars Series from an R object

Description

The as_polars_series() function creates a polars Series from various R objects. The
Data Type of the Series is determined by the class of the input object.

Usage

as_polars_series(x, name = NULL, ...)

Default S3 method:
as_polars_series(x, name = NULL, ...)

S3 method for class 'polars_series'
as_polars_series(x, name = NULL, ...)

S3 method for class 'polars_data_frame'
as_polars_series(x, name = NULL, ...)

S3 method for class 'polars_lazy_frame'
as_polars_series(x, name = NULL, ...)

S3 method for class 'double'
as_polars_series(x, name = NULL, ...)

S3 method for class 'integer'
as_polars_series(x, name = NULL, ...)

S3 method for class 'character'
as_polars_series(x, name = NULL, ...)

S3 method for class 'logical'
as_polars_series(x, name = NULL, ...)

S3 method for class 'raw'
as_polars_series(x, name = NULL, ...)

S3 method for class 'factor'
as_polars_series(x, name = NULL, ...)

S3 method for class 'Date'
as_polars_series(x, name = NULL, ...)

S3 method for class 'POSIXct'
as_polars_series(x, name = NULL, ...)

32 as_polars_series

S3 method for class 'POSIXlt'
as_polars_series(x, name = NULL, ...)

S3 method for class 'difftime'
as_polars_series(x, name = NULL, ...)

S3 method for class 'numeric_version'
as_polars_series(x, name = NULL, ...)

S3 method for class 'hms'
as_polars_series(x, name = NULL, ...)

S3 method for class 'blob'
as_polars_series(x, name = NULL, ...)

S3 method for class 'array'
as_polars_series(x, name = NULL, ...)

S3 method for class '`NULL`'
as_polars_series(x, name = NULL, ...)

S3 method for class 'list'
as_polars_series(x, name = NULL, ..., strict = FALSE)

S3 method for class 'AsIs'
as_polars_series(x, name = NULL, ...)

S3 method for class 'data.frame'
as_polars_series(x, name = NULL, ...)

S3 method for class 'nanoarrow_array_stream'
as_polars_series(x, name = NULL, ...)

S3 method for class 'nanoarrow_array'
as_polars_series(x, name = NULL, ...)

S3 method for class 'RecordBatchReader'
as_polars_series(x, name = NULL, ...)

S3 method for class 'ArrowTabular'
as_polars_series(x, name = NULL, ...)

S3 method for class 'integer64'
as_polars_series(x, name = NULL, ...)

S3 method for class 'ITime'
as_polars_series(x, name = NULL, ...)

as_polars_series 33

S3 method for class 'vctrs_unspecified'
as_polars_series(x, name = NULL, ...)

S3 method for class 'vctrs_rcrd'
as_polars_series(x, name = NULL, ...)

S3 method for class 'clock_time_point'
as_polars_series(x, name = NULL, ...)

S3 method for class 'clock_sys_time'
as_polars_series(x, name = NULL, ...)

S3 method for class 'clock_zoned_time'
as_polars_series(x, name = NULL, ...)

S3 method for class 'clock_duration'
as_polars_series(x, name = NULL, ...)

Arguments

x An R object.
name A single string or NULL. Name of the Series. Will be used as a column

name when used in a polars DataFrame. When not specified, name is set
to an empty string.

... Additional arguments passed to the methods.
strict A logical value to indicate whether throwing an error when the input

list’s elements have different data types. If FALSE (default), all elements
are automatically cast to the super type, or, casting to the super type is
failed, the value will be null. If TRUE, the first non-NULL element’s data
type is used as the data type of the inner Series.

Details

The default method of as_polars_series() throws an error, so we need to define S3
methods for the classes we want to support.

S3 method for list and list based classes:
In R, a list can contain elements of different types, but in Polars (Apache Arrow), all
elements must have the same type. So the as_polars_series() function automatically
casts all elements to the same type or throws an error, depending on the strict argument.
We can check the data type of the Series that will be created from the list by using the
infer_polars_dtype() function in advance. If you want to create a list with all elements
of the same type in R, consider using the vctrs::list_of() function.
Since a list can contain another list, the strict argument is also used when creating Series
from the inner list in the case of classes constructed on top of a list, such as data.frame
or vctrs_rcrd.

34 as_polars_series

S3 method for Date:
Sub-day values will be ignored (floored to the day).

S3 method for POSIXct:
Sub-millisecond values will be ignored (floored to the millisecond).
If the tzone attribute is not present or an empty string (""), the Series’ dtype will be
Datetime without timezone.

S3 method for POSIXlt:
Sub-nanosecond values will be ignored (floored to the nanosecond).

S3 method for difftime:
Sub-millisecond values will be rounded to milliseconds.

S3 method for hms:
Sub-nanosecond values will be ignored (floored to the nanosecond).
If the hms vector contains values greater-equal to 24-oclock or less than 0-oclock, an error
will be thrown.

S3 method for clock_duration:
Calendrical durations (years, quarters, months) are treated as chronologically with the
internal representation of seconds. Please check the clock_duration documentation for
more details.

S3 methods for polars_data_frame, polars_lazy_frame,:
and data.frame
These methods are shortcuts for as_polars_df(x, ...)$to_struct(). See as_polars_df()
and <DataFrame>$to_struct() for more details.

Value

A polars Series

See Also

• <Series>$to_r_vector(): Export the Series as an R vector.
• as_polars_df(): Create a Polars DataFrame from an R object.
• infer_polars_dtype(): Infer the Polars DataType corresponding to an R object.

Examples
double
as_polars_series(c(NA, 1, 2))

integer
as_polars_series(c(NA, 1:2))

character
as_polars_series(c(NA, "foo", "bar"))

as_polars_series 35

logical
as_polars_series(c(NA, TRUE, FALSE))

raw
as_polars_series(as.raw(c(0, 16, 255)))

factor
as_polars_series(factor(c(NA, "a", "b")))

Date
as_polars_series(as.Date(c(NA, "2021-01-01")))

Sub-day precision will be ignored
as.Date(c(-0.5, 0, 0.5)) |>

as_polars_series()

POSIXct with timezone
as_polars_series(as.POSIXct(c(NA, "2021-01-01 00:00:00.123456789"), "UTC"))

POSIXct without timezone
as_polars_series(as.POSIXct(c(NA, "2021-01-01 00:00:00.123456789")))

POSIXlt
as_polars_series(as.POSIXlt(c(NA, "2021-01-01 00:00:00.123456789"), "UTC"))

difftime
as_polars_series(as.difftime(c(NA, 1), units = "days"))

Sub-millisecond values will be rounded to milliseconds
as.difftime(c(0.0005, 0.0010, 0.0015, 0.0020), units = "secs") |>

as_polars_series()

as.difftime(c(0.0005, 0.0010, 0.0015, 0.0020), units = "weeks") |>
as_polars_series()

numeric_version
as_polars_series(getRversion())

NULL
as_polars_series(NULL)

list
as_polars_series(list(NA, NULL, list(), 1, "foo", TRUE))

1st element will be `null` due to the casting failure
as_polars_series(list(list("bar"), "foo"))

data.frame
as_polars_series(

data.frame(x = 1:2, y = c("foo", "bar"), z = I(list(1, 2)))
)

36 as_tibble.polars_data_frame

vctrs_unspecified
if (requireNamespace("vctrs", quietly = TRUE)) {

as_polars_series(vctrs::unspecified(3L))
}

hms
if (requireNamespace("hms", quietly = TRUE)) {

as_polars_series(hms::as_hms(c(NA, "01:00:00")))
}

blob
if (requireNamespace("blob", quietly = TRUE)) {

as_polars_series(blob::as_blob(c(NA, "foo", "bar")))
}

integer64
if (requireNamespace("bit64", quietly = TRUE)) {

as_polars_series(bit64::as.integer64(c(NA, "9223372036854775807")))
}

clock_naive_time
if (requireNamespace("clock", quietly = TRUE)) {

as_polars_series(clock::naive_time_parse(c(
NA,
"1900-01-01T12:34:56.123456789",
"2020-01-01T12:34:56.123456789"

), precision = "nanosecond"))
}

clock_duration
if (requireNamespace("clock", quietly = TRUE)) {

as_polars_series(clock::duration_nanoseconds(c(NA, 1)))
}

Calendrical durations are treated as chronologically
if (requireNamespace("clock", quietly = TRUE)) {

as_polars_series(clock::duration_years(c(NA, 1)))
}

as_tibble.polars_data_frame
Export the polars object as a tibble data frame

Description

This S3 method is basically a shortcut of as_polars_df(x, ...)$to_struct()$to_r_vector(struct
= "tibble"). Additionally, you can check or repair the column names by specifying the
.name_repair argument. Because polars DataFrame allows empty column name, which is
not generally valid column name in R data frame.

as_tibble.polars_data_frame 37

Usage

S3 method for class 'polars_data_frame'
as_tibble(

x,
...,
.name_repair = c("check_unique", "unique", "universal", "minimal", "unique_quiet",
"universal_quiet"),

uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")

)

S3 method for class 'polars_lazy_frame'
as_tibble(

x,
...,
.name_repair = c("check_unique", "unique", "universal", "minimal", "unique_quiet",
"universal_quiet"),

uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")

)

Arguments

x A polars object
... Passed to as_polars_df().
.name_repair Treatment of problematic column names:

• "minimal": No name repair or checks, beyond basic existence,
• "unique": Make sure names are unique and not empty,
• "check_unique": (default value), no name repair, but check they are

unique,
• "universal": Make the names unique and syntactic
• "unique_quiet": Same as "unique", but ”quiet”
• "universal_quiet": Same as "universal", but ”quiet”
• a function: apply custom name repair (e.g., .name_repair = make.names

for names in the style of base R).

38 as_tibble.polars_data_frame

• A purrr-style anonymous function, see rlang::as_function()
This argument is passed on as repair to vctrs::vec_as_names(). See
there for more details on these terms and the strategies used to enforce
them.

uint8 [Experimental] Determine how to convert Polars’ UInt8 type values to R
type. One of the followings:
• "integer" (default): Convert to the R’s integer type.
• "raw": Convert to the R’s raw type. If the value is null, export as

00.
int64 [Experimental] Determine how to convert Polars’ Int64, UInt32, or UInt64

type values to R type. One of the followings:
• "double" (default): Convert to the R’s double type. Accuracy may

be degraded.
• "character": Convert to the R’s character type.
• "integer": Convert to the R’s integer type. If the value is out of the

range of R’s integer type, export as NA_integer_.
• "integer64": Convert to the bit64::integer64 class. The bit64 pack-

age must be installed. If the value is out of the range of bit64::integer64,
export as bit64::NA_integer64_.

date [Experimental] Determine how to convert Polars’ Date type values to R
class. One of the followings:
• "Date" (default): Convert to the R’s Date class.
• "IDate": Convert to the data.table::IDate class.

time [Experimental] Determine how to convert Polars’ Time type values to R
class. One of the followings:
• "hms" (default): Convert to the hms::hms class. If the hms package

is not installed, a warning will be shown.
• "ITime": Convert to the data.table::ITime class. The data.table

package must be installed.
decimal [Experimental] Determine how to convert Polars’ Decimal type values to

R type. One of the followings:
• "double" (default): Convert to the R’s double type.
• "character": Convert to the R’s character type.

as_clock_class
[Experimental] A logical value indicating whether to export datetimes
and duration as the clock package’s classes.
• FALSE (default): Duration values are exported as difftime and date-

time values are exported as POSIXct. Accuracy may be degraded.
• TRUE: Duration values are exported as clock_duration, datetime with-

out timezone values are exported as clock_naive_time, and datetime
with timezone values are exported as clock_zoned_time. For this
case, the clock package must be installed. Accuracy will be main-
tained.

check_polars 39

ambiguous [Experimental] Determine how to deal with ambiguous datetimes. Only
applicable when as_clock_class is set to FALSE and datetime without
timezone values are exported as POSIXct. Character vector or expression
containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a NA value

non_existent [Experimental] Determine how to deal with non-existent datetimes. Only
applicable when as_clock_class is set to FALSE and datetime without
timezone values are exported as POSIXct. One of the followings:
• "raise" (default): Throw an error
• "null": Return a NA value

Value

A tibble

See Also

• as.data.frame(<polars_object>): Export the polars object as a basic data frame.

Examples

Polars DataFrame may have empty column name
df <- pl$DataFrame(x = 1:2, c("a", "b"))
df

Without checking or repairing the column names
tibble::as_tibble(df, .name_repair = "minimal")
tibble::as_tibble(df$lazy(), .name_repair = "minimal")

You can make that unique
tibble::as_tibble(df, .name_repair = "unique")
tibble::as_tibble(df$lazy(), .name_repair = "unique")

check_polars Check if the object is a polars object

Description

Functions to check if the object is a polars object. is_* functions return TRUE of FALSE
depending on the class of the object. check_* functions throw an informative error if the
object is not the correct class. Suffixes are corresponding to the polars object classes:

• *_df: For polars data frames.

40 check_polars

• *_dtype: For polars data types.
• *_dtype_expr: [Experimental] For polars data type expressions.
• *_expr: For polars expressions.
• *_lf: For polars lazy frames.
• *_partitioning_scheme: For polars partitioning schemes.
• *_selector: For polars selectors.
• *_series: For polars series.

Usage

is_polars_df(x)

is_polars_dtype(x)

is_polars_dtype_expr(x, ...)

is_polars_expr(x, ...)

is_polars_lf(x)

is_polars_selector(x, ...)

is_polars_series(x)

is_polars_partitioning_scheme(x)

is_list_of_polars_dtype(x, n = NULL)

is_list_of_polars_expr(x, n = NULL)

is_list_of_polars_lf(x, n = NULL)

check_polars_df(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

check_polars_dtype(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

check_polars 41

check_polars_dtype_expr(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

check_polars_expr(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

check_polars_lf(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

check_polars_selector(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

check_polars_series(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

check_polars_partitioning_scheme(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

42 check_polars

check_list_of_polars_dtype(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

check_list_of_polars_lf(
x,
...,
allow_null = FALSE,
arg = caller_arg(x),
call = caller_env()

)

Arguments

x An object to check.
... Arguments passed to rlang::abort().
n Expected length of a vector.
allow_null If TRUE, NULL is allowed as a valid input.
arg An argument name as a string. This argument will be mentioned in error

messages as the input that is at the origin of a problem.
call The execution environment of a currently running function, e.g. caller_env().

The function will be mentioned in error messages as the source of the er-
ror. See the call argument of abort() for more information.

Details
check_polars_* functions are derived from the standalone-types-check functions from
the rlang package (Can be installed with usethis::use_standalone("r-lib/rlang",
file = "types-check")).

Value
• is_polars_* functions return TRUE or FALSE.
• check_polars_* functions return NULL invisibly if the input is valid.

See Also

• infer_polars_dtype(): Check if the object can be converted to a Series.

Examples
is_polars_df(as_polars_df(mtcars))
is_polars_df(mtcars)

Use `check_polars_*` functions in a function

cs 43

to ensure the input is a polars object
sample_func <- function(x) {

check_polars_df(x)
TRUE

}

sample_func(as_polars_df(mtcars))
try(sample_func(mtcars))

cs Polars column selector function namespace

Description

cs is an environment class object that stores all selector functions of the R Polars API
which mimics the Python Polars API. It is intended to work the same way in Python as if
you had imported Python Polars Selectors with import polars.selectors as cs.

Usage

cs

selector__as_expr()

Format

An object of class polars_object of length 35.

Supported operators

There are 4 supported operators for selectors:

• & to combine conditions with AND, e.g. select columns that contain "oo" and end
with "t" with cs$contains("oo") & cs$ends_with("t");

• | to combine conditions with OR, e.g. select columns that contain "oo" or end with
"t" with cs$contains("oo") | cs$ends_with("t");

• - to substract conditions, e.g. select all columns that have alphanumeric names except
those that contain "a" with cs$alphanumeric() - cs$contains("a");

• ! to invert the selection, e.g. select all columns that are not of data type String with
!cs$string().

Note that Python Polars uses ~ instead of ! to invert selectors.
If we want to apply operators on the data instead of the selector sets, <selector>$as_expr()
can be used to materialize the selector as a normal expression.

44 cs__all

Examples

cs

df <- pl$DataFrame(
colx = c("aa", "bb", "cc"),
coly = c(TRUE, FALSE, TRUE),
colz = c(1, 2, 3),

)

Inverting the boolean selector will choose the non-boolean columns:
df$select(!cs$boolean())

To invert the values in the selected boolean columns,
we need to materialize the selector as a standard expression instead:
df$select(!cs$boolean()$as_expr())

cs__all Select all columns

Description

Select all columns

Usage

cs__all()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(dt = as.Date(c("2000-1-1")), value = 10)

Select all columns, casting them to string:
df$select(cs$all()$cast(pl$String))

Select all columns except for those matching the given dtypes:
df$select(cs$all() - cs$numeric())

cs__alpha 45

cs__alpha Select all columns with alphabetic names (e.g. only letters)

Description

Select all columns with alphabetic names (e.g. only letters)

Usage

cs__alpha(ascii_only = FALSE, ..., ignore_spaces = FALSE)

Arguments

ascii_only Indicate whether to consider only ASCII alphabetic characters, or the full
Unicode range of valid letters (accented, idiographic, etc).

... These dots are for future extensions and must be empty.
ignore_spaces Indicate whether to ignore the presence of spaces in column names; if so,

only the other (non-space) characters are considered.

Details

Matching column names cannot contain any non-alphabetic characters. Note that the def-
inition of “alphabetic” consists of all valid Unicode alphabetic characters (p{Alphabetic})
by default; this can be changed by setting ascii_only = TRUE.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

no1 = c(100, 200, 300),
café = c("espresso", "latte", "mocha"),
`t or f` = c(TRUE, FALSE, NA),
hmm = c("aaa", "bbb", "ccc"),
�� = c("��", "��", "��")

)

Select columns with alphabetic names; note that accented characters and
kanji are recognised as alphabetic here:
df$select(cs$alpha())

Constrain the definition of “alphabetic” to ASCII characters only:
df$select(cs$alpha(ascii_only = TRUE))

46 cs__alphanumeric

df$select(cs$alpha(ascii_only = TRUE, ignore_spaces = TRUE))

Select all columns except for those with alphabetic names:
df$select(!cs$alpha())
df$select(!cs$alpha(ignore_spaces = TRUE))

cs__alphanumeric Select all columns with alphanumeric names (e.g. only letters
and the digits 0-9)

Description

Select all columns with alphanumeric names (e.g. only letters and the digits 0-9)

Usage

cs__alphanumeric(ascii_only = FALSE, ..., ignore_spaces = FALSE)

Arguments

ascii_only Indicate whether to consider only ASCII alphabetic characters, or the full
Unicode range of valid letters (accented, idiographic, etc).

... These dots are for future extensions and must be empty.
ignore_spaces Indicate whether to ignore the presence of spaces in column names; if so,

only the other (non-space) characters are considered.

Details

Matching column names cannot contain any non-alphabetic characters. Note that the def-
inition of “alphabetic” consists of all valid Unicode alphabetic characters (p{Alphabetic})
and digit characters (d) by default; this can be changed by setting ascii_only = TRUE.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

`1st_col` = c(100, 200, 300),
flagged = c(TRUE, FALSE, TRUE),
`00prefix` = c("01:aa", "02:bb", "03:cc"),
`last col` = c("x", "y", "z")

)

cs__array 47

Select columns with alphanumeric names:
df$select(cs$alphanumeric())
df$select(cs$alphanumeric(ignore_spaces = TRUE))

Select all columns except for those with alphanumeric names:
df$select(!cs$alphanumeric())
df$select(!cs$alphanumeric(ignore_spaces = TRUE))

cs__array Select all array columns

Description

[Experimental]

Usage

cs__array(inner = NULL, ..., width = NULL)

Arguments

inner An optional inner selector to select columns having specific inner data
types. If NULL, all inner types are selected.

... These dots are for future extensions and must be empty.
width An optional integer specifying the width of the array columns to select.

If NULL, all widths are selected.

Value

A Polars selector

See Also

• cs for the documentation on operators supported by selectors.
• cs$by_dtype(): Select all columns matching the given dtype(s).
• cs$list(): Select all list columns.
• cs$nested(): Select all nested columns.

Examples
df <- pl$DataFrame(

foo = list(c("xx", "yy"), c("x", "y")),
bar = list(123, 456),
baz = c(2.0, 5.5),
.schema_overrides = list(
foo = pl$Array(pl$String, 2),
bar = pl$Array(pl$Int64, 1)

)

48 cs__binary

)

Select all array columns:
df$select(cs$array())

Select all columns except for those that are array:
df$select(!cs$array())

If you want to select specific array columns,
you can specify the inner data type and/or width:
df$select(cs$array(cs$string()))
df$select(cs$array(width = 1))
df$select(cs$array(cs$string() | cs$numeric(), width = 2))

cs__binary Select all binary columns

Description

Select all binary columns

Usage

cs__binary()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$select(
a = charToRaw("hello"),
b = pl$lit("world"),
c = charToRaw("!"),
d = pl$lit(":"),

)

Select binary columns:
df$select(cs$binary())

Select all columns except for those that are binary:
df$select(!cs$binary())

cs__boolean 49

cs__boolean Select all boolean columns

Description

Select all boolean columns

Usage

cs__boolean()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

a = 1:4,
b = c(FALSE, TRUE, FALSE, TRUE)

)

Select and invert boolean columns:
df$with_columns(inverted = cs$boolean()$not())

Select all columns except for those that are boolean:
df$select(!cs$boolean())

cs__by_dtype Select all columns matching the given dtypes

Description

Select all columns matching the given dtypes

Usage

cs__by_dtype(...)

Arguments

... <dynamic-dots> Data types to select.

50 cs__by_index

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

dt = as.Date(c("1999-12-31", "2024-1-1", "2010-7-5")),
value = c(1234500, 5000555, -4500000),
other = c("foo", "bar", "foo")

)

Select all columns with date or string dtypes:
df$select(cs$by_dtype(pl$Date, pl$String))

Select all columns that are not of date or string dtype:
df$select(!cs$by_dtype(pl$Date, pl$String))

Group by string columns and sum the numeric columns:
df$group_by(cs$string())$agg(cs$numeric()$sum())$sort("other")

cs__by_index Select all columns matching the given indices (or range objects)

Description

Select all columns matching the given indices (or range objects)

Usage

cs__by_index(indices, ..., require_all = TRUE)

Arguments

indices 0-based column indices to select. Negative indexing is supported.
... These dots are for future extensions and must be empty.
require_all Whether to match all indices (the default) or any of the indices.

Details

Matching columns are returned in the order in which their indexes appear in the selector,
not the underlying schema order.

Value

A Polars selector

cs__by_name 51

See Also

cs for the documentation on operators supported by selectors.

Examples
vals <- as.list(0.5 * 0:100)
names(vals) <- paste0("c", 0:100)
df <- pl$DataFrame(!!!vals)
df

Select columns by index (the two first/last columns):
df$select(cs$by_index(c(0, 1, -2, -1)))

Use seq()
df$select(cs$by_index(c(0, seq(1, 101, 20)), require_all = FALSE))
df$select(cs$by_index(c(0, seq(101, 0, -25)), require_all = FALSE))

Select only odd-indexed columns:
df$select(!cs$by_index(seq(0, 100, 2)))

cs__by_name Select all columns matching the given names

Description

Select all columns matching the given names

Usage

cs__by_name(..., require_all = TRUE)

Arguments

... <dynamic-dots> Column names to select.
require_all Whether to match all names (the default) or any of the names.

Details

Matching columns are returned in the order in which their indexes appear in the selector,
not the underlying schema order.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

52 cs__categorical

Examples
df <- pl$DataFrame(

foo = c("x", "y"),
bar = c(123, 456),
baz = c(2.0, 5.5),
zap = c(FALSE, TRUE)

)

Select columns by name:
df$select(cs$by_name("foo", "bar"))

Match any of the given columns by name:
df$select(cs$by_name("baz", "moose", "foo", "bear", require_all = FALSE))

Match all columns except for those given:
df$select(!cs$by_name("foo", "bar"))

cs__categorical Select all categorical columns

Description

Select all categorical columns

Usage

cs__categorical()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

foo = c("xx", "yy"),
bar = c(123, 456),
baz = c(2.0, 5.5),
.schema_overrides = list(foo = pl$Categorical()),

)

Select categorical columns:
df$select(cs$categorical())

Select all columns except for those that are categorical:
df$select(!cs$categorical())

cs__contains 53

cs__contains Select columns whose names contain the given literal substring(s)

Description

Select columns whose names contain the given literal substring(s)

Usage

cs__contains(...)

Arguments

... <dynamic-dots> Substring(s) that matching column names should con-
tain.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
foo = c("x", "y"),
bar = c(123, 456),
baz = c(2.0, 5.5),
zap = c(FALSE, TRUE)

)

Select columns that contain the substring "ba":
df$select(cs$contains("ba"))

Select columns that contain the substring "ba" or the letter "z":
df$select(cs$contains("ba", "z"))

Select all columns except for those that contain the substring "ba":
df$select(!cs$contains("ba"))

54 cs__datetime

cs__date Select all date columns

Description

Select all date columns

Usage

cs__date()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
dtm = as.POSIXct(c("2001-5-7 10:25", "2031-12-31 00:30")),
dt = as.Date(c("1999-12-31", "2024-8-9"))

)

Select date columns:
df$select(cs$date())

Select all columns except for those that are dates:
df$select(!cs$date())

cs__datetime Select all datetime columns

Description

Select all datetime columns

Usage

cs__datetime(time_unit = c("ms", "us", "ns"), time_zone = list("*", NULL))

cs__datetime 55

Arguments

time_unit One (or more) of the allowed time unit precision strings, "ms", "us", and
"ns". Default is to select columns with any valid timeunit.

time_zone One of the followings. The value or each element of the vector will be
passed to the time_zone argument of the pl$Datetime() function:
• A character vector of one or more timezone strings, as defined in

OlsonNames().
• NULL to select Datetime columns that do not have a timezone.
• "*" to select Datetime columns that have any timezone.
• A list of single timezone strings , "*", and NULL to select Datetime

columns that do not have a timezone or have the (specific) timezone.
For example, the default value list("*", NULL) selects all Datetime
columns.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
chr_vec <- c("1999-07-21 05:20:16.987654", "2000-05-16 06:21:21.123456")
df <- pl$DataFrame(

tstamp_tokyo = as.POSIXlt(chr_vec, tz = "Asia/Tokyo"),
tstamp_utc = as.POSIXct(chr_vec, tz = "UTC"),
tstamp = as.POSIXct(chr_vec),
dt = as.Date(chr_vec),

)

Select all datetime columns:
df$select(cs$datetime())

Select all datetime columns that have "ms" precision:
df$select(cs$datetime("ms"))

Select all datetime columns that have any timezone:
df$select(cs$datetime(time_zone = "*"))

Select all datetime columns that have a specific timezone:
df$select(cs$datetime(time_zone = "UTC"))

Select all datetime columns that have NO timezone:
df$select(cs$datetime(time_zone = NULL))

Select all columns except for datetime columns:
df$select(!cs$datetime())

56 cs__digit

cs__decimal Select all decimal columns

Description

Select all decimal columns

Usage

cs__decimal()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

foo = c("x", "y"),
bar = c(123, 456),
baz = c("2.0005", "-50.5555"),
.schema_overrides = list(
bar = pl$Decimal(),
baz = pl$Decimal(scale = 5, precision = 10)

)
)

Select decimal columns:
df$select(cs$decimal())

Select all columns except for those that are decimal:
df$select(!cs$decimal())

cs__digit Select all columns having names consisting only of digits

Description

Select all columns having names consisting only of digits

Usage

cs__digit(ascii_only = FALSE)

cs__duration 57

Arguments

ascii_only Indicate whether to consider only ASCII alphabetic characters, or the full
Unicode range of valid letters (accented, idiographic, etc).

Details

Matching column names cannot contain any non-digit characters. Note that the definition
of ”digit” consists of all valid Unicode digit characters (d) by default; this can be changed
by setting ascii_only = TRUE.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
key = c("aaa", "bbb"),
`2001` = 1:2,
`2025` = 3:4

)

Select columns with digit names:
df$select(cs$digit())

Select all columns except for those with digit names:
df$select(!cs$digit())

Demonstrate use of ascii_only flag (by default all valid unicode digits
are considered, but this can be constrained to ascii 0-9):
df <- pl$DataFrame(`����` = 1999, `����` = 2077, `3000` = 3000)
df$select(cs$digit())
df$select(cs$digit(ascii_only = TRUE))

cs__duration Select all duration columns, optionally filtering by time unit

Description

Select all duration columns, optionally filtering by time unit

Usage

cs__duration(time_unit = c("ms", "us", "ns"))

58 cs__empty

Arguments

time_unit One (or more) of the allowed time unit precision strings, "ms", "us", and
"ns". Default is to select columns with any valid timeunit.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
dtm = as.POSIXct(c("2001-5-7 10:25", "2031-12-31 00:30")),
dur_ms = clock::duration_milliseconds(1:2),
dur_us = clock::duration_microseconds(1:2),
dur_ns = clock::duration_nanoseconds(1:2),

)

Select duration columns:
df$select(cs$duration())

Select all duration columns that have "ms" precision:
df$select(cs$duration("ms"))

Select all duration columns that have "ms" OR "ns" precision:
df$select(cs$duration(c("ms", "ns")))

Select all columns except for those that are duration:
df$select(!cs$duration())

cs__empty Select no columns

Description

This is useful for composition with other selectors.

Usage

cs__empty()

Value

A Polars selector

cs__ends_with 59

See Also

cs for the documentation on operators supported by selectors.

Examples
pl$DataFrame(a = 1, b = 2)$select(cs$empty())

cs__ends_with Select columns that end with the given substring(s)

Description

Select columns that end with the given substring(s)

Usage

cs__ends_with(...)

Arguments

... <dynamic-dots> Substring(s) that matching column names should end
with.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

foo = c("x", "y"),
bar = c(123, 456),
baz = c(2.0, 5.5),
zap = c(FALSE, TRUE)

)

Select columns that end with the substring "z":
df$select(cs$ends_with("z"))

Select columns that end with either the letter "z" or "r":
df$select(cs$ends_with("z", "r"))

Select all columns except for those that end with the substring "z":
df$select(!cs$ends_with("z"))

60 cs__enum

cs__enum Select all enum columns

Description

[Experimental]

Usage

cs__enum()

Value

A Polars selector

See Also

• cs for the documentation on operators supported by selectors.

• cs$by_dtype(): Select all columns matching the given dtype(s).

• cs$categorical(): Select all categorical columns.

Examples

df <- pl$DataFrame(
foo = c("xx", "yy"),
bar = c("aa", "bb"),
baz = c(2.0, 5.5),
.schema_overrides = list(
foo = pl$Enum(c("xx", "yy")),
bar = pl$Enum(c("aa", "bb"))

)
)

Select all enum columns:
df$select(cs$enum())

Select all columns except for those that are enum:
df$select(!cs$enum())

If you want to select specific enum columns,
you can use the `by_dtype()` selector:
df$select(cs$by_dtype(pl$Enum(c("aa", "bb"))))

cs__exclude 61

cs__exclude Select all columns except those matching the given columns,
datatypes, or selectors

Description

Select all columns except those matching the given columns, datatypes, or selectors

Usage

cs__exclude(...)

Arguments

... <dynamic-dots> Column names to exclude.

Details

If excluding a single selector it is simpler to write as !selector instead.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
aa = 1:3,
ba = c("a", "b", NA),
cc = c(NA, 2.5, 1.5)

)

Exclude by column name(s):
df$select(cs$exclude("ba", "xx"))

Exclude using a column name, a selector, and a dtype:
df$select(cs$exclude("aa", cs$string(), pl$Int32))

62 cs__first

cs__first Select the first column in the current scope

Description

Select the first column in the current scope

Usage

cs__first(..., strict = TRUE)

Arguments

... These dots are for future extensions and must be empty.

strict Require the column exists.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
foo = c("x", "y"),
bar = c(123L, 456L),
baz = c(2.0, 5.5),
zap = c(FALSE, TRUE)

)

Select the first column:
df$select(cs$first())

Select everything except for the first column:
df$select(!cs$first())

cs__float 63

cs__float Select all float columns.

Description

Select all float columns.

Usage

cs__float()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
foo = c("x", "y"),
bar = c(123L, 456L),
baz = c(2.0, 5.5),
zap = c(FALSE, TRUE),
.schema_overrides = list(baz = pl$Float32, zap = pl$Float64),

)

Select all float columns:
df$select(cs$float())

Select all columns except for those that are float:
df$select(!cs$float())

cs__integer Select all integer columns.

Description

Select all integer columns.

Usage

cs__integer()

64 cs__last

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
foo = c("x", "y"),
bar = c(123L, 456L),
baz = c(2.0, 5.5),
zap = 0:1

)

Select all integer columns:
df$select(cs$integer())

Select all columns except for those that are integer:
df$select(!cs$integer())

cs__last Select the last column in the current scope

Description

Select the last column in the current scope

Usage

cs__last(..., strict = TRUE)

Arguments

... These dots are for future extensions and must be empty.
strict Require the column exists.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

cs__list 65

Examples

df <- pl$DataFrame(
foo = c("x", "y"),
bar = c(123L, 456L),
baz = c(2.0, 5.5),
zap = c(FALSE, TRUE)

)

Select the last column:
df$select(cs$last())

Select everything except for the last column:
df$select(!cs$last())

cs__list Select all list columns

Description

[Experimental]

Usage

cs__list(inner = NULL)

Arguments

inner An optional inner selector to select columns having specific inner data
types. If NULL, all inner types are selected.

Value

A Polars selector

See Also

• cs for the documentation on operators supported by selectors.

• cs$by_dtype(): Select all columns matching the given dtype(s).

• cs$array(): Select all array columns.

• cs$nested(): Select all nested columns.

66 cs__matches

Examples
df <- pl$DataFrame(

foo = list(c("xx", "yy"), "x"),
bar = list(c(123, 456), 789),
baz = c(2.0, 5.5),

)

Select all list columns:
df$select(cs$list())

Select all columns except for those that are list:
df$select(!cs$list())

If you want to select specific list columns,
you can specify the inner data type with a selector:
df$select(cs$list(cs$string()))

cs__matches Select all columns that match the given regex pattern

Description

Select all columns that match the given regex pattern

Usage

cs__matches(pattern)

Arguments

pattern A valid regular expression pattern, compatible with the regex crate <https://docs.rs/regex/latest/regex/>_.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

foo = c("x", "y"),
bar = c(123, 456),
baz = c(2.0, 5.5),
zap = c(0, 1)

)

Match column names containing an "a", preceded by a character that is not

cs__nested 67

"z":
df$select(cs$matches("[^z]a"))

Do not match column names ending in "R" or "z" (case-insensitively):
df$select(!cs$matches(r"((?i)R|z$)"))

cs__nested Select all nested columns

Description

[Experimental] A nested column is a list, array or struct.

Usage

cs__nested()

Value

A Polars selector

See Also

• cs for the documentation on operators supported by selectors.
• cs$by_dtype(): Select all columns matching the given dtype(s).
• cs$list(): Select all list columns.
• cs$array(): Select all array columns.
• cs$struct(): Select all struct columns.

Examples

df <- pl$DataFrame(
foo = data.frame(a = c("xx", "x"), b = c("yy", "y")),
bar = c(123, 456),
baz = c(2, 5.5),
wow = list(c(1, 2), c(3)),

)

Select all nested columns:
df$select(cs$nested())

Select all columns except for those that are nested:
df$select(!cs$nested())

68 cs__signed_integer

cs__numeric Select all numeric columns.

Description

Select all numeric columns.

Usage

cs__numeric()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
foo = c("x", "y"),
bar = c(123L, 456L),
baz = c(2.0, 5.5),
zap = 0:1,
.schema_overrides = list(bar = pl$Int16, baz = pl$Float32, zap = pl$UInt8),

)

Select all numeric columns:
df$select(cs$numeric())

Select all columns except for those that are numeric:
df$select(!cs$numeric())

cs__signed_integer Select all signed integer columns

Description

Select all signed integer columns

Usage

cs__signed_integer()

cs__starts_with 69

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

foo = c(-123L, -456L),
bar = c(3456L, 6789L),
baz = c(7654L, 4321L),
zap = c("ab", "cd"),
.schema_overrides = list(bar = pl$UInt32, baz = pl$UInt64),

)

Select signed integer columns:
df$select(cs$signed_integer())

Select all columns except for those that are signed integer:
df$select(!cs$signed_integer())

Select all integer columns (both signed and unsigned):
df$select(cs$integer())

cs__starts_with Select columns that start with the given substring(s)

Description

Select columns that start with the given substring(s)

Usage

cs__starts_with(...)

Arguments

... <dynamic-dots> Substring(s) that matching column names should end
with.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

70 cs__string

Examples
df <- pl$DataFrame(

foo = c("x", "y"),
bar = c(123, 456),
baz = c(2.0, 5.5),
zap = c(FALSE, TRUE)

)

Select columns that start with the substring "b":
df$select(cs$starts_with("b"))

Select columns that start with either the letter "b" or "z":
df$select(cs$starts_with("b", "z"))

Select all columns except for those that start with the substring "b":
df$select(!cs$starts_with("b"))

cs__string Select all String (and, optionally, Categorical) string columns.

Description

Select all String (and, optionally, Categorical) string columns.

Usage

cs__string(..., include_categorical = FALSE)

Arguments

... These dots are for future extensions and must be empty.
include_categorical

If TRUE, also select categorical columns.

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

w = c("xx", "yy", "xx", "yy", "xx"),
x = c(1, 2, 1, 4, -2),
y = c(3.0, 4.5, 1.0, 2.5, -2.0),
z = c("a", "b", "a", "b", "b")

cs__struct 71

)$with_columns(
z = pl$col("z")$cast(pl$Categorical())

)

Group by all string columns, sum the numeric columns, then sort by the
string cols:
df$group_by(cs$string())$agg(cs$numeric()$sum())$sort(cs$string())

Group by all string and categorical columns:
df$

group_by(cs$string(include_categorical = TRUE))$
agg(cs$numeric()$sum())$
sort(cs$string(include_categorical = TRUE))

cs__struct Select all struct columns

Description

[Experimental]

Usage

cs__struct()

Value

A Polars selector

See Also

• cs for the documentation on operators supported by selectors.
• cs$by_dtype(): Select all columns matching the given dtype(s).
• cs$list(): Select all list columns.
• cs$array(): Select all array columns.
• cs$nested(): Select all nested columns.

Examples
df <- pl$DataFrame(

foo = data.frame(a = c("xx", "x"), b = c("yy", "y")),
bar = data.frame(a = c(123, 456), b = c(789, 101)),
baz = c(2.0, 5.5),

)

Select all struct columns:
df$select(cs$struct())

Select all columns except for those that are struct:

72 cs__temporal

df$select(!cs$struct())

If you want to select specific struct columns,
you can use the `by_dtype()` selector:
df$select(cs$by_dtype(pl$Struct(

a = pl$String,
b = pl$String

)))

cs__temporal Select all temporal columns

Description

Select all temporal columns

Usage

cs__temporal()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
dtm = as.POSIXct(c("2001-5-7 10:25", "2031-12-31 00:30")),
dt = as.Date(c("1999-12-31", "2024-8-9")),
value = 1:2

)

Match all temporal columns:
df$select(cs$temporal())

Match all temporal columns except for time columns:
df$select(cs$temporal() - cs$datetime())

Match all columns except for temporal columns:
df$select(!cs$temporal())

cs__time 73

cs__time Select all time columns

Description

Select all time columns

Usage

cs__time()

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples

df <- pl$DataFrame(
dtm = as.POSIXct(c("2001-5-7 10:25", "2031-12-31 00:30")),
dt = as.Date(c("1999-12-31", "2024-8-9")),
tm = hms::parse_hms(c("0:0:0", "23:59:59"))

)

Select time columns:
df$select(cs$time())

Select all columns except for those that are time:
df$select(!cs$time())

cs__unsigned_integer Select all unsigned integer columns

Description

Select all unsigned integer columns

Usage

cs__unsigned_integer()

74 dataframe__bottom_k

Value

A Polars selector

See Also

cs for the documentation on operators supported by selectors.

Examples
df <- pl$DataFrame(

foo = c(-123L, -456L),
bar = c(3456L, 6789L),
baz = c(7654L, 4321L),
zap = c("ab", "cd"),
.schema_overrides = list(bar = pl$UInt32, baz = pl$UInt64),

)

Select unsigned integer columns:
df$select(cs$unsigned_integer())

Select all columns except for those that are unsigned integer:
df$select(!cs$unsigned_integer())

Select all integer columns (both unsigned and unsigned):
df$select(cs$integer())

dataframe__bottom_k Return the k smallest rows

Description

Non-null elements are always preferred over null elements, regardless of the value of reverse.
The output is not guaranteed to be in any particular order, call sort() after this function
if you wish the output to be sorted.

Usage

dataframe__bottom_k(k, ..., by, reverse = FALSE)

Arguments

k Number of rows to return.
... These dots are for future extensions and must be empty.
by Column(s) used to determine the bottom rows. Accepts expression input.

Strings are parsed as column names.
reverse Consider the k largest elements of the by column(s) (instead of the k

smallest). This can be specified per column by passing a sequence of
booleans.

dataframe__cast 75

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
a = c("a", "b", "a", "b", "b", "c"),
b = c(2, 1, 1, 3, 2, 1)

)

Get the rows which contain the 4 smallest values in column b.
df$bottom_k(4, by = "b")

Get the rows which contain the 4 smallest values when sorting on column a
and b$
df$bottom_k(4, by = c("a", "b"))

dataframe__cast Cast DataFrame column(s) to the specified dtype

Description

This allows to convert all columns to a datatype or to convert only specific columns. Con-
trarily to the Python implementation, it is not possible to convert all columns of a specific
datatype to another datatype.

Usage

dataframe__cast(..., .strict = TRUE)

Arguments

... <dynamic-dots> Either a datatype to which all columns will be cast, or
a list where the names are column names and the values are the datatypes
to convert to.

.strict If TRUE (default), throw an error if a cast could not be done (for instance,
due to an overflow). Otherwise, return null.

Value

A polars DataFrame

76 dataframe__clear

Examples

df <- pl$DataFrame(
foo = 1:3,
bar = c(6, 7, 8),
ham = as.Date(c("2020-01-02", "2020-03-04", "2020-05-06"))

)

Cast only some columns
df$cast(foo = pl$Float32, bar = pl$UInt8)

Cast all columns to the same type
df$cast(pl$String)

dataframe__clear Create an empty or n-row null-filled copy of the frame

Description

Returns a n-row null-filled frame with an identical schema. n can be greater than the
current number of rows in the frame.

Usage

dataframe__clear(n = 0)

Arguments

n Number of (null-filled) rows to return in the cleared frame.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
a = c(NA, 2, 3, 4),
b = c(0.5, NA, 2.5, 13),
c = c(TRUE, TRUE, FALSE, NA)

)
df$clear()

df$clear(n = 2)

dataframe__clone 77

dataframe__clone Clone a DataFrame

Description

This is a cheap operation that does not copy data. Assigning does not copy the DataFrame
(environment object). This is because environment objects have reference semantics. Call-
ing $clone() creates a new environment, which can be useful when dealing with attributes
(see examples).

Usage

dataframe__clone()

Value

A polars DataFrame

Examples
df1 <- as_polars_df(iris)

Assigning does not copy the DataFrame (environment object), calling
$clone() creates a new environment.
df2 <- df1
df3 <- df1$clone()
rlang::env_label(df1)
rlang::env_label(df2)
rlang::env_label(df3)

Cloning can be useful to add attributes to data used in a function without
adding those attributes to the original object.

Make a function to take a DataFrame, add an attribute, and return a
DataFrame:
give_attr <- function(data) {

attr(data, "created_on") <- "2024-01-29"
data

}
df2 <- give_attr(df1)

Problem: the original DataFrame also gets the attribute while it shouldn't
attributes(df1)

Use $clone() inside the function to avoid that
give_attr <- function(data) {

data <- data$clone()
attr(data, "created_on") <- "2024-01-29"
data

}

78 dataframe__describe

df1 <- as_polars_df(iris)
df2 <- give_attr(df1)

now, the original DataFrame doesn't get this attribute
attributes(df1)

dataframe__count Return the number of non-null elements for each column

Description

Return the number of non-null elements for each column

Usage

dataframe__count()

Value

A polars DataFrame

Examples
df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, NA), c = rep(NA, 4))
df$count()

dataframe__describe Summary statistics for a DataFrame.

Description

Summary statistics for a DataFrame.

Usage

dataframe__describe(
percentiles = c(0.25, 0.5, 0.75),
...,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear", "equiprobable")

)

Arguments

percentiles One or more percentiles to include in the summary statistics. All values
must be in the range [0; 1].

... These dots are for future extensions and must be empty.
interpolation Interpolation method for computing quantiles. Must be one of "nearest",

"higher", "lower", "midpoint", or "linear".

dataframe__drop 79

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
int = 1:3,
float = c(0.5, NA, 2.5),
string = c(letters[1:2], NA),
date = c(as.Date("2024-01-20"), as.Date("2024-01-21"), NA),
cat = factor(c(letters[1:2], NA)),
bool = c(TRUE, FALSE, NA)

)
df

Show default frame statistics:
df$describe()

Customize which percentiles are displayed, applying linear interpolation:
df$describe(

percentiles = c(0.1, 0.3, 0.5, 0.7, 0.9),
interpolation = "linear"

)

dataframe__drop Remove columns

Description

Remove columns

Usage

dataframe__drop(..., strict = TRUE)

Arguments

... <dynamic-dots> Column names or selectors that should be removed.

strict Validate that all column names exist in the current schema, and throw
an exception if any do not.

Value

A polars DataFrame

80 dataframe__drop_nans

Examples
Drop columns by passing the name of those columns
df <- pl$DataFrame(

foo = 1:3,
bar = c(6, 7, 8),
ham = c("a", "b", "c")

)
df$drop("ham")
df$drop("ham", "bar")

Drop multiple columns by passing a selector
df$drop(cs$all())

dataframe__drop_nans Drop all rows that contain NaN values

Description

The original order of the remaining rows is preserved.

Usage

dataframe__drop_nans(...)

Arguments

... <dynamic-dots> Column names or selectors for which are considered.
If empty (default), use all columns (same as specifying with the selector
cs$all()).

Value

A polars DataFrame

Examples
df <- pl$DataFrame(

foo = c(1, NaN, 2.5),
bar = c(NaN, 110, 25.5),
ham = c("a", "b", NA)

)

The default behavior of this method is to drop rows where any single value
of the row is null.
df$drop_nans()

This behaviour can be constrained to consider only a subset of columns, as
defined by name or with a selector. For example, dropping rows if there is
a null in the "bar" column:

dataframe__drop_nulls 81

df$drop_nans("bar")

Dropping a row only if *all* values are NaN requires a different
formulation:
df <- pl$DataFrame(

a = c(NaN, NaN, NaN, NaN),
b = c(10.0, 2.5, NaN, 5.25),
c = c(65.75, NaN, NaN, 10.5)

)
df$filter(!pl$all_horizontal(pl$all()$is_nan()))

dataframe__drop_nulls
Drop all rows that contain null values

Description

The original order of the remaining rows is preserved.

Usage

dataframe__drop_nulls(...)

Arguments

... <dynamic-dots> Column names or selectors for which are considered.
If empty (default), use all columns (same as specifying with the selector
cs$all()).

Value

A polars DataFrame

Examples
df <- pl$DataFrame(

foo = 1:3,
bar = c(6L, NA, 8L),
ham = c("a", "b", NA)

)

The default behavior of this method is to drop rows where any single value
of the row is null.
df$drop_nulls()

This behaviour can be constrained to consider only a subset of columns, as
defined by name or with a selector. For example, dropping rows if there is
a null in any of the integer columns:
df$drop_nulls(cs$integer())

82 dataframe__explode

dataframe__equals Check whether the DataFrame is equal to another DataFrame

Description

Check whether the DataFrame is equal to another DataFrame

Usage

dataframe__equals(other, ..., null_equal = TRUE)

Arguments

other DataFrame to compare with.
... These dots are for future extensions and must be empty.
null_equal Consider null values as equal.

Value

A logical value

Examples
dat1 <- as_polars_df(iris)
dat2 <- as_polars_df(iris)
dat3 <- as_polars_df(mtcars)
dat1$equals(dat2)
dat1$equals(dat3)

dataframe__explode Explode the frame to long format by exploding the given columns

Description

Explode the frame to long format by exploding the given columns

Usage

dataframe__explode(..., empty_as_null = TRUE, keep_nulls = TRUE)

Arguments

... <dynamic-dots> Column names or selectors defining them. The under-
lying columns being exploded must be of the List or Array data type.

empty_as_null Indicates to explode an empty list/array into a null.
keep_nulls Indicates to explode a null list/array into a null.

dataframe__fill_nan 83

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
letters = c("a", "a", "b", "c"),
numbers = list(1, c(2, 3), c(4, 5), c(6, 7, 8))

)

df$explode("numbers")

dataframe__fill_nan Fill floating point NaN value with a fill value

Description

Fill floating point NaN value with a fill value

Usage

dataframe__fill_nan(value)

Arguments

value Value used to fill NaN values.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
a = c(1.5, 2, NaN, 4),
b = c(1.5, NaN, NaN, 4)

)
df$fill_nan(99)

84 dataframe__fill_null

dataframe__fill_null Fill null values using the specified value or strategy

Description

Fill null values using the specified value or strategy

Usage

dataframe__fill_null(
value = NULL,
strategy = NULL,
limit = NULL,
...,
matches_supertype = TRUE

)

Arguments

value Value used to fill null values.
strategy Strategy used to fill null values. Must be one of: "forward", "backward",

"min", "max", "mean", "zero", "one", or NULL (default).
limit Number of consecutive null values to fill when using the "forward" or

"backward" strategy.
... These dots are for future extensions and must be empty.
matches_supertype

Fill all matching supertypes of the fill value literal.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
a = c(1.5, 2, NA, 4),
b = c(1.5, NA, NA, 4)

)
df$fill_null(99)

df$fill_null(strategy = "forward")

df$fill_null(strategy = "max")

df$fill_null(strategy = "zero")

dataframe__filter 85

dataframe__filter Filter rows of a DataFrame

Description

The original order of the remaining rows is preserved. Rows where the filter does not
evaluate to TRUE are discarded, including nulls.

Usage

dataframe__filter(...)

Arguments

... <dynamic-dots> Expression that evaluates to a boolean Series.

Value

A polars DataFrame

Examples
df <- as_polars_df(iris)

df$filter(pl$col("Sepal.Length") > 5)

This is equivalent to
df$filter(pl$col("Sepal.Length") > 5 & pl$col("Petal.Width") < 1)
df$filter(pl$col("Sepal.Length") > 5, pl$col("Petal.Width") < 1)

rows where condition is NA are dropped
iris2 <- iris
iris2[c(1, 3, 5), "Species"] <- NA
df <- as_polars_df(iris2)

df$filter(pl$col("Species") == "setosa")

dataframe__gather_every
Take every nth row in the DataFrame

Description

Take every nth row in the DataFrame

Usage

dataframe__gather_every(n, offset = 0)

86 dataframe__get_column

Arguments

n Gather every n-th row.
offset Starting index.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(a = 1:4, b = 5:8)
df$gather_every(2)

df$gather_every(2, offset = 1)

dataframe__get_column
Get a single column by name

Description

Get a single column by name

Usage

dataframe__get_column(name)

Arguments

name Name of the column to retrieve.

Value

A polars Series

Examples

df <- pl$DataFrame(foo = 1:3, bar = 4:6)
df$get_column("foo")

tryCatch(
df$get_column("baz"),
error = function(e) print(e)

)

dataframe__get_columns 87

dataframe__get_columns
Get the DataFrame as a list of Series

Description

Get the DataFrame as a list of Series

Usage

dataframe__get_columns()

Value

A list of Series

See Also

• as.list(<polars_data_frame>)

Examples
df <- pl$DataFrame(foo = c(1, 2, 3), bar = c(4, 5, 6))
df$get_columns()

df <- pl$DataFrame(
a = 1:4,
b = c(0.5, 4, 10, 13),
c = c(TRUE, TRUE, FALSE, TRUE)

)
df$get_columns()

dataframe__get_column_index
Find the index of a column by name

Description

Find the index of a column by name

Usage

dataframe__get_column_index(name)

Arguments

name Name of the column to find.

88 dataframe__glimpse

Value

Numeric value (0-indexed) indicating the index of the column

Examples
df <- pl$DataFrame(foo = 1:3, bar = 4:6, ham = c("a", "b", "c"))
df$get_column_index("ham")

tryCatch(
df$get_column_index("sandwich"),
error = function(e) print(e)

)

dataframe__glimpse Show a dense preview of the DataFrame

Description

The formatting shows one line per column so that wide DataFrames display cleanly. Each
line shows the column name, the data type, and the first few values.

Usage

dataframe__glimpse(..., max_items_per_column = 10, max_colname_length = 50)

Arguments

... These dots are for future extensions and must be empty.
max_items_per_column

Maximum number of items to show per column.
max_colname_length

Maximum length of the displayed column names. Values that exceed this
value are truncated with a trailing ellipsis.

Value

Returns a character value (invisibly)

Examples
df <- as_polars_df(iris)
df$glimpse()

df$glimpse(max_items_per_column = 3)

df$glimpse(max_items_per_column = 3, max_colname_length = 3)

dataframe__group_by 89

dataframe__group_by Group a DataFrame

Description

Group a DataFrame

Usage

dataframe__group_by(..., .maintain_order = FALSE)

Arguments

... <dynamic-dots> Column(s) to group by. Accepts expression input.
Strings are parsed as column names.

.maintain_order
Ensure that the order of the groups is consistent with the input data.
This is slower than a default group by. Setting this to TRUE blocks the
possibility to run on the streaming engine.

Details

Within each group, the order of the rows is always preserved, regardless of the maintain_order
argument.

Value

An object of class polars_group_by

See Also

• <DataFrame>$partition_by()

Examples
df <- pl$DataFrame(

a = c("a", "b", "a", "b", "c"),
b = c(1, 2, 1, 3, 3),
c = c(5, 4, 3, 2, 1)

)

df$group_by("a")$agg(pl$col("b")$sum())

Set `maintain_order = TRUE` to ensure the order of the groups is
consistent with the input.
df$group_by("a", .maintain_order = TRUE)$agg(pl$col("c"))

Group by multiple columns by passing a list of column names.
df$group_by(c("a", "b"))$agg(pl$max("c"))

90 dataframe__group_by_dynamic

Or pass some arguments to group by multiple columns in the same way.
Expressions are also accepted.
df$group_by("a", pl$col("b") %/% 2)$agg(

pl$col("c")$mean()
)

The columns will be renamed to the argument names.
df$group_by(d = "a", e = pl$col("b") %/% 2)$agg(

pl$col("c")$mean()
)

dataframe__group_by_dynamic
Group based on a date/time or integer column

Description

Time windows are calculated and rows are assigned to windows. Different from a normal
group by is that a row can be member of multiple groups. By default, the windows look
like:

• [start, start + period)

• [start + every, start + every + period)

• [start + 2 * every, start + 2 * every + period)

• …

where start is determined by start_by, offset, every, and the earliest datapoint. See
the start_by argument description for details.

Usage

dataframe__group_by_dynamic(
index_column,
...,
every,
period = NULL,
offset = NULL,
include_boundaries = FALSE,
closed = c("left", "right", "both", "none"),
label = c("left", "right", "datapoint"),
group_by = NULL,
start_by = "window"

)

dataframe__group_by_dynamic 91

Arguments

index_column Column used to group based on the time window. Often of type Date/Datetime.
This column must be sorted in ascending order (or, if group_by is speci-
fied, then it must be sorted in ascending order within each group). In case
of a dynamic group by on indices, the data type needs to be either Int32
or In64. Note that Int32 gets temporarily cast to Int64, so if performance
matters, use an Int64 column.

... These dots are for future extensions and must be empty.
every Interval of the window.
period Length of the window. If NULL (default), it will equal every.
offset Offset of the window, does not take effect if start_by = "datapoint".

Defaults to zero.
include_boundaries

Add two columns "_lower_boundary" and "_upper_boundary" columns
that show the boundaries of the window. This will impact performance
because it’s harder to parallelize.

closed Define which sides of the interval are closed (inclusive). Default is "left".
label Define which label to use for the window:

• "left": lower boundary of the window
• "right": upper boundary of the window
• "datapoint": the first value of the index column in the given window.

If you don’t need the label to be at one of the boundaries, choose this
option for maximum performance.

group_by Also group by this column/these columns. Can be expressions or objects
coercible to expressions.

start_by The strategy to determine the start of the first window by:
• "window": start by taking the earliest timestamp, truncating it with

every, and then adding offset. Note that weekly windows start on
Monday.

• "datapoint": start from the first encountered data point.
• a day of the week (only takes effect if every contains "w"): "monday"

starts the window on the Monday before the first data point, etc.

Details

The every, period, and offset arguments are created with the following string language:

• 1ns # 1 nanosecond
• 1us # 1 microsecond
• 1ms # 1 millisecond
• 1s # 1 second
• 1m # 1 minute
• 1h # 1 hour

92 dataframe__group_by_dynamic

• 1d # 1 day
• 1w # 1 calendar week
• 1mo # 1 calendar month
• 1y # 1 calendar year These strings can be combined:

– 3d12h4m25s # 3 days, 12 hours, 4 minutes, and 25 seconds

In case of a group_by_dynamic on an integer column, the windows are defined by:

• 1i # length 1
• 10i # length 10

Value

An object of class polars_group_by_dynamic

See Also

• <DataFrame>$rolling()

Examples
df <- pl$select(

time = pl$datetime_range(
start = strptime("2021-12-16 00:00:00", format = "%Y-%m-%d %H:%M:%S", tz = "UTC"),
end = strptime("2021-12-16 03:00:00", format = "%Y-%m-%d %H:%M:%S", tz = "UTC"),
interval = "30m"

),
n = 0:6

)
df

Group by windows of 1 hour.
df$group_by_dynamic("time", every = "1h", closed = "right")$agg(

vals = pl$col("n")
)

The window boundaries can also be added to the aggregation result
df$group_by_dynamic(

"time",
every = "1h", include_boundaries = TRUE, closed = "right"

)$agg(
pl$col("n")$mean()

)

When closed = "left", the window excludes the right end of interval:
[lower_bound, upper_bound)
df$group_by_dynamic("time", every = "1h", closed = "left")$agg(

pl$col("n")
)

When closed = "both" the time values at the window boundaries belong to 2

dataframe__hash_rows 93

groups.
df$group_by_dynamic("time", every = "1h", closed = "both")$agg(

pl$col("n")
)

Dynamic group bys can also be combined with grouping on normal keys
df <- df$with_columns(

groups = as_polars_series(c("a", "a", "a", "b", "b", "a", "a"))
)
df

df$group_by_dynamic(
"time",
every = "1h",
closed = "both",
group_by = "groups",
include_boundaries = TRUE

)$agg(pl$col("n"))

We can also create a dynamic group by based on an index column
df <- pl$DataFrame(

idx = 0:5,
A = c("A", "A", "B", "B", "B", "C")

)$with_columns(pl$col("idx")$set_sorted())
df

df$group_by_dynamic(
"idx",
every = "2i",
period = "3i",
include_boundaries = TRUE,
closed = "right"

)$agg(A_agg_list = pl$col("A"))

dataframe__hash_rows Hash and combine the rows in this DataFrame

Description

The hash value is of type UInt64.

Usage

dataframe__hash_rows(seed = 0, seed_1 = NULL, seed_2 = NULL, seed_3 = NULL)

Arguments

seed Random seed parameter. Defaults to 0.
seed_1 Random seed parameter. Defaults to seed if not set.
seed_2 Random seed parameter. Defaults to seed if not set.
seed_3 Random seed parameter. Defaults to seed if not set.

94 dataframe__head

Details

This implementation does not guarantee stable results across different Polars versions. Its
stability is only guaranteed within a single version.

Value

A polars Series

Examples

df <- pl$DataFrame(
foo = c(1, NA, 3, 4),
ham = c("a", "b", NA, "d")

)
df$hash_rows(seed = 42)

dataframe__head Get the first n rows

Description

Get the first n rows

Usage

dataframe__head(n = 5)

Arguments

n Number of rows to return. If a negative value is passed, return all rows
except the last abs(n).

Value

A polars DataFrame

Examples

df <- pl$DataFrame(foo = 1:5, bar = 6:10, ham = letters[1:5])

df$head(3)

Pass a negative value to get all rows except the last `abs(n)`.
df$head(-3)

dataframe__is_duplicated 95

dataframe__is_duplicated
Get a mask of all duplicated rows in this DataFrame.

Description

Get a mask of all duplicated rows in this DataFrame.

Usage

dataframe__is_duplicated()

Value

A polars Series

Examples

df <- pl$DataFrame(
a = c(1, 2, 3, 1),
b = c("x", "y", "z", "x")

)
df$is_duplicated()

This mask can be used to visualize the duplicated lines like this:
df$filter(df$is_duplicated())

dataframe__is_empty Returns TRUE if the DataFrame contains no rows.

Description

Returns TRUE if the DataFrame contains no rows.

Usage

dataframe__is_empty()

Value

A logical value

96 dataframe__join

Examples

df <- pl$DataFrame(
a = c(1, 2, 3, 1),
b = c("x", "y", "z", "x")

)
df$is_empty()
df$filter(pl$col("a") > 99)$is_empty()

dataframe__is_unique Get a mask of all unique rows in this DataFrame.

Description

Get a mask of all unique rows in this DataFrame.

Usage

dataframe__is_unique()

Value

A polars Series

Examples

df <- pl$DataFrame(
a = c(1, 2, 3, 1),
b = c("x", "y", "z", "x")

)
df$is_unique()

This mask can be used to visualize the unique lines like this:
df$filter(df$is_unique())

dataframe__join Join DataFrames

Description

This function can do both mutating joins (adding columns based on matching observations,
for example with how = "left") and filtering joins (keeping observations based on matching
observations, for example with how = "inner").

dataframe__join 97

Usage

dataframe__join(
other,
on = NULL,
how = c("inner", "full", "left", "right", "semi", "anti", "cross"),
...,
left_on = NULL,
right_on = NULL,
suffix = "_right",
validate = c("m:m", "1:m", "m:1", "1:1"),
nulls_equal = FALSE,
coalesce = NULL,
maintain_order = c("none", "left", "right", "left_right", "right_left"),
allow_parallel = TRUE,
force_parallel = FALSE

)

Arguments

other DataFrame to join with.
on Either a vector of column names or a list of expressions and/or strings.

Use left_on and right_on if the column names to match on are different
between the two DataFrames.

how One of the following methods:
• ”inner”: returns rows that have matching values in both tables
• ”left”: returns all rows from the left table, and the matched rows

from the right table
• ”right”: returns all rows from the right table, and the matched rows

from the left table
• ”full”: returns all rows when there is a match in either left or right

table
• ”cross”: returns the Cartesian product of rows from both tables
• ”semi”: returns rows from the left table that have a match in the

right table.
• ”anti”: returns rows from the left table that have no match in the

right table.
... These dots are for future extensions and must be empty.
left_on, right_on

Same as on but only for the left or the right DataFrame. They must have
the same length.

suffix Suffix to add to duplicated column names.
validate Checks if join is of specified type:

• "m:m" (default): many-to-many, doesn’t perform any checks;
• "1:1": one-to-one, check if join keys are unique in both left and right

datasets;

98 dataframe__join

• "1:m": one-to-many, check if join keys are unique in left dataset
• "m:1": many-to-one, check if join keys are unique in right dataset

Note that this is currently not supported by the streaming engine.
nulls_equal Join on null values. By default null values will never produce matches.
coalesce Coalescing behavior (merging of join columns).

• NULL: join specific.
• TRUE: Always coalesce join columns.
• FALSE: Never coalesce join columns. Note that joining on any other

expressions than col will turn off coalescing.
maintain_order

Which frame row order to preserve, if any. Do not rely on any observed
ordering without explicitly setting this parameter, as your code may break
in a future release. Not specifying any ordering can improve performance.
• "none": No specific ordering is desired. The ordering might differ

across Polars versions or even between different runs.
• "left": Preserves the order of the left frame.
• "right": Preserves the order of the right frame.
• "left_right": First preserves the order of the left frame, then the

right.
• "right_left": First preserves the order of the right frame, then the

left.
allow_parallel

Allow the physical plan to optionally evaluate the computation of both
DataFrames up to the join in parallel.

force_parallel
Force the physical plan to evaluate the computation of both DataFrames
up to the join in parallel.

Value

A polars DataFrame

Examples
df <- pl$DataFrame(

foo = 1:3,
bar = c(6, 7, 8),
ham = c("a", "b", "c")

)
other_df <- pl$DataFrame(

apple = c("x", "y", "z"),
ham = c("a", "b", "d")

)
df$join(other_df, on = "ham")

df$join(other_df, on = "ham", how = "full")

dataframe__join_asof 99

df$join(other_df, on = "ham", how = "left", coalesce = TRUE)

df$join(other_df, on = "ham", how = "semi")

df$join(other_df, on = "ham", how = "anti")

dataframe__join_asof Perform joins on nearest keys

Description

This is similar to a left-join except that we match on nearest key rather than equal keys.
Both frames must be sorted by the asof_join key.

Usage

dataframe__join_asof(
other,
...,
left_on = NULL,
right_on = NULL,
on = NULL,
by_left = NULL,
by_right = NULL,
by = NULL,
strategy = c("backward", "forward", "nearest"),
suffix = "_right",
tolerance = NULL,
allow_parallel = TRUE,
force_parallel = FALSE,
coalesce = TRUE,
allow_exact_matches = TRUE,
check_sortedness = TRUE

)

Arguments

other DataFrame to join with.
... These dots are for future extensions and must be empty.
left_on, right_on

Same as on but only for the left or the right DataFrame. They must have
the same length.

on Either a vector of column names or a list of expressions and/or strings.
Use left_on and right_on if the column names to match on are different
between the two LazyFrames.

100 dataframe__join_asof

by_left, by_right
Same as by but only for the left or the right table. They must have the
same length.

by Join on these columns before performing asof join. Either a vector of
column names or a list of expressions and/or strings. Use left_by and
right_by if the column names to match on are different between the two
tables.

strategy Strategy for where to find match:

• "backward" (default): search for the last row in the right table whose
on key is less than or equal to the left key.

• "forward": search for the first row in the right table whose on key
is greater than or equal to the left key.

• "nearest": search for the last row in the right table whose value is
nearest to the left key. String keys are not currently supported for a
nearest search.

suffix Suffix to add to duplicated column names.

tolerance Numeric tolerance. By setting this the join will only be done if the near
keys are within this distance. If an asof join is done on columns of dtype
”Date”, ”Datetime”, ”Duration” or ”Time”, use the Polars duration string
language (see details).

allow_parallel
Allow the physical plan to optionally evaluate the computation of both
LazyFrames up to the join in parallel.

force_parallel
Force the physical plan to evaluate the computation of both LazyFrames
up to the join in parallel.

coalesce Coalescing behavior (merging of on / left_on / right_on columns):

• TRUE: Always coalesce join columns;
• FALSE: Never coalesce join columns. Note that joining on any other

expressions than col will turn off coalescing.
allow_exact_matches

Whether exact matches are valid join predicates. If TRUE (default), allow
matching with the same on value (i.e. less-than-or-equal-to / greater-
than-or-equal-to). Otherwise, don’t match the same on value (i.e., strictly
less-than / strictly greater-than).

check_sortedness
Check the sortedness of the asof keys. If the keys are not sorted, polars
will error, or raise a warning if the by argument is provided. This might
become a hard error in the future.

Value

A polars DataFrame

dataframe__join_asof 101

Polars duration string language

Polars duration string language is a simple representation of durations. It is used in many
Polars functions that accept durations.
It has the following format:

• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.

Examples
gdp <- pl$DataFrame(

date = as.Date(c("2016-1-1", "2017-5-1", "2018-1-1", "2019-1-1", "2020-1-1")),
gdp = c(4164, 4411, 4566, 4696, 4827)

)

pop <- pl$DataFrame(
date = as.Date(c("2016-3-1", "2018-8-1", "2019-1-1")),
population = c(82.19, 82.66, 83.12)

)

optional make sure tables are already sorted with "on" join-key
gdp <- gdp$sort("date")
pop <- pop$sort("date")

Note how the dates don’t quite match. If we join them using join_asof and
strategy = 'backward', then each date from population which doesn’t have
an exact match is matched with the closest earlier date from gdp:
pop$join_asof(gdp, on = "date", strategy = "backward")

Note how:
- date 2016-03-01 from population is matched with 2016-01-01 from gdp;
- date 2018-08-01 from population is matched with 2018-01-01 from gdp.

102 dataframe__join_where

You can verify this by passing coalesce = FALSE:
pop$join_asof(

gdp,
on = "date", strategy = "backward", coalesce = FALSE

)

If we instead use strategy = 'forward', then each date from population
which doesn’t have an exact match is matched with the closest later date
from gdp:
pop$join_asof(gdp, on = "date", strategy = "forward")

Note how:
- date 2016-03-01 from population is matched with 2017-01-01 from gdp;
- date 2018-08-01 from population is matched with 2019-01-01 from gdp.

Finally, strategy = 'nearest' gives us a mix of the two results above, as
each date from population which doesn’t have an exact match is matched
with the closest date from gdp, regardless of whether it’s earlier or
later:
pop$join_asof(gdp, on = "date", strategy = "nearest")

Note how:
- date 2016-03-01 from population is matched with 2016-01-01 from gdp;
- date 2018-08-01 from population is matched with 2019-01-01 from gdp.

The `by` argument allows joining on another column first, before the asof
join. In this example we join by country first, then asof join by date, as
above.
gdp2 <- pl$DataFrame(

country = rep(c("Germany", "Netherlands"), each = 5),
date = rep(
as.Date(c("2016-1-1", "2017-1-1", "2018-1-1", "2019-1-1", "2020-1-1")),
2

),
gdp = c(4164, 4411, 4566, 4696, 4827, 784, 833, 914, 910, 909)

)$sort("country", "date")
gdp2

pop2 <- pl$DataFrame(
country = rep(c("Germany", "Netherlands"), each = 3),
date = rep(as.Date(c("2016-3-1", "2018-8-1", "2019-1-1")), 2),
population = c(82.19, 82.66, 83.12, 17.11, 17.32, 17.40)

)$sort("country", "date")
pop2

pop2$join_asof(
gdp2,
by = "country", on = "date", strategy = "nearest"

)

dataframe__join_where 103

dataframe__join_where
Perform a join based on one or multiple (in)equality predicates

Description

[Experimental]
This performs an inner join, so only rows where all predicates are true are included in the
result, and a row from either DataFrame may be included multiple times in the result.
Note that the row order of the input DataFrames is not preserved.

Usage

dataframe__join_where(other, ..., suffix = "_right")

Arguments

other DataFrame to join with.
... <dynamic-dots> (In)Equality condition to join the two tables on. When

a column name occurs in both tables, the proper suffix must be applied
in the predicate. For example, if both tables have a column "x" that you
want to use in the conditions, you must refer to the column of the right
table as "x<suffix>".

suffix Suffix to append to columns with a duplicate name.

Value

A polars DataFrame

Examples
east <- pl$DataFrame(

id = c(100, 101, 102),
dur = c(120, 140, 160),
rev = c(12, 14, 16),
cores = c(2, 8, 4)

)

west <- pl$DataFrame(
t_id = c(404, 498, 676, 742),
time = c(90, 130, 150, 170),
cost = c(9, 13, 15, 16),
cores = c(4, 2, 1, 4)

)

east$join_where(
west,
pl$col("dur") < pl$col("time"),
pl$col("rev") < pl$col("cost")

)

104 dataframe__map_columns

dataframe__lazy Convert an existing DataFrame to a LazyFrame

Description

Start a new lazy query from a DataFrame.

Usage

dataframe__lazy()

Value

A polars LazyFrame

Examples

pl$DataFrame(a = 1:2, b = c(NA, "a"))$lazy()

dataframe__map_columns
Apply eager functions to columns of a DataFrame

Description

[Experimental]
A higher-order function to apply functions to selected columns of a DataFrame, similar
to purrr::map_at. The selected columns will be materialized as Series before the function
is applied, and the return value of the function will be converted back to a Series by
as_polars_series.
It is recommended to use <dataframe>$with_columns() unless they are using expressions
that are only possible on Series and not on Expr. This is almost never the case, except for
a very select few functions that cannot know the output datatype without looking at the
data.

Usage

dataframe__map_columns(column_names, lambda)

Arguments

column_names Column names or selectors specifying columns to apply the function to.
lambda A function that will receive a Series as the first argument.

dataframe__max 105

Value

A polars DataFrame

Examples

df1 <- pl$DataFrame(
a = 1:4,
b = c("10", "20", "30", "40"),

)

Apply `<series>$shrink_dtype()` to the "a" column
df1$map_columns("a", \(s) s$shrink_dtype())

Convert the "b" column to integer by the base R function `as.integer()`
df1$map_columns("b", \(s) s$to_r_vector() |> as.integer())

df2 <- pl$DataFrame(
a = c('{"x":"a"}', NA, '{"x":"b"}', NA),
b = c('{"a":1, "b": true}', NA, '{"a":2, "b": false}', NA),

)

Apply `<series>strjson_decode()` to both the "a" and "b" columns
df2$map_columns(c("a", "b"), \(s) sstrjson_decode())

Use a selector to apply the function to all columns
df2$map_columns(cs$all(), \(s) sstrjson_decode())

dataframe__max Aggregate the columns in the DataFrame to their maximum value

Description

Aggregate the columns in the DataFrame to their maximum value

Usage

dataframe__max()

Value

A polars DataFrame

Examples

df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, 1))
df$max()

106 dataframe__mean

dataframe__max_horizontal
Get the maximum value horizontally across columns.

Description

Get the maximum value horizontally across columns.

Usage

dataframe__max_horizontal()

Value

A polars Series

Examples

df <- pl$DataFrame(
foo = c(1, 2, 3),
bar = c(4.0, 5.0, 6.0),

)
df$max_horizontal()

dataframe__mean Aggregate the columns in the DataFrame to their mean value

Description

Aggregate the columns in the DataFrame to their mean value

Usage

dataframe__mean()

Value

A polars DataFrame

Examples

df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, 1))
df$mean()

dataframe__mean_horizontal 107

dataframe__mean_horizontal
Take the mean of all values horizontally across columns.

Description

Take the mean of all values horizontally across columns.

Usage

dataframe__mean_horizontal(..., ignore_nulls = TRUE)

Arguments

... These dots are for future extensions and must be empty.
ignore_nulls Ignore null values (default). If FALSE, any null value in the input will lead

to a null output.

Value

A polars Series

Examples
df <- pl$DataFrame(

foo = c(1, 2, 3),
bar = c(4.0, 5.0, 6.0),

)
df$mean_horizontal()

dataframe__median Aggregate the columns in the DataFrame to their median value

Description

Aggregate the columns in the DataFrame to their median value

Usage

dataframe__median()

Value

A polars DataFrame

Examples
df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, 1))
df$median()

108 dataframe__min

dataframe__merge_sorted
Take two sorted DataFrames and merge them by the sorted key

Description

The output of this operation will also be sorted. It is the callers responsibility that the
frames are sorted by that key, otherwise the output will not make sense. The schemas of
both DataFrames must be equal.

Usage

dataframe__merge_sorted(other, key)

Arguments

other Other DataFrame that must be merged.
key Key that is sorted.

Value

A polars DataFrame

Examples
df1 <- pl$DataFrame(

name = c("steve", "elise", "bob"),
age = c(42, 44, 18)

)$sort("age")

df2 <- pl$DataFrame(
name = c("anna", "megan", "steve", "thomas"),
age = c(21, 33, 42, 20)

)$sort("age")

df1$merge_sorted(df2, key = "age")

dataframe__min Aggregate the columns in the DataFrame to their minimum value

Description

Aggregate the columns in the DataFrame to their minimum value

Usage

dataframe__min()

dataframe__min_horizontal 109

Value

A polars DataFrame

Examples
df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, 1))
df$min()

dataframe__min_horizontal
Get the minimum value horizontally across columns.

Description

Get the minimum value horizontally across columns.

Usage

dataframe__min_horizontal()

Value

A polars Series

Examples
df <- pl$DataFrame(

foo = c(1, 2, 3),
bar = c(4.0, 5.0, 6.0),

)
df$min_horizontal()

dataframe__n_chunks Get number of chunks used by the ChunkedArrays of this
DataFrame

Description

Get number of chunks used by the ChunkedArrays of this DataFrame

Usage

dataframe__n_chunks(strategy = c("first", "all"))

Arguments

strategy Return the number of chunks of the "first" column, or "all" columns
in this DataFrame.

110 dataframe__partition_by

Value

An integer vector.

Examples
df <- pl$DataFrame(

a = c(1, 2, 3, 4),
b = c(0.5, 4, 10, 13),
c = c(TRUE, TRUE, FALSE, TRUE)

)

df$n_chunks()
df$n_chunks(strategy = "all")

dataframe__partition_by
Group by the given columns and return the groups as separate
dataframes

Description

Group by the given columns and return the groups as separate dataframes

Usage

dataframe__partition_by(..., maintain_order = TRUE, include_key = TRUE)

Arguments

... <dynamic-dots> Column names or selectors to group by. Must contain
at least one column.

maintain_order
Ensure that the order of the groups is consistent with the input data.
This is slower than a default partition by operation.

include_key Include the columns used to partition the DataFrame in the output.

Value

A list of polars DataFrames

Examples
Pass a single column name to partition by that column.
df <- pl$DataFrame(

a = c("a", "b", "a", "b", "c"),
b = c(1, 2, 1, 3, 3),
c = c(5, 4, 3, 2, 1)

)
df$partition_by("a")

dataframe__pivot 111

Partition by multiple columns:
df$partition_by("a", "b")

dataframe__pivot Pivot a frame from long to wide format

Description

Reshape data from long to wide format, known as ”pivot wider”.

Usage

dataframe__pivot(
on,
on_columns = NULL,
...,
index = NULL,
values = NULL,
aggregate_function = NULL,
maintain_order = TRUE,
sort_columns = FALSE,
separator = "_"

)

Arguments

on The column(s) whose values will be used as the new columns of the output.
on_columns What value combinations will be considered for the output table. If NULL

(default), all unique values found in the on column(s) will be used.
... These dots are for future extensions and must be empty.
index The column(s) that remain from the input to the output. The output

will have one row for each unique combination of the index’s values. If
NULL, all remaining columns not specified in on and values will be used.
At least one of index and values must be specified.

values The existing column(s) of values which will be moved under the new
columns from index. If an aggregation is specified, these are the values on
which the aggregation will be computed. If NULL, all remaining columns
not specified in on and index will be used. At least one of index and
values must be specified.

aggregate_function
Choose from:
• NULL (default): no aggregation takes place, will raise error if multiple

values are in group. Same as pl$element()$item(allow_empty =
TRUE).

112 dataframe__pivot

• A predefined aggregate function string, one of "min", "max", "first",
"last", "sum", "mean", "median", "len", "item". Same as pl$element()$<function>().

• An expression to do the aggregation.
maintain_order

Ensure the values of index are sorted by discovery order.
sort_columns Sort the transposed columns by name. Default is by order of discovery.
separator Used as separator/delimiter in generated column names in case of multiple

values columns.

Value

A polars DataFrame

Examples

Suppose we have a dataframe of test scores achieved by some students,
where each row represents a distinct test.
df <- pl$DataFrame(

name = c("Cady", "Cady", "Karen", "Karen"),
subject = c("maths", "physics", "maths", "physics"),
test_1 = c(98, 99, 61, 58),
test_2 = c(100, 100, 60, 60)

)
df

Using pivot(), we can reshape so we have one row per student, with
different subjects as columns, and their `test_1` scores as values:
df$pivot("subject", index = "name", values = "test_1")

You can use selectors too - here we include all test scores
in the pivoted table:
df$pivot("subject", values = cs$starts_with("test"))

If you end up with multiple values per cell, you can specify how to
aggregate them with `aggregate_function`:
df <- pl$DataFrame(

ix = c(1, 1, 2, 2, 1, 2),
col = c("a", "a", "a", "a", "b", "b"),
foo = c(0, 1, 2, 2, 7, 1),
bar = c(0, 2, 0, 0, 9, 4)

)
df

df$pivot("col", index = "ix", aggregate_function = "sum")

You can also pass a custom aggregation function using `pl$element()`:
df <- pl$DataFrame(

col1 = c("a", "a", "a", "b", "b", "b"),
col2 = c("x", "x", "x", "x", "y", "y"),
col3 = c(6, 7, 3, 2, 5, 7),

)

dataframe__quantile 113

df$pivot(
"col2",
index = "col1",
values = "col3",
aggregate_function = pl$element()$tanh()$mean(),

)

dataframe__quantile Aggregate the columns to a unique quantile value

Description

Aggregate the columns to a unique quantile value

Usage

dataframe__quantile(
quantile,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear")

)

Arguments

quantile Quantile between 0.0 and 1.0.
interpolation Interpolation method.

Value

A polars DataFrame

Examples
df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, 1))
df$quantile(0.7)

dataframe__rechunk Rechunk the data in this DataFrame to a contiguous allocation

Description

This will make sure all subsequent operations have optimal and predictable performance.

Usage

dataframe__rechunk()

Value

A polars DataFrame

114 dataframe__remove

dataframe__remove Remove rows, dropping those that match the given predicate ex-
pression(s)

Description

The original order of the remaining rows is preserved. Rows where the filter does not
evaluate to TRUE are retained (this includes rows where the predicate evaluates as null).

Usage

dataframe__remove(...)

Arguments

... <dynamic-dots> Expression that evaluates to a boolean Series.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
ccy = c("USD", "EUR", "USD", "JPY"),
year = c(2021, 2022, 2023, 2023),
total = c(3245, NA, -6680, 25000),

)

Remove rows matching a condition. Note that the row where `total` is null
is kept:
df$remove(pl$col("total") >= 0)

Note that this is *not* the same as simply inverting the condition in
`$filter()` because `$filter()` doesn't keep predicates that evaluate to
null:
df$filter(pl$col("total") < 0)

We can use multiple conditions, combined with and/or operators:
df$remove((pl$col("total") >= 0) & (pl$col("ccy") == "USD"))

df$remove((pl$col("total") >= 0) | (pl$col("ccy") == "USD"))

dataframe__rename 115

dataframe__rename Rename column names

Description

Rename column names

Usage

dataframe__rename(..., .strict = TRUE)

Arguments

... <dynamic-dots> Either a function that takes a character vector as input
and returns a character vector as output, or named values where names
are old column names and values are the new ones.

.strict Validate that all column names exist in the current schema, and throw
an error if any do not. (Note that this parameter is a no-op when passing
a function to ...).

Details

If existing names are swapped (e.g. ’A’ points to ’B’ and ’B’ points to ’A’), polars will
block projection and predicate pushdowns at this node.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
foo = 1:3,
bar = 6:8,
ham = letters[1:3]

)

df$rename(foo = "apple")

116 dataframe__rolling

dataframe__reverse Reverse the DataFrame

Description

Reverse the DataFrame

Usage

dataframe__reverse()

Value

A polars DataFrame

Examples

df <- pl$DataFrame(key = c("a", "b", "c"), val = 1:3)

df$reverse()

dataframe__rolling Create rolling groups based on a date/time or integer column

Description

Different from group_by_dynamic(), the windows are now determined by the individual
values and are not of constant intervals. For constant intervals use group_by_dynamic().
If you have a time series <t_0, t_1, ..., t_n>, then by default the windows created will
be:

• (t_0 - period, t_0]
• (t_1 - period, t_1]

• …
• (t_n - period, t_n]

whereas if you pass a non-default offset, then the windows will be:

• (t_0 + offset, t_0 + offset + period]
• (t_1 + offset, t_1 + offset + period]

• …
• (t_n + offset, t_n + offset + period]

dataframe__rolling 117

Usage

dataframe__rolling(
index_column,
...,
period,
offset = NULL,
closed = c("right", "left", "both", "none"),
group_by = NULL

)

Arguments

index_column Column used to group based on the time window. Often of type Date/Datetime.
This column must be sorted in ascending order (or, if group_by is speci-
fied, then it must be sorted in ascending order within each group). In case
of a dynamic group by on indices, the data type needs to be either Int32
or In64. Note that Int32 gets temporarily cast to Int64, so if performance
matters, use an Int64 column.

... These dots are for future extensions and must be empty.
period Length of the window - must be non-negative.
offset Offset of the window. Default is -period.
closed Define which sides of the interval are closed (inclusive). Default is "left".
group_by Also group by this column/these columns. Can be expressions or objects

coercible to expressions.

Value

An object of class polars_rolling_group_by

See Also

• <DataFrame>$group_by_dynamic()

Examples
dates <- c(

"2020-01-01 13:45:48",
"2020-01-01 16:42:13",
"2020-01-01 16:45:09",
"2020-01-02 18:12:48",
"2020-01-03 19:45:32",
"2020-01-08 23:16:43"

)

df <- pl$DataFrame(dt = dates, a = c(3, 7, 5, 9, 2, 1))$with_columns(
pl$col("dt")$str$strptime(pl$Datetime())

)

df$rolling(index_column = "dt", period = "2d")$agg(

118 dataframe__sample

sum_a = pl$col("a")$sum(),
min_a = pl$col("a")$min(),
max_a = pl$col("a")$max()

)

dataframe__sample Sample from this DataFrame

Description

Sample from this DataFrame

Usage

dataframe__sample(
n = NULL,
...,
fraction = NULL,
with_replacement = FALSE,
shuffle = FALSE,
seed = NULL

)

Arguments

n Number of items to return. Cannot be used with fraction. Defaults to
1 if fraction is NULL.

... These dots are for future extensions and must be empty.
fraction Fraction of items to return. Cannot be used with n.
with_replacement

Allow values to be sampled more than once.
shuffle Shuffle the order of sampled data points.
seed Seed for the random number generator. If NULL (default), a random seed

is generated for each sample operation.

Value

A polars DataFrame

Examples
df <- pl$DataFrame(

foo = 1:3,
bar = 6:8,
ham = c("a", "b", "c")

)
df$sample(n = 2, seed = 0)

dataframe__select 119

dataframe__select Select and modify columns of a DataFrame

Description

Select and perform operations on a subset of columns only. This discards unmentioned
columns (like .() in data.table and contrarily to dplyr::mutate()).
One cannot use new variables in subsequent expressions in the same $select() call. For
instance, if you create a variable x, you will only be able to use it in another $select() or
$with_columns() call.

Usage

dataframe__select(...)

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

Value

A polars DataFrame

Examples
as_polars_df(iris)$select(

abs_SL = pl$col("Sepal.Length")$abs(),
add_2_SL = pl$col("Sepal.Length") + 2

)

dataframe__select_seq
Select columns from this DataFrame

Description

This will run all expression sequentially instead of in parallel. Use this when the work per
expression is cheap.

Usage

dataframe__select_seq(...)

120 dataframe__serialize

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
foo = 1:3,
bar = 6:8,
ham = letters[1:3]

)
df$select_seq("foo", bar2 = pl$col("bar") * 2)

dataframe__serialize Serialize the DataFrame to a binary format

Description

Serialize the DataFrame to a binary format. Currently, this format is uncompressed Arrow
IPC stream format, so other Apache Arrow implementations may be able to read it.

Usage

dataframe__serialize()

pl__deserialize_df(data)

Arguments

data A raw vector of serialized DataFrame.

Value
• <dataframe>$serialize() returns raw vector of serialized DataFrame.

• pl$deserialize_df() returns a deserialized DataFrame.

dataframe__set_sorted 121

Examples
df <- pl$DataFrame(

foo = 1:3,
bar = 6:8,

)$cast(bar = pl$UInt8)

Serialize the DataFrame to a binary format
serialized <- df$serialize()
serialized

The bytes can later be deserialized back to a DataFrame
pl$deserialize_df(serialized)

Other Apache Arrow implementations may be able to read it.
if (requireNamespace("arrow", quietly = TRUE)) {

arrow::read_ipc_stream(serialized, as_data_frame = FALSE)
}

dataframe__set_sorted
Indicate that one or multiple columns are sorted

Description

This can speed up future operations, but it can lead to incorrect results if the data is not
sorted! Use with care!

Usage

dataframe__set_sorted(column, ..., descending = FALSE)

Arguments

column Column that is sorted.
... These dots are for future extensions and must be empty.
descending Whether the columns are sorted in descending order.

Value

A polars DataFrame

Examples
We mark the data as sorted by "age" but this is not the case!
It is up to the user to ensure that the column is actually sorted.
df1 <- pl$DataFrame(

name = c("steve", "elise", "bob"),
age = c(42, 44, 18)

)$set_sorted("age")

122 dataframe__shift

df1$flags

dataframe__shift Shift values by the given number of indices

Description

Shift values by the given number of indices

Usage

dataframe__shift(n = 1, ..., fill_value = NULL)

Arguments

n Number of indices to shift forward. If a negative value is passed, values
are shifted in the opposite direction instead.

... These dots are for future extensions and must be empty.

fill_value Fill the resulting null values with this value. Accepts expression input.
Non-expression inputs are parsed as literals.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(a = 1:4, b = 5:8)

By default, values are shifted forward by one index.
df$shift()

Pass a negative value to shift in the opposite direction instead.
df$shift(-2)

Specify fill_value to fill the resulting null values.
df$shift(-2, fill_value = 100)

dataframe__slice 123

dataframe__slice Get a slice of the DataFrame.

Description

Get a slice of the DataFrame.

Usage

dataframe__slice(offset, length = NULL)

Arguments

offset Start index, can be a negative value. This is 0-indexed, so offset = 1
skips the first row.

length Length of the slice. If NULL (default), all rows starting at the offset will
be selected.

Value

A polars DataFrame

Examples
skip the first 2 rows and take the 4 following rows
as_polars_df(mtcars)$slice(2, 4)

this is equivalent to:
mtcars[3:6,]

dataframe__sort Sort a DataFrame by the given columns

Description

Sort a DataFrame by the given columns

Usage

dataframe__sort(
...,
descending = FALSE,
nulls_last = FALSE,
multithreaded = TRUE,
maintain_order = FALSE

)

124 dataframe__std

Arguments

... <dynamic-dots> Column(s) to sort by. Can be character values indi-
cating column names or Expr(s).

descending Sort in descending order. When sorting by multiple columns, this can be
specified per column by passing a logical vector.

nulls_last Place null values last. When sorting by multiple columns, this can be
specified per column by passing a logical vector.

multithreaded Sort using multiple threads.
maintain_order

Whether the order should be maintained if elements are equal. If TRUE,
streaming is not possible and performance might be worse since this re-
quires a stable search.

Value

A polars DataFrame

Examples
df <- pl$DataFrame(

a = c(1, 2, NA, 4),
b = c(6, 5, 4, 3),
c = c("a", "c", "b", "a")

)

Pass a single column name to sort by that column.
df$sort("a")

Sorting by expressions is also supported
df$sort(pl$col("a") + pl$col("b") * 2, nulls_last = TRUE)

Sort by multiple columns by passing a vector of columns
df$sort(c("c", "a"), descending = TRUE)

Or use positional arguments to sort by multiple columns in the same way
df$sort("c", "a", descending = c(FALSE, TRUE))

dataframe__std Aggregate the columns of this DataFrame to their standard devi-
ation values

Description

Aggregate the columns of this DataFrame to their standard deviation values

Usage

dataframe__std(ddof = 1)

dataframe__sum 125

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars DataFrame

Examples
df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, 1))
df$std()
df$std(ddof = 0)

dataframe__sum Aggregate the columns of this DataFrame to their sum values

Description

Aggregate the columns of this DataFrame to their sum values

Usage

dataframe__sum()

Value

A polars DataFrame

Examples
df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, 1))
df$sum()

dataframe__sum_horizontal
Sum all values horizontally across columns.

Description

Sum all values horizontally across columns.

Usage

dataframe__sum_horizontal(..., ignore_nulls = TRUE)

126 dataframe__tail

Arguments

... These dots are for future extensions and must be empty.
ignore_nulls Ignore null values (default). If FALSE, any null value in the input will lead

to a null output.

Value

A polars Series

Examples

df <- pl$DataFrame(
foo = c(1, 2, 3),
bar = c(4.0, 5.0, 6.0),

)
df$sum_horizontal()

dataframe__tail Get the last n rows.

Description

Get the last n rows.

Usage

dataframe__tail(n = 5)

Arguments

n Number of rows to return. If a negative value is passed, return all rows
except the first abs(n).

Value

A polars DataFrame

Examples

df <- pl$DataFrame(foo = 1:5, bar = 6:10, ham = letters[1:5])

df$tail(3)

Pass a negative value to get all rows except the first `abs(n)`.
df$tail(-3)

dataframe__top_k 127

dataframe__top_k Return the k largest rows

Description

Non-null elements are always preferred over null elements, regardless of the value of reverse.
The output is not guaranteed to be in any particular order, call sort() after this function
if you wish the output to be sorted.

Usage

dataframe__top_k(k, ..., by, reverse = FALSE)

Arguments

k Number of rows to return.

... These dots are for future extensions and must be empty.

by Column(s) used to determine the bottom rows. Accepts expression input.
Strings are parsed as column names.

reverse Consider the k smallest elements of the by column(s) (instead of the
k largest). This can be specified per column by passing a sequence of
booleans.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
a = c("a", "b", "a", "b", "b", "c"),
b = c(2, 1, 1, 3, 2, 1)

)

Get the rows which contain the 4 largest values in column b.
df$top_k(4, by = "b")

Get the rows which contain the 4 largest values when sorting on column a
and b
df$top_k(4, by = c("a", "b"))

128 dataframe__to_dummies

dataframe__to_dummies
Convert categorical variables into dummy/indicator variables

Description

Convert categorical variables into dummy/indicator variables

Usage

dataframe__to_dummies(
...,
separator = "_",
drop_first = FALSE,
drop_nulls = FALSE

)

Arguments

... <dynamic-dots> Column names or selectors that should be converted
to dummy variables. If empty (default), convert all columns (same as
specifying with the selector cs$all()).

separator Separator/delimiter used when generating column names.
drop_first Remove the first category from the variables being encoded.
drop_nulls A boolean indicating whether to generate columns for null values.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
foo = c(1L, 2L),
bar = c(3, NA),
ham = c("a", "b")

)
df$to_dummies()

df$to_dummies(drop_first = TRUE)
df$to_dummies(drop_nulls = TRUE)

df$to_dummies("foo", "bar", separator = ":")
df$to_dummies(cs$integer(), separator=":")
df$to_dummies(cs$integer(), drop_first = TRUE, separator = ":")

dataframe__to_series 129

dataframe__to_series Select column as Series at index location

Description

Select column as Series at index location

Usage

dataframe__to_series(index = 0)

Arguments

index Index of the column to return as Series. Defaults to 0, which is the first
column.

Value

Series or NULL

Examples
df <- as_polars_df(iris[1:10,])

default is to extract the first column
df$to_series()

Polars is 0-indexed, so we use index = 1 to extract the *2nd* column
df$to_series(index = 1)

dataframe__to_struct Convert a DataFrame to a Series of type Struct

Description

Convert a DataFrame to a Series of type Struct

Usage

dataframe__to_struct(name = "")

Arguments

name A character. Name for the struct Series.

Value

A Series of the struct type

130 dataframe__transpose

See Also

• as_polars_series()

Examples

df <- pl$DataFrame(
a = 1:5,
b = c("one", "two", "three", "four", "five"),

)
df$to_struct("nums")

dataframe__transpose Transpose a DataFrame over the diagonal

Description

Transpose a DataFrame over the diagonal

Usage

dataframe__transpose(
...,
include_header = FALSE,
header_name = "column",
column_names = NULL

)

Arguments

... These dots are for future extensions and must be empty.
include_header

If set, the column names will be added as first column.
header_name If include_header is set, this determines the name of the column that

will be inserted.
column_names Optional string naming an existing column, or a function that takes an

integer vector representing the position of value (non-header) columns and
returns a character vector of same length. Column position is 0-indexed.

Details

This is a very expensive operation. Perhaps you can do it differently.

Value

A polars DataFrame

dataframe__unique 131

Examples
df <- pl$DataFrame(a = c(1, 2, 3), b = c(4, 5, 6))
df$transpose(include_header = TRUE)

Replace the auto-generated column names with a list
df$transpose(include_header = FALSE, column_names = c("x", "y", "z"))

Include the header as a separate column
df$transpose(

include_header = TRUE, header_name = "foo", column_names = c("x", "y", "z")
)

Use a function to produce the new column names
name_generator <- function(x) {

paste0("my_column_", x)
}
df$transpose(include_header = FALSE, column_names = name_generator)

Use an existing column as the new column names
df <- pl$DataFrame(id = c("i", "j", "k"), a = c(1, 2, 3), b = c(4, 5, 6))
df$transpose(column_names = "id")
df$transpose(include_header = TRUE, header_name = "new_id", column_names = "id")

dataframe__unique Drop duplicate rows

Description

Drop duplicate rows

Usage

dataframe__unique(
...,
keep = c("any", "none", "first", "last"),
maintain_order = FALSE,
subset = deprecated()

)

Arguments

... <dynamic-dots> Column names or selectors for which are considered.
If empty (default), use all columns (same as specifying with the selector
cs$all()).

keep Which of the duplicate rows to keep. Must be one of:
• "any": does not give any guarantee of which row is kept. This allows

more optimizations.
• "none": don’t keep duplicate rows.

132 dataframe__unnest

• "first": keep first unique row.
• "last": keep last unique row.

maintain_order
Keep the same order as the original data. This is more expensive to com-
pute. Setting this to TRUE blocks the possibility to run on the streaming
engine.

subset [Deprecated] Replaced by ... in 1.1.0.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
foo = c(1, 2, 3, 1),
bar = c("a", "a", "a", "a"),
ham = c("b", "b", "b", "b"),

)
df$unique(maintain_order = TRUE)

df$unique(subset = c("bar", "ham"), maintain_order = TRUE)

df$unique(keep = "last", maintain_order = TRUE)

dataframe__unnest Decompose struct columns into separate columns for each of their
fields

Description

The new columns will be inserted at the location of the struct column.

Usage

dataframe__unnest(..., separator = NULL)

Arguments

... <dynamic-dots> Name of the struct column(s) or selectors that should
be unnested.

separator NULL (default) or single string. Rename output column names as combi-
nation of the struct column name, name separator and field name.

Value

A polars DataFrame

dataframe__unpivot 133

Examples
df <- pl$DataFrame(

a = 1:5,
b = c("one", "two", "three", "four", "five"),
c = 6:10

)$select(
pl$struct("b"),
pl$struct(c("a", "c"))$alias("a_and_c")

)
df

df$unnest("a_and_c")
df$unnest("a_and_c", separator = ":")

dataframe__unpivot Unpivot a frame from wide to long format

Description

This function is useful to massage a frame into a format where one or more columns are
identifier variables (index) while all other columns, considered measured variables (on), are
”unpivoted” to the row axis leaving just two non-identifier columns, ”variable” and ”value”.

Usage

dataframe__unpivot(
on = NULL,
...,
index = NULL,
variable_name = NULL,
value_name = NULL

)

Arguments

on Column(s) or selector(s) to use as values variables. If on is empty (cs$empty()),
no columns will be used. If set to NULL (default), all columns that are not
in index will be used.

... These dots are for future extensions and must be empty.
index Column(s) or selector(s) to use as identifier variables.
variable_name Name to give to the new column containing the names of the melted

columns. Defaults to "variable".
value_name Name to give to the new column containing the values of the melted

columns. Defaults to "value".

Value

A polars LazyFrame

134 dataframe__unstack

Examples
df <- pl$DataFrame(

a = c("x", "y", "z"),
b = c(1, 3, 5),
c = c(2, 4, 6)

)
df$unpivot(index = "a", on = c("b", "c"))

dataframe__unstack Unstack a long table to a wide form without doing an aggregation

Description

This can be much faster than a pivot, because it can skip the grouping phase.

Usage

dataframe__unstack(
...,
step,
how = c("vertical", "horizontal"),
fill_values = NULL

)

Arguments

... <dynamic-dots> Column name(s) and selector(s) to include in the op-
eration. If empty, use all columns.

step Number of rows in the unstacked frame.
how Direction of the unstack. Must be one of "vertical" or "horizontal".
fill_values Fill values that don’t fit the new size with this value. This can be a scalar

value or a named list of the sort list(<column_name> = <fill_value>).
See examples.

Value

A polars DataFrame

Examples
df <- pl$DataFrame(x = LETTERS[1:8], y = 1:8)$with_columns(

z = pl$int_ranges(pl$col("y"), pl$col("y") + 2, dtype = pl$UInt8)
)
df

df$unstack(step = 4, how = "vertical")
df$unstack(step = 2, how = "horizontal")
df$unstack(cs$numeric(), step = 5, fill_values = 0)
df$unstack("x", "y", step = 5, fill_values = list(y = 999, x = "foo"))

dataframe__var 135

dataframe__var Aggregate the columns in the DataFrame to their variance value

Description

Aggregate the columns in the DataFrame to their variance value

Usage

dataframe__var(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars DataFrame

Examples
df <- pl$DataFrame(a = 1:4, b = c(1, 2, 1, 1))
df$var()
df$var(ddof = 0)

dataframe__with_columns
Modify/append column(s) of a DataFrame

Description

Add columns or modify existing ones with expressions. This is similar to dplyr::mutate()
as it keeps unmentioned columns (unlike $select()).
However, unlike dplyr::mutate(), one cannot use new variables in subsequent expressions
in the same $with_columns()call. For instance, if you create a variable x, you will only be
able to use it in another $with_columns() or $select() call.

Usage

dataframe__with_columns(...)

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

136 dataframe__with_columns_seq

Value

A polars DataFrame

Examples

Pass an expression to add it as a new column.
df <- pl$DataFrame(

a = 1:4,
b = c(0.5, 4, 10, 13),
c = c(TRUE, TRUE, FALSE, TRUE),

)
df$with_columns((pl$col("a")^2)$alias("a^2"))

Added columns will replace existing columns with the same name.
df$with_columns(a = pl$col("a")$cast(pl$Float64))

Multiple columns can be added
df$with_columns(

(pl$col("a")^2)$alias("a^2"),
(pl$col("b") / 2)$alias("b/2"),
(pl$col("c")$not())$alias("not c"),

)

Name expression instead of `$alias()`
df$with_columns(

`a^2` = pl$col("a")^2,
`b/2` = pl$col("b") / 2,
`not c` = pl$col("c")$not(),

)

dataframe__with_columns_seq
Modify/append column(s) of a DataFrame

Description

This will run all expression sequentially instead of in parallel. Use this only when the work
per expression is cheap.
Add columns or modify existing ones with expressions. This is similar to dplyr::mutate()
as it keeps unmentioned columns (unlike $select()).
However, unlike dplyr::mutate(), one cannot use new variables in subsequent expressions
in the same $with_columns_seq()call. For instance, if you create a variable x, you will
only be able to use it in another $with_columns_seq() or $select() call.

Usage

dataframe__with_columns_seq(...)

dataframe__with_row_index 137

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

Value

A polars DataFrame

Examples

Pass an expression to add it as a new column.
df <- pl$DataFrame(

a = 1:4,
b = c(0.5, 4, 10, 13),
c = c(TRUE, TRUE, FALSE, TRUE),

)
df$with_columns_seq((pl$col("a")^2)$alias("a^2"))

Added columns will replace existing columns with the same name.
df$with_columns_seq(a = pl$col("a")$cast(pl$Float64))

Multiple columns can be added
df$with_columns_seq(

(pl$col("a")^2)$alias("a^2"),
(pl$col("b") / 2)$alias("b/2"),
(pl$col("c")$not())$alias("not c"),

)

Name expression instead of `$alias()`
df$with_columns_seq(

`a^2` = pl$col("a")^2,
`b/2` = pl$col("b") / 2,
`not c` = pl$col("c")$not(),

)

dataframe__with_row_index
Add a row index as the first column in the DataFrame

Description

Add a row index as the first column in the DataFrame

Usage

dataframe__with_row_index(name = "index", offset = 0)

138 dataframe__write_csv

Arguments

name Name of the index column.
offset Start the index at this offset. Cannot be negative.

Value

A polars DataFrame

Examples
df <- pl$DataFrame(x = c(1, 3, 5), y = c(2, 4, 6))
df$with_row_index()

df$with_row_index("id", offset = 1000)

An index column can also be created using the expressions int_range()
and len()$
df$with_columns(

index = pl$int_range(pl$len(), dtype = pl$UInt32)
)

dataframe__write_csv Write to comma-separated values (CSV) file

Description

Write to comma-separated values (CSV) file

Usage

dataframe__write_csv(
file,
...,
include_bom = FALSE,
include_header = TRUE,
separator = ",",
line_terminator = "\n",
quote_char = "\"",
batch_size = 1024,
datetime_format = NULL,
date_format = NULL,
time_format = NULL,
float_scientific = NULL,
float_precision = NULL,
decimal_comma = FALSE,
null_value = "",
quote_style = c("necessary", "always", "never", "non_numeric"),
storage_options = NULL,

dataframe__write_csv 139

retries = 2
)

Arguments

file File path to which the result will be written.
... These dots are for future extensions and must be empty.
include_bom Logical, whether to include UTF-8 BOM in the CSV output.
include_header

Logical, whether to include header in the CSV output.
separator Separate CSV fields with this symbol.
line_terminator

String used to end each row.
quote_char Byte to use as quoting character.
batch_size Number of rows that will be processed per thread.
datetime_format

A format string, with the specifiers defined by the chrono Rust crate.
If no format specified, the default fractional-second precision is inferred
from the maximum timeunit found in the frame’s Datetime cols (if any).

date_format A format string, with the specifiers defined by the chrono Rust crate.
time_format A format string, with the specifiers defined by the chrono Rust crate.
float_scientific

Whether to use scientific form always (TRUE), never (FALSE), or automat-
ically (NULL) for Float32 and Float64 datatypes.

float_precision
Number of decimal places to write, applied to both Float32 and Float64
datatypes.

decimal_comma If TRUE, use a comma "," as the decimal separator instead of a point.
Floats will be encapsulated in quotes if necessary.

null_value A string representing null values (defaulting to the empty string).
quote_style Determines the quoting strategy used. Must be one of:

• "necessary" (default): This puts quotes around fields only when
necessary. They are necessary when fields contain a quote, delim-
iter or record terminator. Quotes are also necessary when writing
an empty record (which is indistinguishable from a record with one
empty field). This is the default.

• "always": This puts quotes around every field. Always.
• "never": This never puts quotes around fields, even if that results in

invalid CSV data (e.g.: by not quoting strings containing the sepa-
rator).

• "non_numeric": This puts quotes around all fields that are non-
numeric. Namely, when writing a field that does not parse as a valid
float or integer, then quotes will be used even if they aren‘t strictly
necessary.

https://docs.rs/chrono/latest/chrono/format/strftime/index.html
https://docs.rs/chrono/latest/chrono/format/strftime/index.html
https://docs.rs/chrono/latest/chrono/format/strftime/index.html

140 dataframe__write_ipc

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.

Value

NULL invisibly.

Examples

tmpf <- tempfile()
as_polars_df(mtcars)$write_csv(tmpf)
pl$read_csv(tmpf)

as_polars_df(mtcars)$write_csv(tmpf, separator = "|")
pl$read_csv(tmpf, separator = "|")

dataframe__write_ipc Write to Arrow IPC File Format

Description

Write to Arrow IPC File Format

Usage

dataframe__write_ipc(
path,
...,
compression = c("zstd", "lz4", "uncompressed"),
compat_level = c("newest", "oldest"),
storage_options = NULL,
retries = 2

)

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

dataframe__write_ipc 141

Arguments

path A character. File path to which the file should be written.

... These dots are for future extensions and must be empty.

compression Determines the compression algorithm. Must be one of:

• "uncompressed" or NULL: Write an uncompressed Arrow file.
• "lz4": Fast compression/decompression.
• "zstd" (default): Good compression performance.

compat_level Determines the compatibility level when exporting Polars’ internal data
structures. When specifying a new compatibility level, Polars exports its
internal data structures that might not be interpretable by other Arrow
implementations. The level can be specified as the name (e.g., "newest")
or as a scalar integer (Currently, 0 and 1 are supported).

• "newest" [Experimental] (default): Use the highest level, currently
same as 1 (Low compatibility).

• "oldest": Same as 0 (High compatibility).
storage_options

Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:

• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.

Value

NULL invisibly.

Examples

tmpf <- tempfile(fileext = ".arrow")
as_polars_df(mtcars)$write_ipc(tmpf)

pl$read_ipc(tmpf)

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

142 dataframe__write_ipc_stream

dataframe__write_ipc_stream
Write to Arrow IPC Streaming Format

Description

Write to Arrow IPC Streaming Format

Usage

dataframe__write_ipc_stream(
path,
...,
compression = c("zstd", "lz4", "uncompressed"),
compat_level = c("newest", "oldest")

)

Arguments

path A character. File path to which the file should be written.
... These dots are for future extensions and must be empty.
compression Determines the compression algorithm. Must be one of:

• "uncompressed" or NULL: Write an uncompressed Arrow file.
• "lz4": Fast compression/decompression.
• "zstd" (default): Good compression performance.

compat_level Determines the compatibility level when exporting Polars’ internal data
structures. When specifying a new compatibility level, Polars exports its
internal data structures that might not be interpretable by other Arrow
implementations. The level can be specified as the name (e.g., "newest")
or as a scalar integer (Currently, 0 and 1 are supported).
• "newest" [Experimental] (default): Use the highest level, currently

same as 1 (Low compatibility).
• "oldest": Same as 0 (High compatibility).

Value

NULL invisibly.

Examples

tmpf <- tempfile(fileext = ".arrows")
as_polars_df(mtcars)$write_ipc_stream(tmpf)

nanoarrow::read_nanoarrow(tmpf)

dataframe__write_json 143

dataframe__write_json
Serialize to JSON representation

Description

Serialize to JSON representation

Usage

dataframe__write_json(file)

Arguments

file File path to which the result will be written.

Value

NULL invisibly.

Examples

dat <- as_polars_df(head(mtcars))
destination <- tempfile()

dat$select(pl$col("drat", "mpg"))$write_json(destination)
jsonlite::fromJSON(destination)

dataframe__write_ndjson
Serialize to newline delimited JSON representation

Description

Serialize to newline delimited JSON representation

Usage

dataframe__write_ndjson(file)

Arguments

file File path to which the result will be written.

144 dataframe__write_parquet

Value

NULL invisibly.

Examples

dat <- as_polars_df(head(mtcars))
destination <- tempfile()

dat$select(pl$col("drat", "mpg"))$write_ndjson(destination)
jsonlite::stream_in(file(destination))

dataframe__write_parquet
Write to Parquet file

Description

Write to Parquet file

Usage

dataframe__write_parquet(
file,
...,
compression = c("lz4", "uncompressed", "snappy", "gzip", "brotli", "zstd"),
compression_level = NULL,
statistics = TRUE,
row_group_size = NULL,
data_page_size = NULL,
partition_by = NULL,
partition_chunk_size_bytes = 4294967296,
storage_options = NULL,
retries = 2,
mkdir = FALSE

)

Arguments

file File path to which the result should be written. This should be a path to
a directory if writing a partitioned dataset.

... These dots are for future extensions and must be empty.
compression The compression method. Must be one of:

• "lz4": fast compression/decompression.
• "uncompressed"

dataframe__write_parquet 145

• "snappy": this guarantees that the parquet file will be compatible
with older parquet readers.

• "gzip"
• "brotli"
• "zstd": good compression performance.

compression_level
NULL or integer. The level of compression to use. Only used if method is
one of "gzip", "brotli", or "zstd". Higher compression means smaller
files on disk:
• "gzip": min-level: 0, max-level: 9, default: 6.
• "brotli": min-level: 0, max-level: 11, default: 1.
• "zstd": min-level: 1, max-level: 22, default: 3.

statistics Whether statistics should be written to the Parquet headers. Possible
values:
• TRUE: enable default set of statistics (default). Some statistics may

be disabled.
• FALSE: disable all statistics
• "full": calculate and write all available statistics
• A list created via parquet_statistics() to specify which statistics

to include.
row_group_size

Size of the row groups in number of rows. If NULL (default), the chunks of
the DataFrame are used. Writing in smaller chunks may reduce memory
pressure and improve writing speeds.

data_page_size
Size of the data page in bytes. If NULL (default), it is set to 1024^2 bytes.

partition_by [Experimental] A character vector indicating column(s) to partition by.
A partitioned dataset will be written if this is specified.

partition_chunk_size_bytes
[Experimental] Approximate size to split DataFrames within a single
partition when writing. Note this is calculated using the size of the
DataFrame in memory (the size of the output file may differ depending
on the file format / compression).

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

146 datatype_expr__default_value

retries Number of retries if accessing a cloud instance fails.
mkdir Recursively create all the directories in the path.

Value

NULL invisibly.

Examples

dat = as_polars_df(mtcars)

write data to a single parquet file
destination = withr::local_tempfile(fileext = ".parquet")
dat$write_parquet(destination)

write data to folder with a hive-partitioned structure
dest_folder = withr::local_tempdir()
dat$write_parquet(dest_folder, partition_by = c("gear", "cyl"))
list.files(dest_folder, recursive = TRUE)

datatype_expr__default_value
Get a default value of a specific type

Description

[Experimental] Get a default value of a specific type:

• Integers and floats are their zero value as default, unless otherwise specified;
• Temporals are a physical zero as default;
• pl$Decimal is zero as default;
• pl$String and pl$Binary are an empty string;
• pl$List is an empty list, unless otherwise specified;
• pl$Array is the inner default value repeated over the shape;
• pl$Struct is the inner default value for all fields;
• pl$Enum is the first category if it exists;
• pl$Null and pl$Categorical are null.

Usage

datatype_expr__default_value(
n = 1,
...,
numeric_to_one = FALSE,
num_list_values = 0

)

datatype_expr__default_value 147

Arguments

n Number of values in the output.
... These dots are for future extensions and must be empty.
numeric_to_one

Use 1 instead of 0 as the default value for numeric types.
num_list_values

The amount of values a list contains.

Details

Because R objects are typically mapped to Series, this function often calls as_polars_series()
internally. However, unlike R, Polars has scalars of length 1, so if an R object is converted
to a Series of length 1, this function get the first value of the Series and convert it to a
scalar literal. If you want to implement your own conversion from an R class to a Polars
object, define an S3 method for as_polars_series() instead of this function.

Default S3 method:
Create a Series by calling as_polars_series() and then convert that Series to an Expr.
If the length of the Series is 1, it will be converted to a scalar value.
Additional arguments ... are passed to as_polars_series().

S3 method for character:
If the as_lit argument is FALSE (default), this function will call pl$col() and the char-
acter vector is treated as column names. Otherwise, the default method is called.

S3 method for raw:
If the raw_as_binary argument is TRUE (default), the raw vector is converted to a Binary
type scalar. Otherwise, the default method is called.

S3 method for NULL:
NULL is converted to a Null type null literal.

Value

A polars expression

See Also

• as_polars_series(): R -> Polars type mapping is mostly defined by this function.

Examples
uint32 <- pl$UInt32$to_dtype_expr()
string <- pl$String$to_dtype_expr()
array <- pl$Array(pl$Float64, 2)$to_dtype_expr()

pl$select(
uint32_default = uint32$default_value(),
uint32_default_bis = uint32$default_value(numeric_to_one = TRUE),

148 datatype_expr__inner_dtype

string_default = string$default_value(),
array_default = array$default_value()

)

Return more values with `n`
pl$select(uint32_default = uint32$default_value(n = 3))

Customize the number of default values in a list with `num_list_values`
l <- pl$List(pl$Float64)$to_dtype_expr()
pl$select(

list_default = l$default_value(),
list_default_bis = l$default_value(num_list_values = 3),

)

datatype_expr__display
Get a formatted version of the output DataType

Description

[Experimental] Get a formatted version of the output DataType.

Usage

datatype_expr__display()

Value

A polars expression

Examples

df <- pl$DataFrame(x = 1:2, y = c("a", "b"), z = c(1, 2))
df$select(

x = pl$dtype_of("x")$display(),
y = pl$dtype_of("y")$display(),
z = pl$dtype_of("z")$display(),

)$transpose(include_header = TRUE)

datatype_expr__inner_dtype
Get the inner DataType of a List or Array

Description

[Experimental] Get the inner DataType of a List or Array.

datatype_expr__matches 149

Usage

datatype_expr__inner_dtype()

Value

A polars datatype expression. This is not the same as a polars expression.

Examples
df <- pl$DataFrame(

a = list(1L),
b = list(list("a")),
c = list(data.frame(x = 1, y = 2))

)

df$select(
a_inner_dtype = pl$dtype_of("a")$inner_dtype()$display(),
b_inner_dtype = pl$dtype_of("b")$inner_dtype()$display(),
c_inner_dtype = pl$dtype_of("c")$inner_dtype()$display()

)

datatype_expr__matches
Get whether the output DataType matches a certain selector

Description

[Experimental] Get whether the output DataType matches a certain selector.

Usage

datatype_expr__matches(selector)

Arguments

selector A selector presenting the data types to match.

Value

A polars datatype expression. This is not the same as a polars expression.

Examples
df <- pl$DataFrame(a = 1:3)
df$select(

a_is_string = pl$dtype_of("a")$matches(cs$string()),
a_is_integer = pl$dtype_of("a")$matches(cs$integer()),

)

150 expr_arr_agg

datatype__to_dtype_expr
Return a DataTypeExpr with a static DataType

Description

[Experimental] Return a DataTypeExpr with a static DataType.

Usage

datatype__to_dtype_expr()

Value

A polars datatype expression. This is not the same as a polars expression.

expr_arr_agg Run any polars aggregation expression against the array’s ele-
ments

Description

This looks similar to arreval(), but the key difference is that arragg() automatically
explodes the array if the expression inside returns a scalar (while arreval() always
returns an array).

Usage

expr_arr_agg(expr)

Arguments

expr Expression to run. Note that you can select an element with pl$element(),
pl$first(), and more. See Examples.

Value

A polars expression

expr_arr_all 151

Examples

df <- pl$DataFrame(a = list(c(1, NA), c(42, 13), c(NA, NA)))$
cast(pl$Array(pl$Int64, 2))

The column "null_count" has dtype u32 because `$null_count()` returns a
scalar for each sub-array. Using `arreval()` instead would return a
column with dtype arr(u32).
df$with_columns(

null_count = pl$col("a")$arr$agg(pl$element()$null_count())
)

The column "no_nulls" has dtype arr(u32) because the expression doesn't
guarantee to return a scalar.
df$with_columns(

no_nulls = pl$col("a")$arr$agg(pl$element()$drop_nulls())
)

expr_arr_all Evaluate whether all boolean values are true for every sub-array

Description

Evaluate whether all boolean values are true for every sub-array

Usage

expr_arr_all()

Value

A polars expression

Examples

df <- pl$DataFrame(
values = list(c(TRUE, TRUE), c(FALSE, TRUE), c(FALSE, FALSE), c(NA, NA)),

)$cast(pl$Array(pl$Boolean, 2))
df$with_columns(all = pl$col("values")arrall())

152 expr_arr_arg_max

expr_arr_any Evaluate whether any boolean value is true for every sub-array

Description

Evaluate whether any boolean value is true for every sub-array

Usage

expr_arr_any()

Value

A polars expression

Examples
df <- pl$DataFrame(

values = list(c(TRUE, TRUE), c(FALSE, TRUE), c(FALSE, FALSE), c(NA, NA)),
)$cast(pl$Array(pl$Boolean, 2))
df$with_columns(any = pl$col("values")arrany())

expr_arr_arg_max Retrieve the index of the maximum value in every sub-array

Description

Retrieve the index of the maximum value in every sub-array

Usage

expr_arr_arg_max()

Value

A polars expression

Examples
df <- pl$DataFrame(

values = list(1:2, 2:1)
)$cast(pl$Array(pl$Int32, 2))
df$with_columns(

arg_max = pl$col("values")$arr$arg_max()
)

expr_arr_arg_min 153

expr_arr_arg_min Retrieve the index of the minimum value in every sub-array

Description

Retrieve the index of the minimum value in every sub-array

Usage

expr_arr_arg_min()

Value

A polars expression

Examples
df <- pl$DataFrame(

values = list(1:2, 2:1)
)$cast(pl$Array(pl$Int32, 2))
df$with_columns(

arg_min = pl$col("values")$arr$arg_min()
)

expr_arr_contains Check if sub-arrays contain the given item

Description

Check if sub-arrays contain the given item

Usage

expr_arr_contains(item, ..., nulls_equal = TRUE)

Arguments

item Item that will be checked for membership. Can be an Expr or something
coercible to an Expr. Strings are not parsed as columns.

... These dots are for future extensions and must be empty.
nulls_equal If TRUE, treat null as a distinct value. Null values will not propagate.

Value

A polars expression

154 expr_arr_count_matches

Examples

df <- pl$DataFrame(
values = list(0:2, 4:6, c(NA, NA, NA)),
item = c(0L, 4L, 2L),

)$cast(values = pl$Array(pl$Float64, 3))
df$with_columns(

with_expr = pl$col("values")$arr$contains(pl$col("item")),
with_lit = pl$col("values")$arr$contains(1)

)

expr_arr_count_matches
Count how often a value occurs in every sub-array

Description

Count how often a value occurs in every sub-array

Usage

expr_arr_count_matches(element)

Arguments

element An Expr or something coercible to an Expr that produces a single value.

Value

A polars expression

Examples

df <- pl$DataFrame(
values = list(c(1, 2), c(1, 1), c(2, 2))

)$cast(pl$Array(pl$Int64, 2))
df$with_columns(number_of_twos = pl$col("values")$arr$count_matches(2))

expr_arr_eval 155

expr_arr_eval Run any polars expression on the sub-array’s values

Description

Run any polars expression on the sub-array’s values

Usage

expr_arr_eval(expr, ..., as_list = FALSE)

Arguments

expr Expression to run. Note that you can select an element with pl$element(),
pl$first(), and more. See Examples.

... These dots are for future extensions and must be empty.

as_list Collect the resulting data into a list datatype (instead of array datatype).
This allows for expressions which output a variable amount of data.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = list(c(1, 1), c(8, 5), c(3, 2))

)$cast(pl$Array(pl$Float64, 2))

df$with_columns(
cum_sum = pl$col("a")$arr$eval(pl$element()$cum_sum())

)

This would error without `as_list = TRUE` since `$unique()` doesn't return
the same number of values in each row.
df$with_columns(

cum_sum = pl$col("a")$arr$eval(pl$element()$unique(), as_list = TRUE)
)

156 expr_arr_first

expr_arr_explode Explode array in separate rows

Description

Returns a column with a separate row for every array element.

Usage

expr_arr_explode(..., empty_as_null = TRUE, keep_nulls = TRUE)

Arguments

... These dots are for future extensions and must be empty.
empty_as_null Indicates to explode an empty list/array into a null.
keep_nulls Indicates to explode a null list/array into a null.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(c(1, 2, 3), c(4, 5, 6))
)$cast(pl$Array(pl$Int64, 3))
df$select(pl$col("a")arrexplode())

expr_arr_first Get the first value of the sub-arrays

Description

Get the first value of the sub-arrays

Usage

expr_arr_first()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(c(1, 2, 3), c(4, 5, 6))
)$cast(pl$Array(pl$Int64, 3))
df$with_columns(first = pl$col("a")arrfirst())

expr_arr_get 157

expr_arr_get Get the value by index in every sub-array

Description

This allows to extract one value per array only. Values are 0-indexed (so index 0 would
return the first item of every sub-array) and negative values start from the end (so index
-1 returns the last item).

Usage

expr_arr_get(index, ..., null_on_oob = TRUE)

Arguments

index An Expr or something coercible to an Expr, that must return a single
index.

... These dots are for future extensions and must be empty.
null_on_oob If TRUE, return null if an index is out of bounds. Otherwise, raise an

error.

Value

A polars expression

Examples
df <- pl$DataFrame(

values = list(c(1, 2), c(3, 4), c(NA, 6)),
idx = c(1, NA, 3)

)$cast(values = pl$Array(pl$Float64, 2))
df$with_columns(

using_expr = pl$col("values")$arr$get("idx"),
val_0 = pl$col("values")$arr$get(0),
val_minus_1 = pl$col("values")$arr$get(-1),
val_oob = pl$col("values")$arr$get(10)

)

expr_arr_join Join elements in every sub-array

Description

Join all string items in a sub-array and place a separator between them. This only works
if the inner type of the array is String.

158 expr_arr_last

Usage

expr_arr_join(separator, ..., ignore_nulls = FALSE)

Arguments

separator String to separate the items with. Can be an Expr. Strings are not parsed
as columns.

... These dots are for future extensions and must be empty.
ignore_nulls If FALSE (default), null values will be propagated, i.e. if the row contains

any null values, the output is null.

Value

A polars expression

Examples
df <- pl$DataFrame(

values = list(c("a", "b", "c"), c("x", "y", "z"), c("e", NA, NA)),
separator = c("-", "+", "/"),

)$cast(values = pl$Array(pl$String, 3))
df$with_columns(

join_with_expr = pl$col("values")$arr$join(pl$col("separator")),
join_with_lit = pl$col("values")$arr$join(" "),
join_ignore_null = pl$col("values")$arr$join(" ", ignore_nulls = TRUE)

)

expr_arr_last Get the last value of the sub-arrays

Description

Get the last value of the sub-arrays

Usage

expr_arr_last()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(c(1, 2, 3), c(4, 5, 6))
)$cast(pl$Array(pl$Int64, 3))
df$with_columns(last = pl$col("a")arrlast())

expr_arr_len 159

expr_arr_len Return the number of elements in each sub-array

Description

Return the number of elements in each sub-array

Usage

expr_arr_len()

Value

A polars expression

Examples

df <- pl$DataFrame(
a = list(c(1, 1, 2), c(2, 3, 4))

)$cast(pl$Array(pl$Int64, 3))
df$with_columns(len = pl$col("a")arrlen())

expr_arr_max Compute the max value of the sub-arrays

Description

Compute the max value of the sub-arrays

Usage

expr_arr_max()

Value

A polars expression

Examples

df <- pl$DataFrame(
values = list(c(1, 2), c(3, 4), c(NA, NA))

)$cast(pl$Array(pl$Float64, 2))
df$with_columns(max = pl$col("values")arrmax())

160 expr_arr_min

expr_arr_median Compute the median value of the sub-arrays

Description

Compute the median value of the sub-arrays

Usage

expr_arr_median()

Value

A polars expression

Examples

df <- pl$DataFrame(
values = list(c(2, 1, 4), c(8.4, 3.2, 1)),

)$cast(pl$Array(pl$Float64, 3))
df$with_columns(median = pl$col("values")arrmedian())

expr_arr_min Compute the min value of the sub-arrays

Description

Compute the min value of the sub-arrays

Usage

expr_arr_min()

Value

A polars expression

Examples

df <- pl$DataFrame(
values = list(c(1, 2), c(3, 4), c(NA, NA))

)$cast(pl$Array(pl$Float64, 2))
df$with_columns(min = pl$col("values")arrmin())

expr_arr_n_unique 161

expr_arr_n_unique Count the number of unique values in every sub-array

Description

Count the number of unique values in every sub-array

Usage

expr_arr_n_unique()

Value

A polars expression

Examples

df <- pl$DataFrame(
a = list(c(1, 1, 2), c(2, 3, 4))

)$cast(pl$Array(pl$Int64, 3))
df$with_columns(n_unique = pl$col("a")$arr$n_unique())

expr_arr_reverse Reverse values in every sub-array

Description

Reverse values in every sub-array

Usage

expr_arr_reverse()

Value

A polars expression

Examples

df <- pl$DataFrame(
values = list(c(1, 2), c(3, 4), c(NA, 6))

)$cast(pl$Array(pl$Float64, 2))
df$with_columns(reverse = pl$col("values")$arr$reverse())

162 expr_arr_sort

expr_arr_shift Shift values in every sub-array by the given number of indices

Description

Shift values in every sub-array by the given number of indices

Usage

expr_arr_shift(n = 1)

Arguments

n Number of indices to shift forward. If a negative value is passed, values
are shifted in the opposite direction instead.

Value

A polars expression

Examples
df <- pl$DataFrame(

values = list(1:3, c(2L, NA, 5L)),
idx = 1:2,

)$cast(values = pl$Array(pl$Int32, 3))
df$with_columns(

shift_by_expr = pl$col("values")$arr$shift(pl$col("idx")),
shift_by_lit = pl$col("values")$arr$shift(2)

)

expr_arr_sort Sort values in every sub-array

Description

Sort values in every sub-array

Usage

expr_arr_sort(..., descending = FALSE, nulls_last = FALSE)

Arguments

... These dots are for future extensions and must be empty.
descending Sort in descending order.
nulls_last Place null values last.

expr_arr_std 163

Examples
df <- pl$DataFrame(

values = list(c(2, 1), c(3, 4), c(NA, 6))
)$cast(pl$Array(pl$Float64, 2))
df$with_columns(sort = pl$col("values")arrsort(nulls_last = TRUE))

expr_arr_std Compute the standard deviation of the sub-arrays

Description

Compute the standard deviation of the sub-arrays

Usage

expr_arr_std(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars expression

Examples
df <- pl$DataFrame(

values = list(c(2, 1, 4), c(8.4, 3.2, 1)),
)$cast(pl$Array(pl$Float64, 3))
df$with_columns(std = pl$col("values")arrstd())

expr_arr_sum Compute the sum of the sub-arrays

Description

Compute the sum of the sub-arrays

Usage

expr_arr_sum()

Value

A polars expression

164 expr_arr_to_struct

Examples

df <- pl$DataFrame(
values = list(c(1, 2), c(3, 4), c(NA, 6))

)$cast(pl$Array(pl$Float64, 2))
df$with_columns(sum = pl$col("values")arrsum())

expr_arr_to_list Convert an Array column into a List column with the same inner
data type

Description

Convert an Array column into a List column with the same inner data type

Usage

expr_arr_to_list()

Value

A polars expression

Examples

df <- pl$DataFrame(
a = list(c(1, 2), c(3, 4))

)$cast(pl$Array(pl$Int8, 2))

df$with_columns(
list = pl$col("a")$arr$to_list()

)

expr_arr_to_struct Convert the Series of type Array to a Series of type Struct

Description

Convert the Series of type Array to a Series of type Struct

Usage

expr_arr_to_struct(fields = NULL)

expr_arr_unique 165

Arguments

fields [Experimental] NULL (default) or character vector of field names, or a
function that takes an integer index and returns character. If the name
and number of the desired fields is known in advance, character vector of
field names can be given, which will be assigned by index. Otherwise, to
dynamically assign field names, a custom function can be used; if neither
are set, fields will be field_0, field_1... See the examples for details.

Value

A polars expression

Examples

df <- pl$DataFrame(
n = list(c(0, 1, 2), c(3, 4, 5)),
.schema_overrides = list(n = pl$Array(pl$Int8, 3))

)

df$with_columns(struct = pl$col("n")arrto_struct())

Convert array to struct with field name assignment by function/index:
df$select(pl$col("n")arrto_struct(\(idx) paste0("n", idx)))$unnest("n")

Convert array to struct with field name assignment by index from character:
df$select(pl$col("n")arrto_struct(c("a", "b", "c")))$unnest("n")

expr_arr_unique Get the unique values in every sub-array

Description

Get the unique values in every sub-array

Usage

expr_arr_unique(..., maintain_order = FALSE)

Arguments

... These dots are for future extensions and must be empty.
maintain_order

Maintain order of data. This requires more work.

Value

A polars expression

166 expr_bin_contains

Examples
df <- pl$DataFrame(

values = list(c(1, 1, 2), c(4, 4, 4), c(NA, 6, 7)),
)$cast(pl$Array(pl$Float64, 3))
df$with_columns(unique = pl$col("values")arrunique())

expr_arr_var Compute the variance of the sub-arrays

Description

Compute the variance of the sub-arrays

Usage

expr_arr_var(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars expression

Examples
df <- pl$DataFrame(

values = list(c(2, 1, 4), c(8.4, 3.2, 1)),
)$cast(pl$Array(pl$Float64, 3))
df$with_columns(var = pl$col("values")arrvar())

expr_bin_contains Check if binaries contain a binary substring

Description

Check if binaries contain a binary substring

Usage

expr_bin_contains(literal)

Arguments

literal The binary substring to look for.

expr_bin_decode 167

Value

A polars expression

Examples
colors <- pl$DataFrame(

name = c("black", "yellow", "blue"),
code = as_polars_series(c("x00x00x00", "xffxffx00", "x00x00xff"))$cast(pl$Binary),
lit = as_polars_series(c("x00", "xffx00", "xffxff"))$cast(pl$Binary)

)

colors$select(
"name",
contains_with_lit = pl$col("code")$bin$contains("xff"),
contains_with_expr = pl$col("code")$bin$contains(pl$col("lit"))

)

expr_bin_decode Decode values using the provided encoding

Description

Decode values using the provided encoding

Usage

expr_bin_decode(encoding, ..., strict = TRUE)

Arguments

encoding A character, "hex" or "base64". The encoding to use.
... These dots are for future extensions and must be empty.
strict Raise an error if the underlying value cannot be decoded, otherwise mask

out with a null value.

Value

A polars expression

Examples
df <- pl$DataFrame(

name = c("black", "yellow", "blue"),
code_hex = as_polars_series(c("000000", "ffff00", "0000ff"))$cast(pl$Binary),
code_base64 = as_polars_series(c("AAAA", "//8A", "AAD/"))$cast(pl$Binary)

)

df$with_columns(
decoded_hex = pl$col("code_hex")$bin$decode("hex"),

168 expr_bin_encode

decoded_base64 = pl$col("code_base64")$bin$decode("base64")
)

Set `strict = FALSE` to set invalid values to `null` instead of raising an error.
df <- pl$DataFrame(

colors = as_polars_series(c("000000", "ffff00", "invalid_value"))$cast(pl$Binary)
)
df$select(pl$col("colors")bindecode("hex", strict = FALSE))

expr_bin_encode Encode a value using the provided encoding

Description

Encode a value using the provided encoding

Usage

expr_bin_encode(encoding)

Arguments

encoding A character, "hex" or "base64". The encoding to use.

Value

A polars expression

Examples

df <- pl$DataFrame(
name = c("black", "yellow", "blue"),
code = as_polars_series(
c("000000", "ffff00", "0000ff")

)$cast(pl$Binary)bindecode("hex")
)

df$with_columns(encoded = pl$col("code")$bin$encode("hex"))

expr_bin_ends_with 169

expr_bin_ends_with Check if string values end with a binary substring

Description

Check if string values end with a binary substring

Usage

expr_bin_ends_with(suffix)

Arguments

suffix Suffix substring.

Value

A polars expression

Examples

colors <- pl$DataFrame(
name = c("black", "yellow", "blue"),
code = as_polars_series(c("x00x00x00", "xffxffx00", "x00x00xff"))$cast(pl$Binary),
suffix = as_polars_series(c("x00", "xffx00", "xffxff"))$cast(pl$Binary)

)

colors$select(
"name",
ends_with_lit = pl$col("code")$bin$ends_with("xff"),
ends_with_expr = pl$col("code")$bin$ends_with(pl$col("suffix"))

)

expr_bin_reinterpret Interpret bytes as another type

Description

Supported types are numerical or temporal dtypes, or an Array of these dtypes.

Usage

expr_bin_reinterpret(..., dtype, endianness = c("little", "big"))

170 expr_bin_size

Arguments

... These dots are for future extensions and must be empty.

dtype A Polars DataType or DataTypeExpr indicating which type to interpret
binary column into.

endianness Which endianness to use when interpreting bytes. Must be one of "little"
(default) or "big".

Value

A polars expression

Examples

df <- pl$DataFrame(x = blob::as_blob(c(5L, 35L)))

df$with_columns(
bin2int = pl$col("x")$bin$reinterpret(
dtype = pl$UInt8,
endianness = "little"

)
)

expr_bin_size Get the size of binary values in the given unit

Description

Get the size of binary values in the given unit

Usage

expr_bin_size(unit = c("b", "kb", "mb", "gb", "tb"))

Arguments

unit Scale the returned size to the given unit. Can be "b", "kb", "mb", "gb",
"tb".

Value

A polars expression

expr_bin_starts_with 171

Examples

df <- pl$DataFrame(
name = c("black", "yellow", "blue"),
code_hex = as_polars_series(c("000000", "ffff00", "0000ff"))$cast(pl$Binary)

)

df$with_columns(
n_bytes = pl$col("code_hex")$bin$size(),
n_kilobytes = pl$col("code_hex")$bin$size("kb")

)

expr_bin_starts_with Check if values start with a binary substring

Description

Check if values start with a binary substring

Usage

expr_bin_starts_with(prefix)

Arguments

prefix Prefix substring.

Value

A polars expression

Examples

colors <- pl$DataFrame(
name = c("black", "yellow", "blue"),
code = as_polars_series(c("x00x00x00", "xffxffx00", "x00x00xff"))$cast(pl$Binary),
prefix = as_polars_series(c("x00", "xffx00", "xffxff"))$cast(pl$Binary)

)

colors$select(
"name",
starts_with_lit = pl$col("code")$bin$starts_with("xff"),
starts_with_expr = pl$col("code")$bin$starts_with(pl$col("prefix"))

)

172 expr_dt_add_business_days

expr_cat_get_categories
Get the categories stored in this data type

Description

Get the categories stored in this data type

Usage

expr_cat_get_categories()

Value

A polars expression

Examples
df <- pl$DataFrame(

cats = factor(c("z", "z", "k", "a", "b")),
vals = factor(c(3, 1, 2, 2, 3))

)
df

df$select(
pl$col("cats")$cat$get_categories()

)
df$select(

pl$col("vals")$cat$get_categories()
)

expr_dt_add_business_days
Offset by n business days.

Description

[Experimental] Offset by n business days.

Usage

expr_dt_add_business_days(
n,
...,
week_mask = c(TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE),
holidays = as.Date(integer(0)),
roll = c("raise", "backward", "forward")

)

expr_dt_add_business_days 173

Arguments

n An integer value or a polars expression representing the number of busi-
ness days to offset by.

... These dots are for future extensions and must be empty.

week_mask Non-NA logical vector of length 7, representing the days of the week
to count. The default is Monday to Friday (c(TRUE, TRUE, TRUE, TRUE,
TRUE, FALSE, FALSE)). If you wanted to count only Monday to Thursday,
you would pass c(TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE).

holidays A Date class vector, representing the holidays to exclude from the count.

roll What to do when the start date lands on a non-business day. Options
are:

• "raise": raise an error;
• "forward": move to the next business day;
• "backward": move to the previous business day.

Value

A polars expression

Examples

df <- pl$DataFrame(start = as.Date(c("2020-1-1", "2020-1-2")))
df$with_columns(result = pl$col("start")dtadd_business_days(5))

You can pass a custom weekend - for example, if you only take Sunday off:
week_mask <- c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE)
df$with_columns(

result = pl$col("start")$dt$add_business_days(5, week_mask = week_mask)
)

You can also pass a list of holidays:
holidays <- as.Date(c("2020-1-3", "2020-1-6"))
df$with_columns(

result = pl$col("start")$dt$add_business_days(5, holidays = holidays)
)

Roll all dates forwards to the next business day:
df <- pl$DataFrame(start = as.Date(c("2020-1-5", "2020-1-6")))
df$with_columns(

rolled_forwards = pl$col("start")$dt$add_business_days(0, roll = "forward")
)

174 expr_dt_cast_time_unit

expr_dt_base_utc_offset
Base offset from UTC

Description

This computes the offset between a time zone and UTC. This is usually constant for all
datetimes in a given time zone, but may vary in the rare case that a country switches time
zone, like Samoa (Apia) did at the end of 2011. Use dtdst_offset() to take daylight saving
time into account.

Usage

expr_dt_base_utc_offset()

Value

A polars expression

Examples
df <- pl$DataFrame(

x = as.POSIXct(c("2011-12-29", "2012-01-01"), tz = "Pacific/Apia")
)
df$with_columns(base_utc_offset = pl$col("x")$dt$base_utc_offset())

expr_dt_cast_time_unit
Change time unit

Description

Cast the underlying data to another time unit. This may lose precision.

Usage

expr_dt_cast_time_unit(time_unit)

Arguments

time_unit One of "us" (microseconds), "ns" (nanoseconds) or "ms"(milliseconds).
Representing the unit of time.

Value

A polars expression

expr_dt_century 175

Examples

df <- pl$select(
date = pl$datetime_range(
start = as.Date("2001-1-1"),
end = as.Date("2001-1-3"),
interval = "1d1s"

)
)
df$with_columns(

cast_time_unit_ms = pl$col("date")$dt$cast_time_unit("ms"),
cast_time_unit_ns = pl$col("date")$dt$cast_time_unit("ns"),

)

expr_dt_century Extract the century from underlying representation

Description

Returns the century number in the calendar date.

Usage

expr_dt_century()

Value

A polars expression

Examples

df <- pl$DataFrame(
date = as.Date(
c("999-12-31", "1897-05-07", "2000-01-01", "2001-07-05", "3002-10-20")

)
)
df$with_columns(

century = pl$col("date")$dt$century()
)

176 expr_dt_combine

expr_dt_combine Combine Date and Time

Description

If the underlying expression is a Datetime then its time component is replaced, and if it is
a Date then a new Datetime is created by combining the two values.

Usage

expr_dt_combine(time, time_unit = c("us", "ns", "ms"))

Arguments

time The number of epoch since or before (if negative) the Date. Can be an
Expr or a PTime.

time_unit One of "us" (default, microseconds), "ns" (nanoseconds) or "ms"(milliseconds).
Representing the unit of time.

Value

A polars expression

Examples

df <- pl$DataFrame(
dtm = c(
ISOdatetime(2022, 12, 31, 10, 30, 45),
ISOdatetime(2023, 7, 5, 23, 59, 59)

),
dt = c(ISOdate(2022, 10, 10), ISOdate(2022, 7, 5)),
tm = hms::parse_hms(c("1:2:3.456000", "7:8:9.101000"))

)

df

df$select(
d1 = pl$col("dtm")$dt$combine(pl$col("tm")),
s2 = pl$col("dt")$dt$combine(pl$col("tm")),
d3 = pl$col("dt")$dt$combine(hms::parse_hms("4:5:6"))

)

expr_dt_convert_time_zone 177

expr_dt_convert_time_zone
Convert to given time zone for an expression of type Datetime

Description

If converting from a time-zone-naive datetime, then conversion will happen as if converting
from UTC, regardless of your system’s time zone.

Usage

expr_dt_convert_time_zone(time_zone)

Arguments

time_zone A character time zone from base::OlsonNames().

Value

A polars expression

Examples

df <- pl$select(
date = pl$datetime_range(
as.POSIXct("2020-03-01", tz = "UTC"),
as.POSIXct("2020-05-01", tz = "UTC"),
"1mo"

)
)

df$with_columns(
London = pl$col("date")$dt$convert_time_zone("Europe/London")

)

expr_dt_date Extract date from date(time)

Description

Extract date from date(time)

Usage

expr_dt_date()

178 expr_dt_day

Value

A polars expression

Examples

df <- pl$DataFrame(
datetime = as.POSIXct(c("1978-1-1 1:1:1", "1897-5-7 00:00:00"), tz = "UTC")

)
df$with_columns(

date = pl$col("datetime")$dt$date()
)

expr_dt_day Extract day from underlying Date representation

Description

Returns the day of month starting from 1. The return value ranges from 1 to 31 (the last
day of month differs across months).

Usage

expr_dt_day()

Value

A polars expression

Examples

df <- pl$select(
date = pl$date_range(
as.Date("2020-12-25"),
as.Date("2021-1-05"),
interval = "1d"

)
)
df$with_columns(

pl$col("date")$dt$day()$alias("day")
)

expr_dt_days_in_month 179

expr_dt_days_in_month
Extract the number of days in the month from the underlying
Date representation.

Description

Extract the number of days in the month from the underlying Date representation.

Usage

expr_dt_days_in_month()

Value

A polars expression

Examples
df <- pl$DataFrame(date = as.Date(c("2020-01-01", "2020-02-01", "2020-03-01")))

df$with_columns(
days_in_month = pl$col("date")$dt$days_in_month()

)

expr_dt_dst_offset Daylight savings offset from UTC

Description

This computes the offset between a time zone and UTC, taking into account daylight saving
time. Use dtbase_utc_offset() to avoid counting DST.

Usage

expr_dt_dst_offset()

Value

A polars expression

Examples
df <- pl$DataFrame(

x = as.POSIXct(c("2020-10-25", "2020-10-26"), tz = "Europe/London")
)
df$with_columns(dst_offset = pl$col("x")$dt$dst_offset())

180 expr_dt_hour

expr_dt_epoch Get epoch of given Datetime

Description

Get the time passed since the Unix EPOCH in the give time unit.

Usage

expr_dt_epoch(time_unit = c("us", "ns", "ms", "s", "d"))

Arguments

time_unit Time unit, one of "ns", "us", "ms", "s" or "d".

Value

A polars expression

Examples

df <- pl$select(date = pl$date_range(as.Date("2001-1-1"), as.Date("2001-1-3")))

df$with_columns(
epoch_ns = pl$col("date")$dt$epoch(),
epoch_s = pl$col("date")$dt$epoch(time_unit = "s")

)

expr_dt_hour Extract hour from underlying Datetime representation

Description

Returns the hour number from 0 to 23.

Usage

expr_dt_hour()

Value

A polars expression

expr_dt_iso_year 181

Examples

df <- pl$select(
date = pl$datetime_range(
as.Date("2020-12-25"),
as.Date("2021-1-05"),
interval = "1d2h",
time_zone = "GMT"

)
)
df$with_columns(

pl$col("date")$dt$hour()$alias("hour")
)

expr_dt_iso_year Extract ISO year from underlying Date representation

Description

Returns the year number in the ISO standard. This may not correspond with the calendar
year.

Usage

expr_dt_iso_year()

Value

A polars expression

Examples

df <- pl$DataFrame(
date = as.Date(c("1977-01-01", "1978-01-01", "1979-01-01"))

)
df$with_columns(

year = pl$col("date")$dt$year(),
iso_year = pl$col("date")$dt$iso_year()

)

182 expr_dt_microsecond

expr_dt_is_leap_year Determine whether the year of the underlying date is a leap year

Description

Determine whether the year of the underlying date is a leap year

Usage

expr_dt_is_leap_year()

Value

A polars expression

Examples
df <- pl$DataFrame(date = as.Date(c("2000-01-01", "2001-01-01", "2002-01-01")))

df$with_columns(
leap_year = pl$col("date")$dt$is_leap_year()

)

expr_dt_microsecond Extract microseconds from underlying Datetime representation

Description

Extract microseconds from underlying Datetime representation

Usage

expr_dt_microsecond()

Value

A polars expression

Examples
df <- pl$DataFrame(

datetime = as.POSIXct(
c(

"1978-01-01 01:01:01",
"2024-10-13 05:30:14.500",
"2065-01-01 10:20:30.06"

),
"UTC"

expr_dt_millennium 183

)
)

df$with_columns(
microsecond = pl$col("datetime")$dt$microsecond()

)

expr_dt_millennium Extract the millennium from underlying representation

Description

Returns the millennium number in the calendar date.

Usage

expr_dt_millennium()

Value

A polars expression

Examples
df <- pl$DataFrame(

date = as.Date(
c("999-12-31", "1897-05-07", "2000-01-01", "2001-07-05", "3002-10-20")

)
)
df$with_columns(

millennium = pl$col("date")$dt$millennium()
)

expr_dt_millisecond Extract milliseconds from underlying Datetime representation

Description

Extract milliseconds from underlying Datetime representation

Usage

expr_dt_millisecond()

Value

A polars expression

184 expr_dt_minute

Examples

df <- pl$DataFrame(
datetime = as.POSIXct(
c(

"1978-01-01 01:01:01",
"2024-10-13 05:30:14.500",
"2065-01-01 10:20:30.06"

),
"UTC"

)
)

df$with_columns(
millisecond = pl$col("datetime")$dt$millisecond()

)

expr_dt_minute Extract minute from underlying Datetime representation

Description

Returns the minute number from 0 to 59.

Usage

expr_dt_minute()

Value

A polars expression

Examples

df <- pl$DataFrame(
datetime = as.POSIXct(
c(

"1978-01-01 01:01:01",
"2024-10-13 05:30:14.500",
"2065-01-01 10:20:30.06"

),
"UTC"

)
)
df$with_columns(

pl$col("datetime")$dt$minute()$alias("minute")
)

expr_dt_month 185

expr_dt_month Extract month from underlying Date representation

Description

Returns the month number between 1 and 12.

Usage

expr_dt_month()

Value

A polars expression

Examples
df <- pl$DataFrame(

date = as.Date(c("2001-01-01", "2001-06-30", "2001-12-27"))
)
df$with_columns(

month = pl$col("date")$dt$month()
)

expr_dt_month_end Roll forward to the last day of the month

Description

For datetimes, the time of day is preserved.

Usage

expr_dt_month_end()

Value

A polars expression

Examples
df <- pl$DataFrame(date = as.Date(c("2000-01-23", "2001-01-12", "2002-01-01")))

df$with_columns(
month_end = pl$col("date")$dt$month_end()

)

186 expr_dt_nanosecond

expr_dt_month_start Roll backward to the first day of the month

Description

For datetimes, the time of day is preserved.

Usage

expr_dt_month_start()

Value

A polars expression

Examples
df <- pl$DataFrame(date = as.Date(c("2000-01-23", "2001-01-12", "2002-01-01")))

df$with_columns(
month_start = pl$col("date")$dt$month_start()

)

expr_dt_nanosecond Extract nanoseconds from underlying Datetime representation

Description

Extract nanoseconds from underlying Datetime representation

Usage

expr_dt_nanosecond()

Value

A polars expression

Examples
df <- pl$DataFrame(

datetime = as.POSIXct(
c(

"1978-01-01 01:01:01",
"2024-10-13 05:30:14.500",
"2065-01-01 10:20:30.06"

),
"UTC"

expr_dt_offset_by 187

)
)

df$with_columns(
nanosecond = pl$col("datetime")$dt$nanosecond()

)

expr_dt_offset_by Offset a date by a relative time offset

Description

This differs from pl$col("foo") + Duration in that it can take months and leap years
into account. Note that only a single minus sign is allowed in the by string, as the first
character.

Usage

expr_dt_offset_by(by)

Arguments

by optional string encoding duration see details.

Details

The by are created with the following string language:

• 1ns # 1 nanosecond
• 1us # 1 microsecond
• 1ms # 1 millisecond
• 1s # 1 second
• 1m # 1 minute
• 1h # 1 hour
• 1d # 1 day
• 1w # 1 calendar week
• 1mo # 1 calendar month
• 1y # 1 calendar year
• 1i # 1 index count

By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.
These strings can be combined:

• 3d12h4m25s # 3 days, 12 hours, 4 minutes, and 25 seconds

188 expr_dt_ordinal_day

Value

A polars expression

Examples

df <- pl$select(
dates = pl$date_range(
as.Date("2000-1-1"),
as.Date("2005-1-1"),
"1y"

)
)
df$with_columns(

date_plus_1y = pl$col("dates")$dt$offset_by("1y"),
date_negative_offset = pl$col("dates")$dt$offset_by("-1y2mo")

)

the "by" argument also accepts expressions
df <- pl$select(

dates = pl$datetime_range(
as.POSIXct("2022-01-01", tz = "GMT"),
as.POSIXct("2022-01-02", tz = "GMT"),
interval = "6h", time_unit = "ms", time_zone = "GMT"

),
offset = pl$Series(values = c("1d", "-2d", "1mo", NA, "1y"))

)

df$with_columns(new_dates = pl$col("dates")$dt$offset_by(pl$col("offset")))

expr_dt_ordinal_day Extract ordinal day from underlying Date representation

Description

Returns the day of year starting from 1. The return value ranges from 1 to 366 (the last
day of year differs across years).

Usage

expr_dt_ordinal_day()

Value

A polars expression

expr_dt_quarter 189

Examples

df <- pl$select(
date = pl$date_range(
as.Date("2020-12-25"),
as.Date("2021-1-05"),
interval = "1d"

)
)
df$with_columns(

ordinal_day = pl$col("date")$dt$ordinal_day()
)

expr_dt_quarter Extract quarter from underlying Date representation

Description

Returns the quarter ranging from 1 to 4.

Usage

expr_dt_quarter()

Value

A polars expression

Examples

df <- pl$select(
date = pl$date_range(
as.Date("2020-12-25"),
as.Date("2021-1-05"),
interval = "1d"

)
)
df$with_columns(

quarter = pl$col("date")$dt$quarter()
)

190 expr_dt_replace

expr_dt_replace Replace time unit

Description

Replace time unit

Usage

expr_dt_replace(
...,
year = NULL,
month = NULL,
day = NULL,
hour = NULL,
minute = NULL,
second = NULL,
microsecond = NULL,
ambiguous = c("raise", "earliest", "latest", "null")

)

Arguments

... These dots are for future extensions and must be empty.
year Column or literal.
month Column or literal, ranging from 1-12.
day Column or literal, ranging from 1-31
hour Column or literal, ranging from 0-23.
minute Column or literal, ranging from 0-59.
second Column or literal, ranging from 0-59.
microsecond Column or literal, ranging from 0-999999.
ambiguous Determine how to deal with ambiguous datetimes. Character vector or

expression containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a null value

Value

A polars expression

expr_dt_replace_time_zone 191

Examples

df = pl$DataFrame(
date = as.Date(c("2024-04-01", "2025-03-16")),
new_day = c(10, 15)

)
df$with_columns(replaced = pl$col("date")$dt$replace(day = "new_day"))

expr_dt_replace_time_zone
Replace time zone for an expression of type Datetime

Description

Different from dtconvert_time_zone(), this will also modify the underlying timestamp
and will ignore the original time zone.

Usage

expr_dt_replace_time_zone(
time_zone,
...,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")

)

Arguments

time_zone NULL or a character time zone from base::OlsonNames(). Pass NULL to
unset time zone.

... These dots are for future extensions and must be empty.
ambiguous Determine how to deal with ambiguous datetimes. Character vector or

expression containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a null value

non_existent Determine how to deal with non-existent datetimes. One of the followings:
• "raise" (default): Throw an error
• "null": Return a null value

Value

A polars expression

192 expr_dt_round

Examples
df <- pl$select(

london_timezone = pl$datetime_range(
as.Date("2020-03-01"),
as.Date("2020-07-01"),
"1mo",
time_zone = "UTC"

)dtconvert_time_zone(time_zone = "Europe/London")
)
df$with_columns(

London_to_Amsterdam = pl$col("london_timezone")$dt$replace_time_zone(
time_zone="Europe/Amsterdam"

)
)
You can use `ambiguous` to deal with ambiguous datetimes:
dates <- c(

"2018-10-28 01:30",
"2018-10-28 02:00",
"2018-10-28 02:30",
"2018-10-28 02:00"

) |>
as.POSIXct("UTC")

df2 <- pl$DataFrame(
ts = as_polars_series(dates),
ambiguous = c("earliest", "earliest", "latest", "latest"),

)

df2$with_columns(
ts_localized = pl$col("ts")$dt$replace_time_zone(
"Europe/Brussels",
ambiguous = pl$col("ambiguous")

)
)

expr_dt_round Round datetime

Description

Divide the date/datetime range into buckets. Each date/datetime in the first half of the
interval is mapped to the start of its bucket. Each date/datetime in the second half of
the interval is mapped to the end of its bucket. Ambiguous results are localised using the
DST offset of the original timestamp - for example, rounding '2022-11-06 01:20:00 CST'
by '1h' results in '2022-11-06 01:00:00 CST', whereas rounding '2022-11-06 01:20:00
CDT' by '1h' results in '2022-11-06 01:00:00 CDT'.

Usage

expr_dt_round(every)

expr_dt_round 193

Arguments

every Either an Expr or a string indicating a column name or a duration (see
Details).

Details

The every and offset argument are created with the the following string language:

• 1ns # 1 nanosecond
• 1us # 1 microsecond
• 1ms # 1 millisecond
• 1s # 1 second
• 1m # 1 minute
• 1h # 1 hour
• 1d # 1 day
• 1w # 1 calendar week
• 1mo # 1 calendar month
• 1y # 1 calendar year These strings can be combined:

– 3d12h4m25s # 3 days, 12 hours, 4 minutes, and 25 seconds

Value

A polars expression

Examples

df <- pl$select(
datetime = pl$datetime_range(
as.Date("2001-01-01"),
as.Date("2001-01-02"),
as.difftime("0:25:0")

)
)
df$with_columns(round = pl$col("datetime")dtround("1h"))

df <- pl$select(
datetime = pl$datetime_range(
as.POSIXct("2001-01-01 00:00"),
as.POSIXct("2001-01-01 01:00"),
as.difftime("0:10:0")

)
)
df$with_columns(round = pl$col("datetime")dtround("1h"))

194 expr_dt_strftime

expr_dt_second Extract seconds from underlying Datetime representation

Description

Returns the integer second number from 0 to 59, or a floating point number from 0 to 60
if fractional = TRUE that includes any milli/micro/nanosecond component.

Usage

expr_dt_second(..., fractional = FALSE)

Arguments

... These dots are for future extensions and must be empty.
fractional If TRUE, include the fractional component of the second.

Value

A polars expression

Examples
df <- pl$DataFrame(

datetime = as.POSIXct(
c(

"1978-01-01 01:01:01",
"2024-10-13 05:30:14.500",
"2065-01-01 10:20:30.06"

),
"UTC"

)
)

df$with_columns(
second = pl$col("datetime")$dt$second(),
second_fractional = pl$col("datetime")$dt$second(fractional = TRUE)

)

expr_dt_strftime Convert a Date/Time/Datetime/Duration column into a String
column with the given format

Description

Similar to $cast(pl$String), but this method allows you to customize the formatting of
the resulting string. This is an alias for dtto_string().

expr_dt_time 195

Usage

expr_dt_strftime(format)

Arguments

format Single string of format to use, or NULL. NULL will be treated as "iso".
Available formats depend on the column data type:

• For Date/Time/Datetime, refer to the chrono strftime documentation
for specification. Example: "%y-%m-%d". Special case "iso" will use
the ISO8601 format.

• For Duration, "iso" or "polars" can be used. The "iso" format
string results in ISO8601 duration string output, and "polars" re-
sults in the same form seen in the polars print representation.

Value

A polars expression

Examples

pl$DataFrame(
datetime = c(as.POSIXct(c("2021-01-02 00:00:00", "2021-01-03 00:00:00")))

)$
with_columns(
datetime_string = pl$col("datetime")$dt$strftime("%Y/%m/%d %H:%M:%S")

)

expr_dt_time Extract time

Description

This only works on Datetime columns, it will error on Date columns.

Usage

expr_dt_time()

Value

A polars expression

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

196 expr_dt_timestamp

Examples

df <- pl$select(dates = pl$datetime_range(
as.Date("2000-1-1"),
as.Date("2000-1-2"),
"1h"

))

df$with_columns(times = pl$col("dates")dttime())

expr_dt_timestamp Get timestamp in the given time unit

Description

Get timestamp in the given time unit

Usage

expr_dt_timestamp(time_unit = c("us", "ns", "ms"))

Arguments

time_unit Time unit, one of ’ns’, ’us’, or ’ms’.

Value

A polars expression

Examples

df <- pl$select(
date = pl$datetime_range(
start = as.Date("2001-1-1"),
end = as.Date("2001-1-3"),
interval = "1d1s"

)
)
df$select(

pl$col("date"),
pl$col("date")$dt$timestamp()$alias("timestamp_ns"),
pl$col("date")$dt$timestamp(time_unit = "ms")$alias("timestamp_ms")

)

expr_dt_total_days 197

expr_dt_total_days Extract the days from a Duration type

Description

Extract the days from a Duration type

Usage

expr_dt_total_days(..., fractional = FALSE)

Arguments

... These dots are for future extensions and must be empty.
fractional A bool to indicate whether to include the fractional component of the

day.

Value

A polars expression

Examples

df <- pl$select(
date = pl$datetime_range(
start = as.Date("2020-3-1"),
end = as.Date("2020-5-1"),
interval = "1mo1s"

)
)
df$with_columns(

diff_days = pl$col("date")$diff()dttotal_days()
)

expr_dt_total_hours Extract the hours from a Duration type

Description

Extract the hours from a Duration type

Usage

expr_dt_total_hours(..., fractional = FALSE)

198 expr_dt_total_microseconds

Arguments

... These dots are for future extensions and must be empty.

fractional A bool to indicate whether to include the fractional component of the
day.

Value

A polars expression

Examples

df <- pl$select(
date = pl$date_range(
start = as.Date("2020-1-1"),
end = as.Date("2020-1-4"),
interval = "1d"

)
)
df$with_columns(

diff_hours = pl$col("date")$diff()dttotal_hours()
)

expr_dt_total_microseconds
Extract the microseconds from a Duration type

Description

Extract the microseconds from a Duration type

Usage

expr_dt_total_microseconds(..., fractional = FALSE)

Arguments

... These dots are for future extensions and must be empty.

fractional A bool to indicate whether to include the fractional component of the
day.

Value

A polars expression

expr_dt_total_milliseconds 199

Examples

df <- pl$select(date = pl$datetime_range(
start = as.POSIXct("2020-1-1", tz = "GMT"),
end = as.POSIXct("2020-1-1 00:00:01", tz = "GMT"),
interval = "1ms"

))
df$with_columns(

diff_microsec = pl$col("date")$diff()dttotal_microseconds()
)

expr_dt_total_milliseconds
Extract the milliseconds from a Duration type

Description

Extract the milliseconds from a Duration type

Usage

expr_dt_total_milliseconds(..., fractional = FALSE)

Arguments

... These dots are for future extensions and must be empty.

fractional A bool to indicate whether to include the fractional component of the
day.

Value

A polars expression

Examples

df <- pl$select(date = pl$datetime_range(
start = as.POSIXct("2020-1-1", tz = "GMT"),
end = as.POSIXct("2020-1-1 00:00:01", tz = "GMT"),
interval = "1ms"

))
df$with_columns(

diff_millisec = pl$col("date")$diff()dttotal_milliseconds()
)

200 expr_dt_total_nanoseconds

expr_dt_total_minutes
Extract the minutes from a Duration type

Description

Extract the minutes from a Duration type

Usage

expr_dt_total_minutes(..., fractional = FALSE)

Arguments

... These dots are for future extensions and must be empty.
fractional A bool to indicate whether to include the fractional component of the

day.

Value

A polars expression

Examples
df <- pl$select(

date = pl$date_range(
start = as.Date("2020-1-1"),
end = as.Date("2020-1-4"),
interval = "1d"

)
)
df$with_columns(

diff_minutes = pl$col("date")$diff()dttotal_minutes()
)

expr_dt_total_nanoseconds
Extract the nanoseconds from a Duration type

Description

Extract the nanoseconds from a Duration type

Usage

expr_dt_total_nanoseconds(..., fractional = FALSE)

expr_dt_total_seconds 201

Arguments

... These dots are for future extensions and must be empty.

fractional A bool to indicate whether to include the fractional component of the
day.

Value

A polars expression

Examples

df <- pl$select(date = pl$datetime_range(
start = as.POSIXct("2020-1-1", tz = "GMT"),
end = as.POSIXct("2020-1-1 00:00:01", tz = "GMT"),
interval = "1ms"

))
df$with_columns(

diff_nanosec = pl$col("date")$diff()dttotal_nanoseconds()
)

expr_dt_total_seconds
Extract the seconds from a Duration type

Description

Extract the seconds from a Duration type

Usage

expr_dt_total_seconds(..., fractional = FALSE)

Arguments

... These dots are for future extensions and must be empty.

fractional A bool to indicate whether to include the fractional component of the
day.

Value

A polars expression

202 expr_dt_to_string

Examples
df <- pl$select(date = pl$datetime_range(

start = as.POSIXct("2020-1-1", tz = "GMT"),
end = as.POSIXct("2020-1-1 00:04:00", tz = "GMT"),
interval = "1m"

))
df$with_columns(

diff_sec = pl$col("date")$diff()dttotal_seconds()
)

expr_dt_to_string Convert a Date/Time/Datetime/Duration column into a String
column with the given format

Description

Similar to $cast(pl$String), but this method allows you to customize the formatting of
the resulting string; if no format is provided, the appropriate ISO format for the underlying
data type is used.

Usage

expr_dt_to_string(format = NULL)

Arguments

format Single string of format to use, or NULL (default). NULL will be treated as
"iso". Available formats depend on the column data type:
• For Date/Time/Datetime, refer to the chrono strftime documentation

for specification. Example: "%y-%m-%d". Special case "iso" will use
the ISO8601 format.

• For Duration, "iso" or "polars" can be used. The "iso" format
string results in ISO8601 duration string output, and "polars" re-
sults in the same form seen in the polars print representation.

Value

A polars expression

Examples

df <- pl$DataFrame(
dt = as.Date(c("1990-03-01", "2020-05-03", "2077-07-05")),
dtm = as.POSIXct(c("1980-08-10 00:10:20", "2010-10-20 08:25:35", "2040-12-30 16:40:50")),
tm = hms::as_hms(c("01:02:03.456789", "23:59:09.101", "00:00:00.000100")),
dur = clock::duration_days(c(-1, 14, 0)) + clock::duration_hours(c(0, -10, 0)) +
clock::duration_seconds(c(-42, 0, 0)) + clock::duration_microseconds(c(0, 1001, 0)),

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

expr_dt_truncate 203

)

Default format for temporal dtypes is ISO8601:
df$select((cs$date() | cs$datetime())$dt$to_string()$name$prefix("s_"))
df$select((cs$time() | cs$duration())$dt$to_string()$name$prefix("s_"))

All temporal types (aside from Duration) support strftime formatting:
df$select(

pl$col("dtm"),
s_dtm = pl$col("dtm")$dt$to_string("%Y/%m/%d (%H.%M.%S)"),

)

The Polars Duration string format is also available:
df$select(pl$col("dur"), s_dur = pl$col("dur")$dt$to_string("polars"))

If you’re interested in extracting the day or month names,
you can use the '%A' and '%B' strftime specifiers:
df$select(

pl$col("dt"),
day_name = pl$col("dtm")$dt$to_string("%A"),
month_name = pl$col("dtm")$dt$to_string("%B"),

)

expr_dt_truncate Truncate datetime

Description

Divide the date/datetime range into buckets. Each date/datetime is mapped to the start of
its bucket using the corresponding local datetime. Note that weekly buckets start on Mon-
day. Ambiguous results are localised using the DST offset of the original timestamp - for ex-
ample, truncating '2022-11-06 01:30:00 CST' by '1h' results in '2022-11-06 01:00:00
CST', whereas truncating '2022-11-06 01:30:00 CDT' by '1h' results in '2022-11-06
01:00:00 CDT'.

Usage

expr_dt_truncate(every)

Arguments

every Either an Expr or a string indicating a column name or a duration (see
Details).

Details

The every and offset argument are created with the the following string language:

• 1ns # 1 nanosecond

204 expr_dt_week

• 1us # 1 microsecond
• 1ms # 1 millisecond
• 1s # 1 second
• 1m # 1 minute
• 1h # 1 hour
• 1d # 1 day
• 1w # 1 calendar week
• 1mo # 1 calendar month
• 1y # 1 calendar year These strings can be combined:

– 3d12h4m25s # 3 days, 12 hours, 4 minutes, and 25 seconds

Value

A polars expression

Examples
df <- pl$select(

datetime = pl$datetime_range(
as.Date("2001-01-01"),
as.Date("2001-01-02"),
as.difftime("0:25:0")

)
)
df$with_columns(truncated = pl$col("datetime")$dt$truncate("1h"))

df <- pl$select(
datetime = pl$datetime_range(
as.POSIXct("2001-01-01 00:00"),
as.POSIXct("2001-01-01 01:00"),
as.difftime("0:10:0")

)
)
df$with_columns(truncated = pl$col("datetime")$dt$truncate("30m"))

expr_dt_week Extract week from underlying Date representation

Description

Returns the ISO week number starting from 1. The return value ranges from 1 to 53 (the
last week of year differs across years).

Usage

expr_dt_week()

expr_dt_weekday 205

Value

A polars expression

Examples

df <- pl$select(
date = pl$date_range(
as.Date("2020-12-25"),
as.Date("2021-1-05"),
interval = "1d"

)
)
df$with_columns(

week = pl$col("date")$dt$week()
)

expr_dt_weekday Extract weekday from underlying Date representation

Description

Returns the ISO weekday number where Monday = 1 and Sunday = 7.

Usage

expr_dt_weekday()

Value

A polars expression

Examples

df <- pl$select(
date = pl$date_range(
as.Date("2020-12-25"),
as.Date("2021-1-05"),
interval = "1d"

)
)
df$with_columns(

weekday = pl$col("date")$dt$weekday()
)

206 expr_list_agg

expr_dt_year Extract year from underlying Date representation

Description

Returns the year number in the calendar date.

Usage

expr_dt_year()

Value

A polars expression

Examples
df <- pl$DataFrame(

date = as.Date(c("1977-01-01", "1978-01-01", "1979-01-01"))
)
df$with_columns(

year = pl$col("date")$dt$year(),
iso_year = pl$col("date")$dt$iso_year()

)

expr_list_agg Run any polars aggregation expression against the lists’ elements

Description

This looks similar to $list$eval(), but the key difference is that $list$agg() automati-
cally explodes the list if the expression inside returns a scalar (while $list$eval() always
returns a list).

Usage

expr_list_agg(expr)

Arguments

expr Expression to run. Note that you can select an element with pl$element(),
pl$first(), and more. See Examples.

Value

A polars expression

expr_list_all 207

Examples
df <- pl$DataFrame(a = list(c(1, NA), c(42, 13), c(NA, NA)))

The column "null_count" has dtype u32 because `$null_count()` returns a
scalar for each sub-list. Using `$list$eval()` instead would return a
column with dtype list(u32).
df$with_columns(

null_count = pl$col("a")$list$agg(pl$element()$null_count())
)

The column "no_nulls" has dtype list(u32) because the expression doesn't
guarantee to return a scalar.
df$with_columns(

no_nulls = pl$col("a")$list$agg(pl$element()$drop_nulls())
)

expr_list_all Evaluate whether all boolean values in a sub-list are true

Description

Evaluate whether all boolean values in a sub-list are true

Usage

expr_list_all()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(c(TRUE, TRUE), c(FALSE, TRUE), c(FALSE, FALSE), NA, c())
)
df$with_columns(all = pl$col("a")$list$all())

expr_list_any Evaluate whether any boolean value in a sub-list is true

Description

Evaluate whether any boolean value in a sub-list is true

Usage

expr_list_any()

208 expr_list_arg_min

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(c(TRUE, TRUE), c(FALSE, TRUE), c(FALSE, FALSE), NA, c())
)
df$with_columns(any = pl$col("a")$list$any())

expr_list_arg_max Retrieve the index of the maximum value in every sub-list

Description

Retrieve the index of the maximum value in every sub-list

Usage

expr_list_arg_max()

Value

A polars expression

Examples
df <- pl$DataFrame(s = list(1:2, 2:1))
df$with_columns(

arg_max = pl$col("s")$list$arg_max()
)

expr_list_arg_min Retrieve the index of the minimum value in every sub-list

Description

Retrieve the index of the minimum value in every sub-list

Usage

expr_list_arg_min()

Value

A polars expression

expr_list_concat 209

Examples
df <- pl$DataFrame(s = list(1:2, 2:1))
df$with_columns(

arg_min = pl$col("s")$list$arg_min()
)

expr_list_concat Concat the lists into a new list

Description

Concat the lists into a new list

Usage

expr_list_concat(other)

Arguments

other Values to concat with. Can be an Expr or something coercible to an Expr.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list("a", "x"),
b = list(c("b", "c"), c("y", "z"))

)
df$with_columns(

conc_to_b = pl$col("a")$list$concat(pl$col("b")),
conc_to_lit_str = pl$col("a")$list$concat(pl$lit("some string")),
conc_to_lit_list = pl$col("a")$list$concat(pl$lit(list("hello", c("hello", "world"))))

)

expr_list_contains Check if sub-lists contains a given value

Description

Check if sub-lists contains a given value

Usage

expr_list_contains(item, ..., nulls_equal = TRUE)

210 expr_list_count_matches

Arguments

item Item that will be checked for membership. Can be an Expr or something
coercible to an Expr. Strings are not parsed as columns.

... These dots are for future extensions and must be empty.
nulls_equal If TRUE, treat null as a distinct value. Null values will not propagate.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(3:1, NULL, 1:2),
item = 0:2

)
df$with_columns(

with_expr = pl$col("a")$list$contains(pl$col("item")),
with_lit = pl$col("a")$list$contains(1)

)

expr_list_count_matches
Count how often a value produced occurs

Description

Count how often a value produced occurs

Usage

expr_list_count_matches(element)

Arguments

element An expression that produces a single value.

Value

A polars expression

Examples
df <- pl$DataFrame(a = list(0, 1, c(1, 2, 3, 2), c(1, 2, 1), c(4, 4)))

df$with_columns(
number_of_twos = pl$col("a")$list$count_matches(2)

)

expr_list_diff 211

expr_list_diff Compute difference between sub-list values

Description

This computes the first discrete difference between shifted items of every list. The parameter
n gives the interval between items to subtract, e.g. if n = 2 the output will be the difference
between the 1st and the 3rd value, the 2nd and 4th value, etc.

Usage

expr_list_diff(n = 1, null_behavior = c("ignore", "drop"))

Arguments

n Number of slots to shift. If negative, then it starts from the end.
null_behavior How to handle null values. Either "ignore" (default) or "drop".

Value

A polars expression

Examples

df <- pl$DataFrame(s = list(1:4, c(10L, 2L, 1L)))
df$with_columns(diff = pl$col("s")$list$diff(2))

negative value starts shifting from the end
df$with_columns(diff = pl$col("s")$list$diff(-2))

expr_list_drop_nulls Drop all null values in every sub-list

Description

Drop all null values in every sub-list

Usage

expr_list_drop_nulls()

Value

A polars expression

212 expr_list_eval

Examples
df <- pl$DataFrame(values = list(c(NA, 0, NA), c(1, NaN), NA))

df$with_columns(
without_nulls = pl$col("values")$list$drop_nulls()

)

expr_list_eval Run any polars expression on the sub-lists’ values

Description

Run any polars expression on the sub-lists’ values

Usage

expr_list_eval(expr)

Arguments

expr Expression to run. Note that you can select an element with pl$element(),
pl$first(), and more. See Examples.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(c(1, 8, 3), c(3, 2), c(NA, NA, 1)),
b = list(c("R", "is", "amazing"), c("foo", "bar"), "text")

)

df

standardize each value inside a list, using only the values in this list
df$select(

a_stand = pl$col("a")$list$eval(
(pl$element() - pl$element()$mean()) / pl$element()$std()

)
)

count characters for each element in list. Since column "b" is list[str],
we can apply all `$str` functions on elements in the list:
df$select(

b_len_chars = pl$col("b")$list$eval(
pl$element()$str$len_chars()

)
)

expr_list_explode 213

concat strings in each list
df$select(

pl$col("b")$list$eval(pl$element()strjoin(" "))$list$first()
)

expr_list_explode Returns a column with a separate row for every list element

Description

Returns a column with a separate row for every list element

Usage

expr_list_explode(..., empty_as_null = TRUE, keep_nulls = TRUE)

Arguments

... These dots are for future extensions and must be empty.
empty_as_null Indicates to explode an empty list/array into a null.
keep_nulls Indicates to explode a null list/array into a null.

Value

A polars expression

Examples
df <- pl$DataFrame(a = list(c(1, 2, 3), c(4, 5, 6)))
df$select(pl$col("a")$list$explode())

expr_list_first Get the first value of the sub-lists

Description

Get the first value of the sub-lists

Usage

expr_list_first()

Value

A polars expression

214 expr_list_gather

Examples
df <- pl$DataFrame(a = list(3:1, NULL, 1:2))
df$with_columns(

first = pl$col("a")$list$first()
)

expr_list_gather Get several values by index in every sub-list

Description

This allows to extract several values per list. To extract a single value by index, use
$list$get(). The indices may be defined in a single column, or by sub-lists in another
column of dtype List.

Usage

expr_list_gather(indices, ..., null_on_oob = FALSE)

Arguments

indices An Expr or something coercible to an Expr of datatype List, (see exam-
ples). Values are 0-indexed (so index 0 would return the first item of
every sub-list) and negative values start from the end (index -1 returns
the last item). If the index is out of bounds, it will return a null. Strings
are parsed as column names.

... These dots are for future extensions and must be empty.
null_on_oob If TRUE, return null if an index is out of bounds. Otherwise, raise an

error.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(c(3, 2, 1), 1, c(1, 2)),
idx = list(0:1, integer(), c(1L, 999L))

)
df$with_columns(

gathered = pl$col("a")$list$gather("idx", null_on_oob = TRUE)
)

df$with_columns(
gathered = pl$col("a")$list$gather(list(2L), null_on_oob = TRUE)

)

expr_list_gather_every 215

To select different indices per row:
df$with_columns(

gathered = pl$col("a")$list$gather(list(2L, c(0L, 3L), 1L), null_on_oob = TRUE)
)

Indices must be an List(Int/Uint) type to work.
So we may need to cast the column to List(UInt) first.
df$with_columns(

gathered = pl$col("a")$list$gather(pl$col("a")$cast(pl$List(pl$UInt64)), null_on_oob = TRUE)
)

expr_list_gather_every
Take every n-th value starting from offset in sub-lists

Description

Take every n-th value starting from offset in sub-lists

Usage

expr_list_gather_every(n, offset = 0)

Arguments

n Gather every n-th row.
offset Starting index.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = list(1:5, 6:8, 9:12),
n = c(2, 1, 3),
offset = c(0, 1, 0)

)

df$with_columns(
gather_every = pl$col("a")$list$gather_every(pl$col("n"), offset = pl$col("offset"))

)

216 expr_list_get

expr_list_get Get the value by index in every sub-list

Description

This allows to extract one value per list only. To extract several values by index, use
$list$gather().

Usage

expr_list_get(index, ..., null_on_oob = TRUE)

Arguments

index An Expr or something coercible to an Expr, that must return a single
index. Values are 0-indexed (so index 0 would return the first item of
every sub-list) and negative values start from the end (index -1 returns
the last item).

... These dots are for future extensions and must be empty.

null_on_oob If TRUE, return null if an index is out of bounds. Otherwise, raise an
error.

Value

A polars expression

Examples

df <- pl$DataFrame(
values = list(c(2, 2, NA), c(1, 2, 3), NA, NULL),
idx = c(1, 2, NA, 3)

)
df$with_columns(

using_expr = pl$col("values")$list$get("idx"),
val_0 = pl$col("values")$list$get(0),
val_minus_1 = pl$col("values")$list$get(-1),
val_oob = pl$col("values")$list$get(10)

)

expr_list_head 217

expr_list_head Slice the first n values of every sub-list

Description

Slice the first n values of every sub-list

Usage

expr_list_head(n = 5L)

Arguments

n Number of values to return for each sub-list. Can be an Expr. Strings
are parsed as column names.

Value

A polars expression

Examples

df <- pl$DataFrame(
s = list(1:4, c(10L, 2L, 1L)),
n = 1:2

)
df$with_columns(

head_by_expr = pl$col("s")$list$head("n"),
head_by_lit = pl$col("s")$list$head(2)

)

expr_list_join Join elements of every sub-list

Description

Join all string items in a sub-list and place a separator between them. This only works if
the inner dtype is String.

Usage

expr_list_join(separator, ..., ignore_nulls = FALSE)

218 expr_list_last

Arguments

separator String to separate the items with. Can be an Expr. Strings are not parsed
as columns.

... <dynamic-dots> Columns to concatenate into a single string column.
Accepts expression input. Strings are parsed as column names, other
non-expression inputs are parsed as literals. Non-String columns are
cast to String.

ignore_nulls If FALSE (default), null values will be propagated, i.e. if the row contains
any null values, the output is null.

Value

A polars expression

Examples
df <- pl$DataFrame(

s = list(c("a", "b", "c"), c("x", "y"), c("e", NA)),
separator = c("-", "+", "/")

)
df$with_columns(

join_with_expr = pl$col("s")$list$join(pl$col("separator")),
join_with_lit = pl$col("s")$list$join(" "),
join_ignore_null = pl$col("s")$list$join(" ", ignore_nulls = TRUE)

)

expr_list_last Get the last value of the sub-lists

Description

Get the last value of the sub-lists

Usage

expr_list_last()

Value

A polars expression

Examples
df <- pl$DataFrame(a = list(3:1, NULL, 1:2))
df$with_columns(

last = pl$col("a")$list$last()
)

expr_list_len 219

expr_list_len Return the number of elements in each sub-list

Description

Null values are counted in the total.

Usage

expr_list_len()

Value

A polars expression

Examples

df <- pl$DataFrame(list_of_strs = list(c("a", "b", NA), "c"))
df$with_columns(len_list = pl$col("list_of_strs")$list$len())

expr_list_max Compute the maximum value in every sub-list

Description

Compute the maximum value in every sub-list

Usage

expr_list_max()

Value

A polars expression

Examples

df <- pl$DataFrame(values = list(c(1, 2, 3, NA), c(2, 3), NA))
df$with_columns(max = pl$col("values")$list$max())

220 expr_list_median

expr_list_mean Compute the mean value in every sub-list

Description

Compute the mean value in every sub-list

Usage

expr_list_mean()

Value

A polars expression

Examples

df <- pl$DataFrame(values = list(c(1, 2, 3, NA), c(2, 3), NA))
df$with_columns(mean = pl$col("values")$list$mean())

expr_list_median Compute the median in every sub-list

Description

Compute the median in every sub-list

Usage

expr_list_median()

Value

A polars expression

Examples

df <- pl$DataFrame(values = list(c(-1, 0, 1), c(1, 10)))

df$with_columns(
median = pl$col("values")$list$median()

)

expr_list_min 221

expr_list_min Compute the miminum value in every sub-list

Description

Compute the miminum value in every sub-list

Usage

expr_list_min()

Value

A polars expression

Examples

df <- pl$DataFrame(values = list(c(1, 2, 3, NA), c(2, 3), NA))
df$with_columns(min = pl$col("values")$list$min())

expr_list_n_unique Count the number of unique values in every sub-lists

Description

Count the number of unique values in every sub-lists

Usage

expr_list_n_unique()

Value

A polars expression

Examples

df <- pl$DataFrame(values = list(c(2, 2, NA), c(1, 2, 3), NA))
df$with_columns(unique = pl$col("values")$list$n_unique())

222 expr_list_sample

expr_list_reverse Reverse values in every sub-list

Description

Reverse values in every sub-list

Usage

expr_list_reverse()

Value

A polars expression

Examples
df <- pl$DataFrame(values = list(c(1, 2, 3, NA), c(2, 3), NA))
df$with_columns(reverse = pl$col("values")$list$reverse())

expr_list_sample Sample values from every sub-list

Description

Sample values from every sub-list

Usage

expr_list_sample(
n = NULL,
...,
fraction = NULL,
with_replacement = FALSE,
shuffle = FALSE,
seed = NULL

)

Arguments

n Number of items to return. Cannot be used with fraction. Defaults to
1 if fraction is NULL.

... These dots are for future extensions and must be empty.
fraction Fraction of items to return. Cannot be used with n.
with_replacement

Allow values to be sampled more than once.

expr_list_set_difference 223

shuffle Shuffle the order of sampled data points.
seed Seed for the random number generator. If NULL (default), a random seed

is generated for each sample operation.

Value

A polars expression

Examples

df <- pl$DataFrame(
values = list(1:3, NA, c(NA, 3L), 5:7),
n = c(1, 1, 1, 2)

)

df$with_columns(
sample = pl$col("values")$list$sample(n = pl$col("n"), seed = 1)

)

expr_list_set_difference
Compute the set difference between elements of a list and other
elements

Description

This returns the ”asymmetric difference”, meaning only the elements of the first list that
are not in the second list. To get all elements that are in only one of the two lists, use
$set_symmetric_difference().

Usage

expr_list_set_difference(other)

Arguments

other Other list variable. Can be an Expr or something coercible to an Expr.

Details

Note that the datatypes inside the list must have a common supertype. For example, the
first column can be list[i32] and the second one can be list[i8] because it can be cast
to list[i32]. However, the second column cannot be e.g list[f32].

Value

A polars expression

224 expr_list_set_intersection

Examples

df <- pl$DataFrame(
a = list(1:3, NA, c(NA, 3L), 5:7),
b = list(2:4, 3L, c(3L, 4L, NA), c(6L, 8L))

)

df$with_columns(difference = pl$col("a")$list$set_difference("b"))

expr_list_set_intersection
Compute the intersection between elements of a list and other
elements

Description

Compute the intersection between elements of a list and other elements

Usage

expr_list_set_intersection(other)

Arguments

other Other list variable. Can be an Expr or something coercible to an Expr.

Details

Note that the datatypes inside the list must have a common supertype. For example, the
first column can be list[i32] and the second one can be list[i8] because it can be cast
to list[i32]. However, the second column cannot be e.g list[f32].

Value

A polars expression

Examples

df <- pl$DataFrame(
a = list(1:3, NA, c(NA, 3L), 5:7),
b = list(2:4, 3L, c(3L, 4L, NA), c(6L, 8L))

)

df$with_columns(intersection = pl$col("a")$list$set_intersection("b"))

expr_list_set_symmetric_difference 225

expr_list_set_symmetric_difference
Compute the set symmetric difference between elements of a list
and other elements

Description

This returns all elements that are in only one of the two lists. To get only elements that
are in the first list but not in the second one, use $set_difference().

Usage

expr_list_set_symmetric_difference(other)

Arguments

other Other list variable. Can be an Expr or something coercible to an Expr.

Details

Note that the datatypes inside the list must have a common supertype. For example, the
first column can be list[i32] and the second one can be list[i8] because it can be cast
to list[i32]. However, the second column cannot be e.g list[f32].

Value

A polars expression

Examples

df <- pl$DataFrame(
a = list(1:3, NA, c(NA, 3L), 5:7),
b = list(2:4, 3L, c(3L, 4L, NA), c(6L, 8L))

)

df$with_columns(
symmetric_difference = pl$col("a")$list$set_symmetric_difference("b")

)

226 expr_list_shift

expr_list_set_union Compute the union of elements of a list and other elements

Description

Compute the union of elements of a list and other elements

Usage

expr_list_set_union(other)

Arguments

other Other list variable. Can be an Expr or something coercible to an Expr.

Details

Note that the datatypes inside the list must have a common supertype. For example, the
first column can be list[i32] and the second one can be list[i8] because it can be cast
to list[i32]. However, the second column cannot be e.g list[f32].

Value

A polars expression

Examples

df <- pl$DataFrame(
a = list(1:3, NA, c(NA, 3L), 5:7),
b = list(2:4, 3L, c(3L, 4L, NA), c(6L, 8L))

)

df$with_columns(union = pl$col("a")$list$set_union("b"))

expr_list_shift Shift list values by the given number of indices

Description

Shift list values by the given number of indices

Usage

expr_list_shift(n = 1)

expr_list_slice 227

Arguments

n Number of indices to shift forward. If a negative value is passed, values
are shifted in the opposite direction instead.

Value

A polars expression

Examples

df <- pl$DataFrame(
s = list(1:4, c(10L, 2L, 1L)),
idx = 1:2

)
df$with_columns(

shift_by_expr = pl$col("s")$list$shift(pl$col("idx")),
shift_by_lit = pl$col("s")$list$shift(2),
shift_by_negative_lit = pl$col("s")$list$shift(-2)

)

expr_list_slice Slice every sub-list

Description

This extracts length values at most, starting at index offset. This can return less than
length values if length is larger than the number of values.

Usage

expr_list_slice(offset, length = NULL)

Arguments

offset Start index. Negative indexing is supported. Can be an Expr. Strings
are parsed as column names.

length Length of the slice. If NULL (default), the slice is taken to the end of the
list. Can be an Expr. Strings are parsed as column names.

Value

A polars expression

228 expr_list_sort

Examples

df <- pl$DataFrame(
s = list(1:4, c(10L, 2L, 1L)),
idx_off = 1:2,
len = c(4, 1)

)
df$with_columns(

slice_by_expr = pl$col("s")$list$slice("idx_off", "len"),
slice_by_lit = pl$col("s")$list$slice(2, 3)

)

expr_list_sort Sort values in every sub-list

Description

Sort values in every sub-list

Usage

expr_list_sort(..., descending = FALSE, nulls_last = FALSE)

Arguments

... These dots are for future extensions and must be empty.

descending Sort values in descending order.

nulls_last Place null values last.

Value

A polars expression

Examples

df <- pl$DataFrame(values = list(c(NA, 2, 1, 3), c(Inf, 2, 3, NaN), NA))
df$with_columns(sort = pl$col("values")$list$sort())

expr_list_std 229

expr_list_std Compute the standard deviation in every sub-list

Description

Compute the standard deviation in every sub-list

Usage

expr_list_std(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars expression

Examples
df <- pl$DataFrame(values = list(c(-1, 0, 1), c(1, 10)))

df$with_columns(
std = pl$col("values")$list$std()

)

expr_list_sum Sum all elements in every sub-list

Description

Sum all elements in every sub-list

Usage

expr_list_sum()

Value

A polars expression

Examples
df <- pl$DataFrame(values = list(c(1, 2, 3, NA), c(2, 3), NA))
df$with_columns(sum = pl$col("values")$list$sum())

230 expr_list_to_array

expr_list_tail Slice the last n values of every sub-list

Description

Slice the last n values of every sub-list

Usage

expr_list_tail(n = 5L)

Arguments

n Number of values to return for each sub-list. Can be an Expr. Strings
are parsed as column names.

Value

A polars expression

Examples
df <- pl$DataFrame(

s = list(1:4, c(10L, 2L, 1L)),
n = 1:2

)
df$with_columns(

tail_by_expr = pl$col("s")$list$tail("n"),
tail_by_lit = pl$col("s")$list$tail(2)

)

expr_list_to_array Convert a List column into an Array column with the same inner
data type

Description

Convert a List column into an Array column with the same inner data type

Usage

expr_list_to_array(width)

Arguments

width Width of the resulting Array column.

expr_list_to_struct 231

Value

A polars expression

Examples
df <- pl$DataFrame(values = list(c(-1, 0), c(1, 10)))

df$with_columns(
array = pl$col("values")$list$to_array(2)

)

expr_list_to_struct Convert the Series of type List to a Series of type Struct

Description

Convert the Series of type List to a Series of type Struct

Usage

expr_list_to_struct(
n_field_strategy = deprecated(),
fields = NULL,
upper_bound = NULL

)

Arguments
n_field_strategy

[Deprecated] Ignored.
fields [Experimental] NULL (default) or character vector of field names, or a

function that takes an integer index and returns character. If the name
and number of the desired fields is known in advance, character vector of
field names can be given, which will be assigned by index. Otherwise, to
dynamically assign field names, a custom function can be used; if neither
are set, fields will be field_0, field_1... See the examples for details.

upper_bound Single positive integer value or NULL (default). A polars expression needs
to be able to evaluate the output datatype at all times, so the caller must
provide an upper bound of the number of struct fields that will be created
if fields is not a character vector of field names.

Details

As of polars 1.3.0, the n_field_strategy argument is ignored and deprecated. The fields
needs to be a character vector or the upper_bound is regarded as ground truth.
If inferring field length is needed, <series>$list$to_struct() can be used, which inspects
the data at runtime.

232 expr_list_unique

Value

A polars expression

See Also

• <expr>arrto_struct()
• <series>$list$to_struct()

Examples
df <- pl$DataFrame(n = list(c(0, 1), c(0, 1, 2)))

Convert list to struct with default field name assignment:

This will become a struct with 2 fields.
df$select(pl$col("n")$list$to_struct(upper_bound = 2))$unnest("n")

Convert list to struct with field name assignment by
function/index:
df$select(

pl$col("n")$list$to_struct(
fields = \(idx) paste0("n", idx + 1),
upper_bound = 2

)
)$unnest("n")

Convert list to struct with field name assignment by
index from a list of names:
df$select(pl$col("n")$list$to_struct(

fields = c("one", "two", "three"))
)$unnest("n")

expr_list_unique Get unique values in a list

Description

Get unique values in a list

Usage

expr_list_unique(..., maintain_order = FALSE)

Arguments

... These dots are for future extensions and must be empty.
maintain_order

Maintain order of data. This requires more work.

expr_list_var 233

Value

A polars expression

Examples

df <- pl$DataFrame(values = list(c(2, 2, NA), c(1, 2, 3), NA))
df$with_columns(unique = pl$col("values")$list$unique())

expr_list_var Compute the variance in every sub-list

Description

Compute the variance in every sub-list

Usage

expr_list_var(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars expression

Examples

df <- pl$DataFrame(values = list(c(-1, 0, 1), c(1, 10)))

df$with_columns(
var = pl$col("values")$list$var()

)

234 expr_meta_has_multiple_outputs

expr_meta_eq Indicate if this expression is the same as another expression

Description

Indicate if this expression is the same as another expression

Usage

expr_meta_eq(other)

Arguments

other Expression to compare with.

Value

A polars expression

Examples
foo_bar <- pl$col("foo")$alias("bar")
foo <- pl$col("foo")
foo_bar$meta$eq(foo)

foo_bar2 <- pl$col("foo")$alias("bar")
foo_bar$meta$eq(foo_bar2)

expr_meta_has_multiple_outputs
Indicate if this expression expands into multiple expressions

Description

Indicate if this expression expands into multiple expressions

Usage

expr_meta_has_multiple_outputs()

Value

A polars expression

Examples
e <- pl$col("a", "b")$name$suffix("_foo")
e$meta$has_multiple_outputs()

expr_meta_is_column 235

expr_meta_is_column Indicate if this expression is a basic (non-regex) unaliased column

Description

Indicate if this expression is a basic (non-regex) unaliased column

Usage

expr_meta_is_column()

Value

A logical value.

Examples
e <- pl$col("foo")
e$meta$is_column()

e <- pl$col("foo") * pl$col("bar")
e$meta$is_column()

e <- pl$col("^col\\.*\\d+$")
e$meta$is_column()

expr_meta_is_column_selection
Indicate if this expression only selects columns (optionally with
aliasing)

Description

This can include bare columns, column matches by regex or dtype, selectors and exclude
ops, and (optionally) column/expression aliasing.

Usage

expr_meta_is_column_selection(..., allow_aliasing = FALSE)

Arguments

... These dots are for future extensions and must be empty.
allow_aliasing

If FALSE (default), any aliasing is not considered pure column selection.
Set TRUE to allow for column selection that also includes aliasing.

236 expr_meta_is_literal

Value

A logical value.

Examples
e <- pl$col("foo")
e$meta$is_column_selection()

e <- pl$col("foo")$alias("bar")
e$meta$is_column_selection()

e$meta$is_column_selection(allow_aliasing = TRUE)

e <- pl$col("foo") * pl$col("bar")
e$meta$is_column_selection()

e <- cs$starts_with("foo")
e$meta$is_column_selection()

expr_meta_is_literal Indicate if this expression is a literal value (optionally aliased)

Description

Indicate if this expression is a literal value (optionally aliased)

Usage

expr_meta_is_literal(..., allow_aliasing = FALSE)

Arguments

... These dots are for future extensions and must be empty.
allow_aliasing

If FALSE (default), only a bare literal will match. Set to TRUE to also allow
for aliased literals.

Value

A polars expression

Examples
e <- pl$lit(123)
e$meta$is_literal()

e <- pl$lit(123)$alias("foo")
e$meta$is_literal()
e$meta$is_literal(allow_aliasing = TRUE)

expr_meta_is_regex_projection 237

expr_meta_is_regex_projection
Indicate if this expression expands to columns that match a regex
pattern

Description

Indicate if this expression expands to columns that match a regex pattern

Usage

expr_meta_is_regex_projection()

Value

A logical value.

Examples
e <- pl$col("^.*$")$name$prefix("foo_")
e$meta$is_regex_projection()

expr_meta_ne Indicate if this expression is not the same as another expression

Description

Indicate if this expression is not the same as another expression

Usage

expr_meta_ne(other)

Arguments

other Expression to compare with.

Value

A polars expression

Examples
foo_bar <- pl$col("foo")$alias("bar")
foo <- pl$col("foo")
foo_bar$meta$ne(foo)

foo_bar2 <- pl$col("foo")$alias("bar")
foo_bar$meta$ne(foo_bar2)

238 expr_meta_output_name

expr_meta_output_name
Get the column name that this expression would produce

Description

It may not always be possible to determine the output name as that can depend on the
schema of the context; in that case this will raise an error if raise_if_undetermined =
TRUE (the default), and return NA otherwise.

Usage

expr_meta_output_name(..., raise_if_undetermined = TRUE)

Arguments

... These dots are for future extensions and must be empty.
raise_if_undetermined

If TRUE (default), raise an error if the output name cannot be determined.
Otherwise return NA.

Value

A polars expression

Examples

e <- pl$col("foo") * pl$col("bar")
e$meta$output_name()

e_filter <- pl$col("foo")$filter(pl$col("bar") == 13)
e_filter$meta$output_name()

e_sum_over <- pl$col("foo")$sum()$over("groups")
e_sum_over$meta$output_name()

e_sum_slice <- pl$col("foo")$sum()$slice(pl$len() - 10, pl$col("bar"))
e_sum_slice$meta$output_name()

pl$len()$meta$output_name()

expr_meta_pop 239

expr_meta_pop Pop the latest expression and return the input(s) of the popped
expression

Description

Pop the latest expression and return the input(s) of the popped expression

Usage

expr_meta_pop(..., schema = NULL)

Arguments

... These dots are for future extensions and must be empty.
schema An optional schema. Must be NULL or a named list of DataType.

Value

A polars expression

Examples

e <- pl$col("foo") + pl$col("bar")
first <- e$meta$pop()[[1]]

first$meta$eq(pl$col("bar"))
first$meta$eq(pl$col("foo"))

expr_meta_root_names Get a list with the root column name

Description

Get a list with the root column name

Usage

expr_meta_root_names()

Value

A polars expression

240 expr_meta_serialize

Examples
e <- pl$col("foo") * pl$col("bar")
e$meta$root_names()

e_filter <- pl$col("foo")$filter(pl$col("bar") == 13)
e_filter$meta$root_names()

e_sum_over <- pl$sum("foo")$over("groups")
e_sum_over$meta$root_names()

e_sum_slice <- pl$sum("foo")$slice(pl$len() - 10, pl$col("bar"))
e_sum_slice$meta$root_names()

expr_meta_serialize Serialize this expression to a string in binary or JSON format

Description

Serialize this expression to a string in binary or JSON format

Usage

expr_meta_serialize(..., format = c("binary", "json"))

Arguments

... These dots are for future extensions and must be empty.
format The format in which to serialize. Must be one of:

• "binary" (default): serialize to binary format (bytes).
• "json": serialize to JSON format (string).

Details

Serialization is not stable across Polars versions: a LazyFrame serialized in one Polars
version may not be deserializable in another Polars version.

Value

A polars expression

Examples

Serialize the expression into a binary representation.
expr <- pl$col("foo")$sum()$over("bar")
bytes <- expr$meta$serialize()
rawToChar(bytes)

expr_meta_tree_format 241

pl$deserialize_expr(bytes)

Serialize into json
expr$meta$serialize(format = "json") |>

jsonlite::prettify()

expr_meta_tree_format
Format the expression as a tree

Description

Format the expression as a tree

Usage

expr_meta_tree_format(..., as_dot = FALSE, schema = NULL)

Arguments

... These dots are for future extensions and must be empty.

as_dot [Experimental] If TRUE, show the dot syntax that can be used in other
packages, such as DiagrammeR.

schema An optional schema. Must be NULL or a named list of DataType.

Value

A string, either with the tree itself (if as_dot = FALSE) or with the corresponding GraphViz
code (if as_dot = TRUE).

Examples

my_expr <- (pl$col("foo") * pl$col("bar"))$sum()$over(pl$col("ham")) / 2
cat(my_expr$meta$tree_format())

Not run:
This output can be displayed with DiagrammeR for instance
graph <- my_expr$meta$tree_format(as_dot = TRUE)
DiagrammeR::grViz(graph)

End(Not run)

242 expr_name_keep

expr_meta_undo_aliases
Undo any renaming operation like alias or name$keep

Description

Undo any renaming operation like alias or name$keep

Usage

expr_meta_undo_aliases()

Value

A polars expression

Examples

e <- pl$col("foo")$alias("bar")
e$meta$undo_aliases()$meta$eq(pl$col("foo"))

e <- pl$col("foo")$sum()$over("bar")
e$name$keep()$meta$undo_aliases()$meta$eq(e)

expr_name_keep Keep the original root name of the expression.

Description

Keep the original root name of the expression.

Usage

expr_name_keep()

Value

A polars expression

Examples

df <- pl$DataFrame(alice = 1:3)
df$select(pl$col("alice")$alias("bob")$name$keep())

expr_name_prefix 243

expr_name_prefix Add a prefix to a column name

Description

Add a prefix to a column name

Usage

expr_name_prefix(prefix)

Arguments

prefix Prefix to be added to column name(s)

Value

A polars expression

See Also

$suffix() to add a suffix

Examples
dat <- as_polars_df(mtcars)

dat$select(
pl$col("mpg"),
pl$col("mpg")$name$prefix("name_"),
pl$col("cyl", "drat")$name$prefix("bar_")

)

expr_name_prefix_fields
Add a prefix to all fields name of a struct

Description

Add a prefix to all fields name of a struct

Usage

expr_name_prefix_fields(prefix)

Arguments

prefix Prefix to add to the field name.

244 expr_name_replace

Value

A polars expression

Examples

df <- pl$DataFrame(a = 1, b = 2)$select(
pl$struct(pl$all())$alias("my_struct")

)

df$with_columns(
pl$col("my_struct")$name$prefix_fields("col_")

)$unnest("my_struct")

expr_name_replace Replace matching regex/literal substring in the name with a new
value

Description

This will undo any previous renaming operations on the expression.
Due to implementation constraints, this method can only be called as the last expression
in a chain. Only one name operation per expression will work.

Usage

expr_name_replace(pattern, value, ..., literal = FALSE)

Arguments

pattern A valid regular expression pattern, compatible with the regex crate <https://docs.rs/regex/latest/regex/>_.
value String that will replace the matched substring.
... These dots are for future extensions and must be empty.
literal Treat pattern as a literal string, not a regex.

Value

A polars expression

Examples

df <- pl$DataFrame(n_foo = 1, n_bar = 2)
df$select(pl$all()$name$replace("^n_", "col_"))

df$select(pl$all()$name$replace("(a|e|i|o|u)", "@"))$schema

expr_name_suffix 245

expr_name_suffix Add a suffix to a column name

Description

Add a suffix to a column name

Usage

expr_name_suffix(suffix)

Arguments

suffix Suffix to be added to column name(s)

Value

A polars expression

See Also

$prefix() to add a prefix

Examples
dat <- as_polars_df(mtcars)

dat$select(
pl$col("mpg"),
pl$col("mpg")$name$suffix("_foo"),
pl$col("cyl", "drat")$name$suffix("_bar")

)

expr_name_suffix_fields
Add a suffix to all fields name of a struct

Description

Add a suffix to all fields name of a struct

Usage

expr_name_suffix_fields(suffix)

Arguments

suffix Suffix to add to the field name.

246 expr_name_to_uppercase

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1, b = 2)$select(

pl$struct(pl$all())$alias("my_struct")
)

df$with_columns(
pl$col("my_struct")$name$suffix_fields("_post")

)$unnest("my_struct")

expr_name_to_lowercase
Make the root column name lowercase

Description

Due to implementation constraints, this method can only be called as the last expression
in a chain.

Usage

expr_name_to_lowercase()

Value

A polars expression

Examples
df <- pl$DataFrame(Foo = 1:3, BAR = 4:6)
df$select(pl$all()$name$to_lowercase())

expr_name_to_uppercase
Make the root column name uppercase

Description

Due to implementation constraints, this method can only be called as the last expression
in a chain.

Usage

expr_name_to_uppercase()

expr_struct_field 247

Value

A polars expression

Examples
df <- pl$DataFrame(Foo = 1:3, bar = 4:6)
df$select(pl$all()$name$to_uppercase())

expr_struct_field Retrieve one or multiple Struct field(s) as a new Series

Description

Retrieve one or multiple Struct field(s) as a new Series

Usage

expr_struct_field(...)

Arguments

... <dynamic-dots> Names of struct fields to retrieve.

Value

A polars expression

Examples
df <- pl$DataFrame(

aaa = c(1, 2),
bbb = c("ab", "cd"),
ccc = c(TRUE, NA),
ddd = list(1:2, 3)

)$select(struct_col = pl$struct("aaa", "bbb", "ccc", "ddd"))
df

Retrieve struct field(s) as Series:
df$select(pl$col("struct_col")$struct$field("bbb"))

df$select(
pl$col("struct_col")$struct$field("bbb"),
pl$col("struct_col")$struct$field("ddd")

)

Use wildcard expansion:
df$select(pl$col("struct_col")$struct$field("*"))

Retrieve multiple fields by name:
df$select(pl$col("struct_col")$struct$field("aaa", "bbb"))

248 expr_struct_rename_fields

Retrieve multiple fields by regex expansion:
df$select(pl$col("struct_col")$struct$field("^a.*|b.*$"))

expr_struct_json_encode
Convert this struct to a string column with json values

Description

Convert this struct to a string column with json values

Usage

expr_struct_json_encode()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = list(1:2, c(9, 1, 3)),
b = list(45, NA)

)$select(a = pl$struct("a", "b"))

df

df$with_columns(encoded = pl$col("a")$struct$json_encode())

expr_struct_rename_fields
Rename the fields of the struct

Description

Rename the fields of the struct

Usage

expr_struct_rename_fields(names)

Arguments

names New names, given in the same order as the struct’s fields.

expr_struct_unnest 249

Value

A polars expression

Examples
df <- pl$DataFrame(

aaa = c(1, 2),
bbb = c("ab", "cd"),
ccc = c(TRUE, NA),
ddd = list(1:2, 3)

)$select(struct_col = pl$struct("aaa", "bbb", "ccc", "ddd"))
df

df <- df$select(
pl$col("struct_col")$struct$rename_fields(c("www", "xxx", "yyy", "zzz"))

)
df$select(pl$col("struct_col")$struct$field("*"))

Following a rename, the previous field names cannot be referenced:
tryCatch(

{
df$select(pl$col("struct_col")$struct$field("aaa"))

},
error = function(e) print(e)

)

expr_struct_unnest Expand the struct into its individual fields

Description

This is an alias for Expr$struct$field("*").

Usage

expr_struct_unnest()

Value

A polars expression

Examples
df <- pl$DataFrame(

aaa = c(1, 2),
bbb = c("ab", "cd"),
ccc = c(TRUE, NA),
ddd = list(1:2, 3)

)$select(struct_col = pl$struct("aaa", "bbb", "ccc", "ddd"))
df

250 expr_struct_with_fields

df$select(pl$col("struct_col")$struct$unnest())

expr_struct_with_fields
Add or overwrite fields of this struct

Description

This is similar to with_columns() on DataFrame and LazyFrame.

Usage

expr_struct_with_fields(...)

Arguments

... <dynamic-dots> Field(s) to add. Accepts expression input. Strings
are parsed as column names, other non-expression inputs are parsed as
literals.

Value

A polars expression

Examples

df <- pl$DataFrame(
x = c(1, 4, 9),
y = c(4, 9, 16),
multiply = c(10, 2, 3)

)$select(coords = pl$struct("x", "y"), "multiply")
df

df <- df$with_columns(
pl$col("coords")$struct$with_fields(
pl$field("x")$sqrt(),
y_mul = pl$field("y") * pl$col("multiply")

)
)

df
df$select(pl$col("coords")$struct$field("*"))

expr_str_contains 251

expr_str_contains Check if string contains a substring that matches a pattern

Description

Check if string contains a substring that matches a pattern

Usage

expr_str_contains(pattern, ..., literal = FALSE, strict = TRUE)

Arguments

pattern A character or something can be coerced to a string Expr of a valid regex
pattern, compatible with the regex crate.

... These dots are for future extensions and must be empty.
literal Logical. If TRUE, treat pattern as a literal string, not as a regular ex-

pression.
strict Logical. If TRUE (default), raise an error if the underlying pattern is not

a valid regex, otherwise mask out with a null value.

Details

To modify regular expression behaviour (such as case-sensitivity) with flags, use the inline
(?iLmsuxU) syntax. See the regex crate’s section on grouping and flags for additional
information about the use of inline expression modifiers.

Value

A polars expression

See Also

• strstart_with(): Check if string values start with a substring.
• strends_with(): Check if string values end with a substring.
• strfind(): Return the index position of the first substring matching a pattern.

Examples
The inline `(?i)` syntax example
pl$DataFrame(s = c("AAA", "aAa", "aaa"))$with_columns(

default_match = pl$col("s")$str$contains("AA"),
insensitive_match = pl$col("s")$str$contains("(?i)AA")

)

df <- pl$DataFrame(txt = c("Crab", "cat and dog", "rab$bit", NA))
df$with_columns(

https://docs.rs/regex/latest/regex/
https://docs.rs/regex/latest/regex/#grouping-and-flags

252 expr_str_contains_any

regex = pl$col("txt")$str$contains("cat|bit"),
literal = pl$col("txt")$str$contains("rab$", literal = TRUE)

)

expr_str_contains_any
Use the Aho-Corasick algorithm to find matches

Description

This function determines if any of the patterns find a match.

Usage

expr_str_contains_any(patterns, ..., ascii_case_insensitive = FALSE)

Arguments

patterns String patterns to search. Accepts expression input. To use the same
character vector for all rows, use list(c(...)) instead of c(...) (see
Examples).

... These dots are for future extensions and must be empty.
ascii_case_insensitive

Enable ASCII-aware case insensitive matching. When this option is en-
abled, searching will be performed without respect to case for ASCII
letters (a-z and A-Z) only.

Value

A polars expression

See Also

• <Expr>strcontains()

Examples
df <- pl$DataFrame(

lyrics = c(
"Everybody wants to rule the world",
"Tell me what you want, what you really really want",
"Can you feel the love tonight"

)
)

df$with_columns(
contains_any = pl$col("lyrics")$str$contains_any(list(c("you", "me")))

)

expr_str_count_matches 253

expr_str_count_matches
Count all successive non-overlapping regex matches

Description

Count all successive non-overlapping regex matches

Usage

expr_str_count_matches(pattern, ..., literal = FALSE)

Arguments

pattern A character or something can be coerced to a string Expr of a valid regex
pattern, compatible with the regex crate.

... These dots are for future extensions and must be empty.
literal Logical. If TRUE, treat pattern as a literal string, not as a regular ex-

pression.

Value

A polars expression

Examples

df <- pl$DataFrame(foo = c("12 dbc 3xy", "cat\\w", "1zy3\\d\\d", NA))

df$with_columns(
count_digits = pl$col("foo")$str$count_matches(r"(\d)"),
count_slash_d = pl$col("foo")$str$count_matches(r"(\d)", literal = TRUE)

)

expr_str_decode Decode a value using the provided encoding

Description

Decode a value using the provided encoding

Usage

expr_str_decode(encoding, ..., strict = TRUE)

https://docs.rs/regex/latest/regex/

254 expr_str_encode

Arguments

encoding Either ’hex’ or ’base64’.

... These dots are for future extensions and must be empty.

strict If TRUE (default), raise an error if the underlying value cannot be decoded.
Otherwise, replace it with a null value.

Value

A polars expression

Examples

df <- pl$DataFrame(strings = c("foo", "bar", NA))
df$select(pl$col("strings")strencode("hex"))
df$with_columns(

pl$col("strings")$str$encode("base64")$alias("base64"), # notice DataType is not encoded
pl$col("strings")$str$encode("hex")$alias("hex") # ... and must restored with cast

)$with_columns(
pl$col("base64")$str$decode("base64")$alias("base64_decoded")$cast(pl$String),
pl$col("hex")$str$decode("hex")$alias("hex_decoded")$cast(pl$String)

)

expr_str_encode Encode a value using the provided encoding

Description

Encode a value using the provided encoding

Usage

expr_str_encode(encoding)

Arguments

encoding Either ’hex’ or ’base64’.

Value

A polars expression

expr_str_ends_with 255

Examples

df <- pl$DataFrame(strings = c("foo", "bar", NA))
df$select(pl$col("strings")strencode("hex"))
df$with_columns(

pl$col("strings")$str$encode("base64")$alias("base64"), # notice DataType is not encoded
pl$col("strings")$str$encode("hex")$alias("hex") # ... and must restored with cast

)$with_columns(
pl$col("base64")$str$decode("base64")$alias("base64_decoded")$cast(pl$String),
pl$col("hex")$str$decode("hex")$alias("hex_decoded")$cast(pl$String)

)

expr_str_ends_with Check if string ends with a regex

Description

Check if string values end with a substring.

Usage

expr_str_ends_with(suffix)

Arguments

suffix Suffix substring or Expr.

Details

See also strstarts_with() and strcontains().

Value

A polars expression

Examples

df <- pl$DataFrame(fruits = c("apple", "mango", NA))
df$select(

pl$col("fruits"),
pl$col("fruits")$str$ends_with("go")$alias("has_suffix")

)

256 expr_str_extract

expr_str_escape_regex
Returns string values with all regular expression meta characters
escaped

Description

Returns string values with all regular expression meta characters escaped

Usage

expr_str_escape_regex()

Value

A polars expression

Examples
df <- pl$DataFrame(text = c("abc", "def", NA, r"(abc(\w+))"))
df$with_columns(escaped = pl$col("text")$str$escape_regex())

expr_str_extract Extract the target capture group from provided patterns

Description

Extract the target capture group from provided patterns

Usage

expr_str_extract(pattern, group_index = 1L)

Arguments

pattern A valid regular expression pattern containing at least one capture group,
compatible with the regex crate.

group_index Index of the targeted capture group. Group 0 means the whole pattern,
the first group begins at index 1. Defaults to the first capture group.

Details

To modify regular expression behaviour (such as multi-line matching) with flags, use the
inline (?iLmsuxU) syntax. See the example.
See the regex crate’s section on grouping and flags for additional information about the use
of inline expression modifiers.

https://docs.rs/regex/latest/regex/
https://docs.rs/regex/latest/regex/#grouping-and-flags

expr_str_extract_all 257

Value

A polars expression

Examples

df <- pl$DataFrame(
url = c(
"http://vote.com/ballon_dor?error=404&ref=unknown",
"http://vote.com/ballon_dor?ref=polars&candidate=messi",
"http://vote.com/ballon_dor?candidate=ronaldo&ref=polars"

)
)
df$select(

extracted = pl$col("url")$str$extract(r"(candidate=(\w+))", 1),
referer = pl$col("url")$str$extract(r"(ref=(\w+))", 1),
error = pl$col("url")$str$extract(r"(error=(\w+))", 1)

)

Using the multi-line mode flag `(?m)`
df <- pl$DataFrame(

lines = c("I Like\nThose\nOdds", "This is\nThe Way")
)
df$with_columns(

with_m_flag = pl$col("lines")$str$extract(r"((?m)^(T\w+))", 1),
without_flag = pl$col("lines")$str$extract(r"(^(T\w+))", 1),

)

expr_str_extract_all Extract all matches for the given regex pattern

Description

Extracts all matches for the given regex pattern. Extracts each successive non-overlapping
regex match in an individual string as an array.

Usage

expr_str_extract_all(pattern)

Arguments

pattern A valid regex pattern

Value

A polars expression

258 expr_str_extract_groups

Examples
df <- pl$DataFrame(foo = c("123 bla 45 asd", "xyz 678 910t"))
df$select(

pl$col("foo")$str$extract_all(r"((\d+))")$alias("extracted_nrs")
)

expr_str_extract_groups
Extract all capture groups for the given regex pattern

Description

Extract all capture groups for the given regex pattern

Usage

expr_str_extract_groups(pattern)

Arguments

pattern A character of a valid regular expression pattern containing at least one
capture group, compatible with the regex crate.

Details

All group names are strings. If your pattern contains unnamed groups, their numerical
position is converted to a string. See examples.

Value

A polars expression

Examples
df <- pl$DataFrame(

url = c(
"http://vote.com/ballon_dor?candidate=messi&ref=python",
"http://vote.com/ballon_dor?candidate=weghorst&ref=polars",
"http://vote.com/ballon_dor?error=404&ref=rust"

)
)

pattern <- r"(candidate=(?<candidate>\w+)&ref=(?<ref>\w+))"

df$with_columns(
captures = pl$col("url")$str$extract_groups(pattern)

)$unnest("captures")

If the groups are unnamed, their numerical position (as a string) is used:

https://docs.rs/regex/latest/regex/

expr_str_extract_many 259

pattern <- r"(candidate=(\w+)&ref=(\w+))"

df$with_columns(
captures = pl$col("url")$str$extract_groups(pattern)

)$unnest("captures")

expr_str_extract_many
Use the Aho-Corasick algorithm to extract matches

Description

[Experimental] This method supports matching on string literals only, and does not support
regular expression matching.

Usage

expr_str_extract_many(
patterns,
...,
ascii_case_insensitive = FALSE,
overlapping = FALSE,
leftmost = FALSE

)

Arguments

patterns String patterns to search. Accepts expression input. Strings are parsed
as column names, and other non-expression inputs are parsed as literals.
To use the same character vector for all rows, use list(c(...)) instead
of c(...) (see Examples).

... These dots are for future extensions and must be empty.
ascii_case_insensitive

Enable ASCII-aware case insensitive matching. When this option is en-
abled, searching will be performed without respect to case for ASCII
letters (a-z and A-Z) only.

overlapping Whether matches can overlap.
leftmost Whether to guarantee in case there are overlapping matches that the

leftmost match is used. In case there are multiple candidates for the
leftmost match, the pattern which comes first in patterns is used.

Value

A polars expression

260 expr_str_find

Examples

df <- pl$DataFrame(values = "discontent")
patterns <- list(c("winter", "disco", "onte", "discontent"))

df$with_columns(
matches = pl$col("values")$str$extract_many(patterns),
matches_overlap = pl$col("values")$str$extract_many(patterns, overlapping = TRUE)

)

df <- pl$DataFrame(
values = c("discontent", "rhapsody"),
patterns = list(c("winter", "disco", "onte", "discontent"), c("rhap", "ody", "coalesce"))

)

df$select(pl$col("values")strextract_many("patterns"))

expr_str_find Return the index position of the first substring matching a pattern

Description

Return the index position of the first substring matching a pattern

Usage

expr_str_find(pattern, ..., literal = FALSE, strict = TRUE)

Arguments

pattern A character or something can be coerced to a string Expr of a valid regex
pattern, compatible with the regex crate.

... These dots are for future extensions and must be empty.
literal Logical. If TRUE, treat pattern as a literal string, not as a regular ex-

pression.
strict Logical. If TRUE (default), raise an error if the underlying pattern is not

a valid regex, otherwise mask out with a null value.

Details

To modify regular expression behaviour (such as case-sensitivity) with flags, use the inline
(?iLmsuxU) syntax. See the regex crate’s section on grouping and flags for additional
information about the use of inline expression modifiers.

Value

A polars expression

https://docs.rs/regex/latest/regex/
https://docs.rs/regex/latest/regex/#grouping-and-flags

expr_str_find_many 261

See Also

• strstart_with(): Check if string values start with a substring.
• strends_with(): Check if string values end with a substring.
• strcontains(): Check if string contains a substring that matches a pattern.

Examples
pl$DataFrame(s = c("AAA", "aAa", "aaa"))$with_columns(

default_match = pl$col("s")$str$find("Aa"),
insensitive_match = pl$col("s")$str$find("(?i)Aa")

)

expr_str_find_many Use the Aho-Corasick algorithm to find many matches

Description

[Experimental] The function will return the bytes offset of the start of each match. The
return type will be List(UInt32). This method supports matching on string literals only,
and does not support regular expression matching.

Usage

expr_str_find_many(
patterns,
...,
ascii_case_insensitive = FALSE,
overlapping = FALSE,
leftmost = FALSE

)

Arguments

patterns String patterns to search. Accepts expression input. Strings are parsed
as column names, and other non-expression inputs are parsed as literals.
To use the same character vector for all rows, use list(c(...)) instead
of c(...) (see Examples).

... These dots are for future extensions and must be empty.
ascii_case_insensitive

Enable ASCII-aware case insensitive matching. When this option is en-
abled, searching will be performed without respect to case for ASCII
letters (a-z and A-Z) only.

overlapping Whether matches can overlap.
leftmost Whether to guarantee in case there are overlapping matches that the

leftmost match is used. In case there are multiple candidates for the
leftmost match, the pattern which comes first in patterns is used.

262 expr_str_head

Value

A polars expression

Examples
df <- pl$DataFrame(values = "discontent")
patterns <- list(c("winter", "disco", "onte", "discontent"))

df$with_columns(
matches = pl$col("values")$str$find_many(patterns, overlapping = FALSE),
matches_overlapping = pl$col("values")$str$find_many(
patterns, overlapping = TRUE

)
)

df <- pl$DataFrame(
values = c("discontent", "rhapsody"),
patterns = list(
c("winter", "disco", "onte", "discontent"),
c("rhap", "ody", "coalesce")

)
)

df$select(pl$col("values")strfind_many("patterns"))

expr_str_head Return the first n characters of each string

Description

Return the first n characters of each string

Usage

expr_str_head(n)

Arguments

n Length of the slice (integer or expression). Strings are parsed as column
names. Negative indexing is supported.

Details

The n input is defined in terms of the number of characters in the (UTF-8) string. A
character is defined as a Unicode scalar value. A single character is represented by a single
byte when working with ASCII text, and a maximum of 4 bytes otherwise.
When the n input is negative, head() returns characters up to the nth from the end of the
string. For example, if n = -3, then all characters except the last three are returned.
If the length of the string has fewer than n characters, the full string is returned.

expr_str_join 263

Value

A polars expression

Examples
df <- pl$DataFrame(

s = c("pear", NA, "papaya", "dragonfruit"),
n = c(3, 4, -2, -5)

)

df$with_columns(
s_head_5 = pl$col("s")$str$head(5),
s_head_n = pl$col("s")$str$head("n")

)

expr_str_join Vertically concatenate the string values in the column to a single
string value.

Description

Vertically concatenate the string values in the column to a single string value.

Usage

expr_str_join(delimiter = "", ..., ignore_nulls = TRUE)

Arguments

delimiter The delimiter to insert between consecutive string values.
... These dots are for future extensions and must be empty.
ignore_nulls Ignore null values (default). If FALSE, null values will be propagated: if

the column contains any null values, the output is null.

Value

A polars expression

Examples
concatenate a Series of strings to a single string
df <- pl$DataFrame(foo = c(1, NA, 2))

df$select(pl$col("foo")strjoin("-"))

df$select(pl$col("foo")strjoin("-", ignore_nulls = FALSE))

264 expr_str_json_decode

expr_str_json_decode Parse string values as JSON.

Description

Parse string values as JSON. Throw errors if encounter invalid json strings.

Usage

expr_str_json_decode(dtype, ..., infer_schema_length = deprecated())

Arguments

dtype The dtype to cast the extracted value to.
... These dots are for future extensions and must be empty.
infer_schema_length

[Deprecated] Ignored.

Details

As of polars 1.3.0, infer_schema_length is deprecated and dtype must be provided to
ensure that the planner can determine the output datatype.
If inferring dtype is needed, <series>strjson_decode() can be used, which inspects
the data at runtime.

Value

A polars expression

See Also

• <series>strjson_decode()

Examples

df <- pl$DataFrame(
json_val = c('{"a":1, "b": true}', NA, '{"a":2, "b": false}')

)

dtype <- pl$Struct(a = pl$UInt8, b = pl$Boolean)
df$select(

pl$col("json_val")$str$json_decode(dtype)
)$unnest("json_val")

expr_str_json_path_match 265

expr_str_json_path_match
Extract the first match of JSON string with the provided JSON-
Path expression

Description

Extract the first match of JSON string with the provided JSONPath expression

Usage

expr_str_json_path_match(json_path)

Arguments

json_path A valid JSON path query string.

Details

Throw errors if encounter invalid JSON strings. All return value will be cast to String
regardless of the original value.
Documentation on JSONPath standard can be found here: https://goessner.net/articles/
JsonPath/.

Value

A polars expression

Examples
df <- pl$DataFrame(

json_val = c('{"a":"1"}', NA, '{"a":2}', '{"a":2.1}', '{"a":true}')
)
df$select(pl$col("json_val")strjson_path_match("$.a"))

expr_str_len_bytes Get the number of bytes in strings

Description

Get length of the strings as UInt32 (as number of bytes). Use strlen_chars() to get
the number of characters.

Usage

expr_str_len_bytes()

https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/

266 expr_str_len_chars

Details

If you know that you are working with ASCII text, lengths will be equivalent, and faster
(returns length in terms of the number of bytes).

Value

A polars expression

Examples
pl$DataFrame(

s = c("Café", NA, "345", "æøå")
)$select(

pl$col("s"),
pl$col("s")$str$len_bytes()$alias("lengths"),
pl$col("s")$str$len_chars()$alias("n_chars")

)

expr_str_len_chars Get the number of characters in strings

Description

Get length of the strings as UInt32 (as number of characters). Use strlen_bytes() to
get the number of bytes.

Usage

expr_str_len_chars()

Details

If you know that you are working with ASCII text, lengths will be equivalent, and faster
(returns length in terms of the number of bytes).

Value

A polars expression

Examples
pl$DataFrame(

s = c("Café", NA, "345", "æøå")
)$select(

pl$col("s"),
pl$col("s")$str$len_bytes()$alias("lengths"),
pl$col("s")$str$len_chars()$alias("n_chars")

)

expr_str_normalize 267

expr_str_normalize Returns the Unicode normal form of the string values

Description

This uses the forms described in Unicode Standard Annex 15: https://www.unicode.org/
reports/tr15/.

Usage

expr_str_normalize(form = c("NFC", "NFKC", "NFD", "NFKD"))

Arguments

form Unicode form to use. Must be one of: "NFC", "NFKC", "NFD", "NFKD".

Value

A polars expression

Examples
df <- pl$DataFrame(text = c("01²", "��������"))

new <- df$with_columns(
nfc = pl$col("text")$str$normalize("NFC"),
nfkc = pl$col("text")$str$normalize("NFKC"),

)
new

new$select(pl$all()strlen_bytes())

expr_str_pad_end Left justify strings

Description

Return the string left justified in a string of length width.

Usage

expr_str_pad_end(length, fill_char = " ")

Arguments

length Pad the string until it reaches this length. Strings with length equal to or
greater than this value are returned as-is. Can be integer or expression.

fill_char Fill with this ASCII character.

https://www.unicode.org/reports/tr15/
https://www.unicode.org/reports/tr15/

268 expr_str_replace

Value

A polars expression

Examples
df <- pl$DataFrame(a = c("cow", "monkey", NA, "hippopotamus"))
df$select(pl$col("a")strpad_end(8, "*"))

expr_str_pad_start Right justify strings

Description

Return the string right justified in a string of length length.

Usage

expr_str_pad_start(length, fill_char = " ")

Arguments

length Pad the string until it reaches this length. Strings with length equal to or
greater than this value are returned as-is. Can be integer or expression.

fill_char Fill with this ASCII character.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c("cow", "monkey", NA, "hippopotamus"))
df$select(pl$col("a")strpad_start(8, "*"))

expr_str_replace Replace first matching regex/literal substring with a new string
value

Description

Replace first matching regex/literal substring with a new string value

Usage

expr_str_replace(pattern, value, ..., literal = FALSE, n = 1L)

expr_str_replace 269

Arguments

pattern A character or something can be coerced to a string Expr of a valid regex
pattern, compatible with the regex crate.

value A character or an Expr of string that will replace the matched substring.
... These dots are for future extensions and must be empty.
literal Logical. If TRUE, treat pattern as a literal string, not as a regular ex-

pression.
n A number of matches to replace. Note that regex replacement with n > 1

not yet supported, so raise an error if n > 1 and pattern includes regex
pattern and literal = FALSE.

Details

To modify regular expression behaviour (such as case-sensitivity) with flags, use the inline
(?iLmsuxU) syntax. See the regex crate’s section on grouping and flags for additional
information about the use of inline expression modifiers.

Value

A polars expression

Capture groups

The dollar sign ($) is a special character related to capture groups. To refer to a literal
dollar sign, use $$ instead or set literal to TRUE.

See Also

• <Expr>strreplace_all()

Examples
df <- pl$DataFrame(id = 1L:2L, text = c("123abc", "abc456"))
df$with_columns(pl$col("text")strreplace(r"(abc\b)", "ABC"))

Capture groups are supported.
Use `${1}` in the value string to refer to the first capture group in the pattern,
`${2}` to refer to the second capture group, and so on.
You can also use named capture groups.
df <- pl$DataFrame(word = c("hat", "hut"))
df$with_columns(

positional = pl$col("word")$str$replace("h(.)t", "b${1}d"),
named = pl$col("word")$str$replace("h(?<vowel>.)t", "b${vowel}d")

)

Apply case-insensitive string replacement using the `(?i)` flag.
df <- pl$DataFrame(

city = rep("Philadelphia", 4),
season = c("Spring", "Summer", "Autumn", "Winter"),
weather = c("Rainy", "Sunny", "Cloudy", "Snowy")

https://docs.rs/regex/latest/regex/
https://docs.rs/regex/latest/regex/#grouping-and-flags

270 expr_str_replace_all

)
df$with_columns(

pl$col("weather")$str$replace("(?i)foggy|rainy|cloudy|snowy", "Sunny")
)

expr_str_replace_all Replace all matching regex/literal substrings with a new string
value

Description

Replace all matching regex/literal substrings with a new string value

Usage

expr_str_replace_all(pattern, value, ..., literal = FALSE)

Arguments

pattern A character or something can be coerced to a string Expr of a valid regex
pattern, compatible with the regex crate.

value A character or an Expr of string that will replace the matched substring.
... These dots are for future extensions and must be empty.
literal Logical. If TRUE, treat pattern as a literal string, not as a regular ex-

pression.

Details

To modify regular expression behaviour (such as case-sensitivity) with flags, use the inline
(?iLmsuxU) syntax. See the regex crate’s section on grouping and flags for additional
information about the use of inline expression modifiers.

Value

A polars expression

Capture groups

The dollar sign ($) is a special character related to capture groups. To refer to a literal
dollar sign, use $$ instead or set literal to TRUE.

See Also

• <Expr>strreplace()

https://docs.rs/regex/latest/regex/
https://docs.rs/regex/latest/regex/#grouping-and-flags

expr_str_replace_many 271

Examples
df <- pl$DataFrame(id = 1L:2L, text = c("abcabc", "123a123"))
df$with_columns(pl$col("text")strreplace_all("a", "-"))

Capture groups are supported.
Use `${1}` in the value string to refer to the first capture group in the pattern,
`${2}` to refer to the second capture group, and so on.
You can also use named capture groups.
df <- pl$DataFrame(word = c("hat", "hut"))
df$with_columns(

positional = pl$col("word")$str$replace_all("h(.)t", "b${1}d"),
named = pl$col("word")$str$replace_all("h(?<vowel>.)t", "b${vowel}d")

)

Apply case-insensitive string replacement using the `(?i)` flag.
df <- pl$DataFrame(

city = rep("Philadelphia", 4),
season = c("Spring", "Summer", "Autumn", "Winter"),
weather = c("Rainy", "Sunny", "Cloudy", "Snowy")

)
df$with_columns(

pl$col("weather")$str$replace_all(
"(?i)foggy|rainy|cloudy|snowy", "Sunny"

)
)

expr_str_replace_many
Use the Aho-Corasick algorithm to replace many matches

Description

This function replaces several matches at once.

Usage

expr_str_replace_many(
patterns,
replace_with,
...,
ascii_case_insensitive = FALSE,
leftmost = FALSE

)

Arguments

patterns String patterns to search. Accepts expression input. To use the same
character vector for all rows, use list(c(...)) instead of c(...) (see
Examples).

272 expr_str_reverse

replace_with A vector of strings used as replacements. If this is of length 1, then it
is applied to all matches. Otherwise, it must be of same length as the
patterns argument.

... These dots are for future extensions and must be empty.
ascii_case_insensitive

Enable ASCII-aware case insensitive matching. When this option is en-
abled, searching will be performed without respect to case for ASCII
letters (a-z and A-Z) only.

leftmost Whether to guarantee in case there are overlapping matches that the
leftmost match is used. In case there are multiple candidates for the
leftmost match, the pattern which comes first in patterns is used.

Value

A polars expression

Examples

df <- pl$DataFrame(
lyrics = c(
"Everybody wants to rule the world",
"Tell me what you want, what you really really want",
"Can you feel the love tonight"

)
)

a replacement of length 1 is applied to all matches
df$with_columns(

remove_pronouns = pl$col("lyrics")$str$replace_many(list(c("you", "me")), "")
)

if there are more than one replacement, the patterns and replacements are
matched
df$with_columns(

fake_pronouns = pl$col("lyrics")$str$replace_many(list(c("you", "me")), c("foo", "bar"))
)

expr_str_reverse Returns string values in reversed order

Description

Returns string values in reversed order

Usage

expr_str_reverse()

expr_str_slice 273

Value

A polars expression

Examples

df <- pl$DataFrame(text = c("foo", "bar", NA))
df$with_columns(reversed = pl$col("text")$str$reverse())

expr_str_slice Create subslices of the string values of a String Series

Description

Create subslices of the string values of a String Series

Usage

expr_str_slice(offset, length = NULL)

Arguments

offset Start index. Negative indexing is supported.

length Length of the slice. If NULL (default), the slice is taken to the end of the
string.

Value

A polars expression

Examples

df <- pl$DataFrame(s = c("pear", NA, "papaya", "dragonfruit"))
df$with_columns(

pl$col("s")$str$slice(-3)$alias("s_sliced")
)

274 expr_str_splitn

expr_str_split Split the string by a substring

Description

Split the string by a substring

Usage

expr_str_split(by, ..., inclusive = FALSE)

Arguments

by Substring to split by. Can be an Expr.
... These dots are for future extensions and must be empty.
inclusive If TRUE, include the split character/string in the results.

Value

A polars expression

Examples
df <- pl$DataFrame(s = c("foo bar", "foo-bar", "foo bar baz"))
df$select(pl$col("s")strsplit(by = " "))

df <- pl$DataFrame(
s = c("foo^bar", "foo_bar", "foo*bar*baz"),
by = c("_", "_", "*")

)
df
df$select(split = pl$col("s")strsplit(by = pl$col("by")))

expr_str_splitn Split the string by a substring, restricted to returning at most n
items

Description

If the number of possible splits is less than n-1, the remaining field elements will be null.
If the number of possible splits is n-1 or greater, the last (nth) substring will contain the
remainder of the string.

Usage

expr_str_splitn(by, n)

expr_str_split_exact 275

Arguments

by Substring to split by. Can be an Expr.
n Number of splits to make.

Value

A polars expression

Examples
df <- pl$DataFrame(s = c("a_1", NA, "c", "d_4_e"))
df$with_columns(

s1 = pl$col("s")$str$splitn(by = "_", 1),
s2 = pl$col("s")$str$splitn(by = "_", 2),
s3 = pl$col("s")$str$splitn(by = "_", 3)

)

expr_str_split_exact Split the string by a substring using n splits

Description

This results in a struct of n+1 fields. If it cannot make n splits, the remaining field elements
will be null.

Usage

expr_str_split_exact(by, n, ..., inclusive = FALSE)

Arguments

by Substring to split by. Can be an Expr.
n Number of splits to make.
... These dots are for future extensions and must be empty.
inclusive If TRUE, include the split character/string in the results.

Value

A polars expression

Examples
df <- pl$DataFrame(s = c("a_1", NA, "c", "d_4"))
df$with_columns(

split = pl$col("s")$str$split_exact(by = "_", 1),
split_inclusive = pl$col("s")$str$split_exact(by = "_", 1, inclusive = TRUE)

)

276 expr_str_strip_chars

expr_str_starts_with Check if string starts with a regex

Description

Check if string values starts with a substring.

Usage

expr_str_starts_with(prefix)

Arguments

prefix Prefix substring or Expr.

Details

See also strcontains() and strends_with().

Value

A polars expression

Examples
df <- pl$DataFrame(fruits = c("apple", "mango", NA))
df$select(

pl$col("fruits"),
pl$col("fruits")$str$starts_with("app")$alias("has_suffix")

)

expr_str_strip_chars Strip leading and trailing characters

Description

Remove leading and trailing characters.

Usage

expr_str_strip_chars(characters = NULL)

Arguments

characters The set of characters to be removed. All combinations of this set of
characters will be stripped. If NULL (default), all whitespace is removed
instead. This can be an Expr.

expr_str_strip_chars_end 277

Details

This function will not strip any chars beyond the first char not matched. strip_chars()
removes characters at the beginning and the end of the string. Use strip_chars_start()
and strip_chars_end() to remove characters only from left and right respectively.

Value

A polars expression

Examples
df <- pl$DataFrame(foo = c(" hello", "\tworld"))
df$select(pl$col("foo")strstrip_chars())
df$select(pl$col("foo")strstrip_chars(" hel rld"))

expr_str_strip_chars_end
Strip trailing characters

Description

Remove trailing characters.

Usage

expr_str_strip_chars_end(characters = NULL)

Arguments

characters The set of characters to be removed. All combinations of this set of
characters will be stripped. If NULL (default), all whitespace is removed
instead. This can be an Expr.

Details

This function will not strip any chars beyond the first char not matched. strip_chars_end()
removes characters at the end of the string only. Use strip_chars() and strip_chars_start()
to remove characters from the left and right or only from the left respectively.

Value

A polars expression

Examples
df <- pl$DataFrame(foo = c(" hello", "\tworld"))
df$select(pl$col("foo")strstrip_chars_end(" hel\trld"))
df$select(pl$col("foo")strstrip_chars_end("rldhel\t "))

278 expr_str_strip_prefix

expr_str_strip_chars_start
Strip leading characters

Description

Remove leading characters.

Usage

expr_str_strip_chars_start(characters = NULL)

Arguments

characters The set of characters to be removed. All combinations of this set of
characters will be stripped. If NULL (default), all whitespace is removed
instead. This can be an Expr.

Details

This function will not strip any chars beyond the first char not matched. strip_chars_start()
removes characters at the beginning of the string only. Use strip_chars() and strip_chars_end()
to remove characters from the left and right or only from the right respectively.

Value

A polars expression

Examples
df <- pl$DataFrame(foo = c(" hello", "\tworld"))
df$select(pl$col("foo")strstrip_chars_start(" hel rld"))

expr_str_strip_prefix
Strip prefix

Description

The prefix will be removed from the string exactly once, if found.

Usage

expr_str_strip_prefix(prefix = NULL)

Arguments

prefix The prefix to be removed.

expr_str_strip_suffix 279

Details

This method strips the exact character sequence provided in prefix from the start of the
input. To strip a set of characters in any order, use $strip_chars_start() instead.

Value

A polars expression

Examples

df <- pl$DataFrame(a = c("foobar", "foofoobar", "foo", "bar"))
df$with_columns(

stripped = pl$col("a")$str$strip_prefix("foo")
)

expr_str_strip_suffix
Strip suffix

Description

The suffix will be removed from the string exactly once, if found.

Usage

expr_str_strip_suffix(suffix = NULL)

Arguments

suffix The suffix to be removed.

Details

This method strips the exact character sequence provided in suffix from the end of the
input. To strip a set of characters in any order, use $strip_chars_end() instead.

Value

A polars expression

Examples

df <- pl$DataFrame(a = c("foobar", "foobarbar", "foo", "bar"))
df$with_columns(

stripped = pl$col("a")$str$strip_suffix("bar")
)

280 expr_str_strptime

expr_str_strptime Convert a String column into a Date/Datetime/Time column.

Description

Similar to the strptime() function.

Usage

expr_str_strptime(
dtype,
format = NULL,
...,
strict = TRUE,
exact = TRUE,
cache = TRUE,
ambiguous = c("raise", "earliest", "latest", "null")

)

Arguments

dtype The data type to convert into. Can be either pl$Date, pl$Datetime, or
pl$Time.

format Format to use for conversion. Refer to the chrono crate documentation for
the full specification. Example: "%Y-%m-%d %H:%M:%S". If NULL (default),
the format is inferred from the data. Notice that time zone %Z is not
supported and will just ignore timezones. Numeric time zones like %z or
%:z are supported.

... These dots are for future extensions and must be empty.
strict If TRUE (default), raise an error if a single string cannot be parsed. If

FALSE, produce a polars null.
exact If TRUE (default), require an exact format match. If FALSE, allow the

format to match anywhere in the target string. Conversion to the Time
type is always exact. Note that using exact = FALSE introduces a perfor-
mance penalty - cleaning your data beforehand will almost certainly be
more performant.

cache Use a cache of unique, converted dates to apply the datetime conversion.
ambiguous Determine how to deal with ambiguous datetimes. Character vector or

expression containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a null value

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

expr_str_strptime 281

Details

When parsing a Datetime the column precision will be inferred from the format string, if
given, e.g.: "%F %T%.3f" => pl$Datetime("ms"). If no fractional second component is
found then the default is "us" (microsecond).

Value

A polars expression

See Also

• <expr>strto_date()
• <expr>strto_datetime()
• <expr>strto_time()
• <series>strto_datetime()

Examples
Dealing with a consistent format
df <- pl$DataFrame(x = c("2020-01-01 01:00Z", "2020-01-01 02:00Z"))

df$select(pl$col("x")strstrptime(pl$Datetime(), "%Y-%m-%d %H:%M%#z"))

Dealing with different formats.
df <- pl$DataFrame(

date = c(
"2021-04-22",
"2022-01-04 00:00:00",
"01/31/22",
"Sun Jul 8 00:34:60 2001"

)
)

df$select(
pl$coalesce(
pl$col("date")$str$strptime(pl$Date, "%F", strict = FALSE),
pl$col("date")$str$strptime(pl$Date, "%F %T", strict = FALSE),
pl$col("date")$str$strptime(pl$Date, "%D", strict = FALSE),
pl$col("date")$str$strptime(pl$Date, "%c", strict = FALSE)

)
)

Ignore invalid time
df <- pl$DataFrame(

x = c(
"2023-01-01 11:22:33 -0100",
"2023-01-01 11:22:33 +0300",
"invalid time"

)
)

282 expr_str_tail

df$select(pl$col("x")strstrptime(
pl$Datetime("ns"),
format = "%Y-%m-%d %H:%M:%S %z",
strict = FALSE

))

expr_str_tail Return the last n characters of each string

Description

Return the last n characters of each string

Usage

expr_str_tail(n)

Arguments

n Length of the slice (integer or expression). Strings are parsed as column
names. Negative indexing is supported.

Details

The n input is defined in terms of the number of characters in the (UTF-8) string. A
character is defined as a Unicode scalar value. A single character is represented by a single
byte when working with ASCII text, and a maximum of 4 bytes otherwise.
When the n input is negative, tail() returns characters starting from the nth from the
beginning of the string. For example, if n = -3, then all characters except the first three
are returned.
If the length of the string has fewer than n characters, the full string is returned.

Value

A polars expression

Examples
df <- pl$DataFrame(

s = c("pear", NA, "papaya", "dragonfruit"),
n = c(3, 4, -2, -5)

)

df$with_columns(
s_tail_5 = pl$col("s")$str$tail(5),
s_tail_n = pl$col("s")$str$tail("n")

)

expr_str_to_date 283

expr_str_to_date Convert a String column into a Date column

Description

Convert a String column into a Date column

Usage

expr_str_to_date(format = NULL, ..., strict = TRUE, exact = TRUE, cache = TRUE)

Arguments

format Format to use for conversion. Refer to the chrono crate documentation for
the full specification. Example: "%Y-%m-%d %H:%M:%S". If NULL (default),
the format is inferred from the data. Notice that time zone %Z is not
supported and will just ignore timezones. Numeric time zones like %z or
%:z are supported.

... These dots are for future extensions and must be empty.
strict If TRUE (default), raise an error if a single string cannot be parsed. If

FALSE, produce a polars null.
exact If TRUE (default), require an exact format match. If FALSE, allow the

format to match anywhere in the target string. Conversion to the Time
type is always exact. Note that using exact = FALSE introduces a perfor-
mance penalty - cleaning your data beforehand will almost certainly be
more performant.

cache Use a cache of unique, converted dates to apply the datetime conversion.

Value

A polars expression

See Also

• <Expr>strstrptime()

Examples
df <- pl$DataFrame(x = c("2020/01/01", "2020/02/01", "2020/03/01"))

df$select(pl$col("x")strto_date())

by default, this errors if some values cannot be converted
df <- pl$DataFrame(x = c("2020/01/01", "2020 02 01", "2020-03-01"))
try(df$select(pl$col("x")strto_date()))
df$select(pl$col("x")strto_date(strict = FALSE))

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

284 expr_str_to_datetime

expr_str_to_datetime Convert a String column into a Datetime column

Description

Convert a String column into a Datetime column

Usage

expr_str_to_datetime(
format = NULL,
...,
time_unit = NULL,
time_zone = NULL,
strict = TRUE,
exact = TRUE,
cache = TRUE,
ambiguous = c("raise", "earliest", "latest", "null")

)

Arguments

format Format to use for conversion. Refer to the chrono crate documentation for
the full specification. Example: "%Y-%m-%d %H:%M:%S". If NULL (default),
the format is inferred from the data. Notice that time zone %Z is not
supported and will just ignore timezones. Numeric time zones like %z or
%:z are supported.

... These dots are for future extensions and must be empty.
time_unit Unit of time for the resulting Datetime column. If NULL (default), the

time unit is inferred from the format string if given, e.g.: "%F %T%.3f"
=> pl$Datetime("ms"). If no fractional second component is found, the
default is "us" (microsecond).

time_zone for the resulting Datetime column.
strict If TRUE (default), raise an error if a single string cannot be parsed. If

FALSE, produce a polars null.
exact If TRUE (default), require an exact format match. If FALSE, allow the

format to match anywhere in the target string. Note that using exact =
FALSE introduces a performance penalty - cleaning your data beforehand
will almost certainly be more performant.

cache Use a cache of unique, converted dates to apply the datetime conversion.
ambiguous Determine how to deal with ambiguous datetimes. Character vector or

expression containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a null value

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

expr_str_to_decimal 285

Value

A polars expression

See Also

• <expr>strstrptime()
• <series>strto_datetime()

Examples
df <- pl$DataFrame(x = c("2020-01-01 01:00Z", "2020-01-01 02:00Z"))

df$select(pl$col("x")strto_datetime("%Y-%m-%d %H:%M%#z"))
df$select(pl$col("x")strto_datetime(time_zone = "UTC"))

expr_str_to_decimal Convert a String column into a Decimal column

Description

[Experimental]

Usage

expr_str_to_decimal(..., scale, inference_length = deprecated())

Arguments

... These dots are for future extensions and must be empty.
scale Number of digits after the comma to use for the decimals.
inference_length

[Deprecated] Ignored.

Value

A polars expression

See Also

• <series>strto_decimal()

Examples
df <- pl$DataFrame(

numbers = c(
"40.12", "3420.13", "120134.19", "3212.98",
"12.90", "143.09", "143.9"

)
)
df$with_columns(numbers_decimal = pl$col("numbers")$str$to_decimal(scale = 2))

286 expr_str_to_integer

expr_str_to_integer Convert a String column into an Int64 column with base radix

Description

Convert a String column into an Int64 column with base radix

Usage

expr_str_to_integer(..., base = 10L, dtype = pl$Int64, strict = TRUE)

Arguments

... These dots are for future extensions and must be empty.

base A positive integer or expression which is the base of the string we are
parsing. Characters are parsed as column names. Default: 10L.

dtype A polars integer dtype (e.g. pl$UInt8, pl$Int32, etc.). The default is
pl$Int64.

strict A logical. If TRUE (default), parsing errors or integer overflow will raise
an error. If FALSE, silently convert to null.

Value

A polars expression

Examples

df <- pl$DataFrame(bin = c("110", "101", "010", "invalid"))
df$with_columns(

parsed = pl$col("bin")$str$to_integer(
base = 2,
dtype = pl$Int32,
strict = FALSE

)
)

df <- pl$DataFrame(hex = c("fa1e", "ff00", "cafe", NA))
df$with_columns(

parsed = pl$col("hex")$str$to_integer(base = 16, strict = TRUE)
)

expr_str_to_lowercase 287

expr_str_to_lowercase
Convert a string to lowercase

Description

Transform to lowercase variant.

Usage

expr_str_to_lowercase()

Value

A polars expression

Examples

pl$select(
pl$lit(c("A", "b", "c", "1", NA))strto_lowercase()

)$to_series()

expr_str_to_time Convert a String column into a Time column

Description

Convert a String column into a Time column

Usage

expr_str_to_time(format = NULL, ..., strict = TRUE, cache = TRUE)

Arguments

format Format to use for conversion. Refer to the chrono crate documentation for
the full specification. Example: "%Y-%m-%d %H:%M:%S". If NULL (default),
the format is inferred from the data. Notice that time zone %Z is not
supported and will just ignore timezones. Numeric time zones like %z or
%:z are supported.

... These dots are for future extensions and must be empty.
strict If TRUE (default), raise an error if a single string cannot be parsed. If

FALSE, produce a polars null.
cache Use a cache of unique, converted dates to apply the datetime conversion.

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

288 expr_str_to_titlecase

Value

A polars expression

See Also

• <Expr>strstrptime()

Examples

df <- pl$DataFrame(x = c("01:00", "02:00", "03:00"))

df$select(pl$col("x")strto_time("%H:%M"))

expr_str_to_titlecase
Convert a string to titlecase

Description

Transform to titlecase variant.

Usage

expr_str_to_titlecase()

Details

This method is only available with the ”nightly” feature. See polars_info() for more
details.

Value

A polars expression

Examples

pl$select(
pl$lit(c("hello there", "HI, THERE", NA))strto_titlecase()

)$to_series()

expr_str_to_uppercase 289

expr_str_to_uppercase
Convert a string to uppercase

Description

Transform to uppercase variant.

Usage

expr_str_to_uppercase()

Value

A polars expression

Examples

pl$select(
pl$lit(c("A", "b", "c", "1", NA))strto_uppercase()

)$to_series()

expr_str_zfill Fills the string with zeroes.

Description

Add zeroes to a string until it reaches n characters. If the number of characters is already
greater than n, the string is not modified.

Usage

expr_str_zfill(length)

Arguments

length Pad the string until it reaches this length. Strings with length equal to
or greater than this value are returned as-is. This can be an Expr or
something coercible to an Expr. Strings are parsed as column names.

Details

Return a copy of the string left filled with ASCII ’0’ digits to make a string of length width.
A leading sign prefix (’+’/’-’) is handled by inserting the padding after the sign character
rather than before. The original string is returned if width is less than or equal to len(s).

290 expr__add

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(-1L, 123L, 999999L, NA))
df$with_columns(zfill = pl$col("a")$cast(pl$String)strzfill(4))

expr__abs Compute absolute values

Description

Compute absolute values

Usage

expr__abs()

Value

A polars expression

Examples
df <- pl$DataFrame(a = -1:2)
df$with_columns(abs = pl$col("a")$abs())

expr__add Add two expressions

Description

Method equivalent of addition operator expr + other.

Usage

expr__add(other)

Arguments

other Element to add. Can be a string (only if expr is a string), a numeric
value or an other expression.

Value

A polars expression

expr__agg_groups 291

See Also

• Arithmetic operators

Examples

df <- pl$DataFrame(x = 1:5)

df$with_columns(
`x+int` = pl$col("x")$add(2L),
`x+expr` = pl$col("x")$add(pl$col("x")$cum_prod())

)

df <- pl$DataFrame(
x = c("a", "d", "g"),
y = c("b", "e", "h"),
z = c("c", "f", "i")

)

df$with_columns(
pl$col("x")$add(pl$col("y"))$add(pl$col("z"))$alias("xyz")

)

expr__agg_groups Get the group indexes of the group by operation

Description

Should be used in aggregation context only.

Usage

expr__agg_groups()

Value

A polars expression

Examples

df <- pl$DataFrame(
group = rep(c("one", "two"), each = 3),
value = c(94, 95, 96, 97, 97, 99)

)

df$group_by("group", maintain_order = TRUE)$agg(pl$col("value")$agg_groups())

292 expr__all

expr__alias Rename the expression

Description

Rename the expression

Usage

expr__alias(name)

Arguments

name The new name.

Value

A polars expression

Examples

Rename an expression to avoid overwriting an existing column
df <- pl$DataFrame(a = 1:3, b = c("x", "y", "z"))
df$with_columns(

pl$col("a") + 10,
pl$col("b")$str$to_uppercase()$alias("c")

)

Overwrite the default name of literal columns to prevent errors due to
duplicate column names.
df$with_columns(

pl$lit(TRUE)$alias("c"),
pl$lit(4)$alias("d")

)

expr__all Check if all boolean values in a column are true

Description

This method is an expression - not to be confused with pl$all() which is a function to
select all columns.

Usage

expr__all(..., ignore_nulls = TRUE)

expr__and 293

Arguments

... These dots are for future extensions and must be empty.
ignore_nulls If TRUE (default), ignore null values. If FALSE, Kleene logic is used to deal

with nulls: if the column contains any null values and no TRUE values, the
output is null.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(TRUE, TRUE),
b = c(TRUE, FALSE),
c = c(NA, TRUE),
d = c(NA, NA)

)

By default, ignore null values. If there are only nulls, then all() returns
TRUE.
df$select(pl$col("*")$all())

If we set ignore_nulls = FALSE, then we don't know if all values in column
"c" are TRUE, so it returns null
df$select(pl$col("*")$all(ignore_nulls = FALSE))

expr__and Apply logical AND on two expressions

Description

Combine two boolean expressions with AND.

Usage

expr__and(...)

Arguments

... <dynamic-dots> One or more integer or boolean expressions to evalu-
ate/combine.

Value

A polars expression

https://en.wikipedia.org/wiki/Three-valued_logic

294 expr__any

Examples
df <- pl$DataFrame(

x = c(5, 6, 7, 4, 8),
y = c(1.5, 2.5, 1.0, 4.0, -5.75),
z = c(-9, 2, -1, 4, 8),

)
df$with_columns(

(pl$col("x") >= pl$col("z"))$and(
pl$col("y") >= pl$col("z"),
pl$col("y") == pl$col("y"),
pl$col("z") <= pl$col("x"),
pl$col("y") != pl$col("x"),

)$alias("all")
)

expr__any Check if any boolean value in a column is true

Description

Check if any boolean value in a column is true

Usage

expr__any(..., ignore_nulls = TRUE)

Arguments

... These dots are for future extensions and must be empty.
ignore_nulls If TRUE (default), ignore null values. If FALSE, Kleene logic is used to deal

with nulls: if the column contains any null values and no TRUE values, the
output is null.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(TRUE, FALSE),
b = c(FALSE, FALSE),
c = c(NA, FALSE)

)

df$select(pl$col("*")$any())

If we set ignore_nulls = FALSE, then we don't know if any values in column
"c" is TRUE, so it returns null
df$select(pl$col("*")$any(ignore_nulls = FALSE))

https://en.wikipedia.org/wiki/Three-valued_logic

expr__append 295

expr__append Append expressions

Description

Append expressions

Usage

expr__append(other, ..., upcast = TRUE)

Arguments

other Expression to append.
... These dots are for future extensions and must be empty.
upcast If TRUE (default), cast both Series to the same supertype.

Value

A polars expression

Examples

df <- pl$DataFrame(a = 8:10, b = c(NA, 4, 4))
df$select(pl$all()$head(1)$append(pl$all()$tail(1)))

expr__approx_n_unique
Approximate count of unique values

Description

This is done using the HyperLogLog++ algorithm for cardinality estimation.

Usage

expr__approx_n_unique()

Value

A polars expression

296 expr__arccosh

Examples
df <- pl$DataFrame(n = c(1, 1, 2))
df$select(pl$col("n")$approx_n_unique())

df <- pl$DataFrame(n = 0:1000)
df$select(

exact = pl$col("n")$n_unique(),
approx = pl$col("n")$approx_n_unique()

)

expr__arccos Compute inverse cosine

Description

Compute inverse cosine

Usage

expr__arccos()

Value

A polars expression

Examples
pl$DataFrame(a = c(-1, cos(0.5), 0, 1, NA))$

with_columns(arccos = pl$col("a")$arccos())

expr__arccosh Compute inverse hyperbolic cosine

Description

Compute inverse hyperbolic cosine

Usage

expr__arccosh()

Value

A polars expression

Examples
pl$DataFrame(a = c(-1, cosh(0.5), 0, 1, NA))$

with_columns(arccosh = pl$col("a")$arccosh())

expr__arcsin 297

expr__arcsin Compute inverse sine

Description

Compute inverse sine

Usage

expr__arcsin()

Value

A polars expression

Examples

pl$DataFrame(a = c(-1, sin(0.5), 0, 1, NA))$
with_columns(arcsin = pl$col("a")$arcsin())

expr__arcsinh Compute inverse hyperbolic sine

Description

Compute inverse hyperbolic sine

Usage

expr__arcsinh()

Value

A polars expression

Examples

pl$DataFrame(a = c(-1, sinh(0.5), 0, 1, NA))$
with_columns(arcsinh = pl$col("a")$arcsinh())

298 expr__arctanh

expr__arctan Compute inverse tangent

Description

Compute inverse tangent

Usage

expr__arctan()

Value

A polars expression

Examples

pl$DataFrame(a = c(-1, tan(0.5), 0, 1, NA_real_))$
with_columns(arctan = pl$col("a")$arctan())

expr__arctanh Compute inverse hyperbolic tangent

Description

Compute inverse hyperbolic tangent

Usage

expr__arctanh()

Value

A polars expression

Examples

pl$DataFrame(a = c(-1, tanh(0.5), 0, 1, NA))$
with_columns(arctanh = pl$col("a")$arctanh())

expr__arg_max 299

expr__arg_max Get the index of the maximal value

Description

Get the index of the maximal value

Usage

expr__arg_max()

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(20, 10, 30))
df$select(pl$col("a")$arg_max())

expr__arg_min Get the index of the minimal value

Description

Get the index of the minimal value

Usage

expr__arg_min()

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(20, 10, 30))
df$select(pl$col("a")$arg_min())

300 expr__arg_true

expr__arg_sort Index of a sort

Description

Get the index values that would sort this column.

Usage

expr__arg_sort(..., descending = FALSE, nulls_last = FALSE)

Arguments

... These dots are for future extensions and must be empty.
descending Sort in descending order.
nulls_last Place null values last.

Value

A polars expression

See Also

pl$arg_sort_by() to find the row indices that would sort multiple columns.

Examples
pl$DataFrame(

a = c(6, 1, 0, NA, Inf, NaN)
)$with_columns(arg_sorted = pl$col("a")$arg_sort())

expr__arg_true Return indices where expression is true

Description

Return indices where expression is true

Usage

expr__arg_true()

Value

A polars expression

expr__arg_unique 301

Examples

df <- pl$DataFrame(a = c(1, 1, 2, 1))
df$select((pl$col("a") == 1)$arg_true())

expr__arg_unique Get the index of the first unique value

Description

Get the index of the first unique value

Usage

expr__arg_unique()

Value

A polars expression

Examples

df <- pl$DataFrame(a = 1:3, b = c(NA, 4, 4))
df$select(pl$col("a")$arg_unique())
df$select(pl$col("b")$arg_unique())

expr__backward_fill Fill missing values with the next non-null value

Description

[Superseded] This is an alias of $fill_null(strategy = "backward").

Usage

expr__backward_fill(limit = NULL)

Arguments

limit The number of consecutive null values to backward fill.

Value

A polars expression

302 expr__bitwise_count_ones

Examples
df <- pl$DataFrame(

a = c(1, 2, NA),
b = c(4, NA, 6),
c = c(NA, NA, 2)

)
df$select(pl$all()$backward_fill())
df$select(pl$all()$backward_fill(limit = 1))

expr__bitwise_and Perform an aggregation of bitwise ANDs.

Description

Perform an aggregation of bitwise ANDs.

Usage

expr__bitwise_and()

Value

A polars expression

Examples
df <- pl$DataFrame(n = -1:1)
df$select(pl$col("n")$bitwise_and())

df <- pl$DataFrame(
grouper = c("a", "a", "a", "b", "b"),
n = c(-1L, 0L, 1L, -1L, 1L)

)
df$group_by("grouper", .maintain_order = TRUE)$agg(pl$col("n")$bitwise_and())

expr__bitwise_count_ones
Evaluate the number of set bits.

Description

Evaluate the number of set bits.

Usage

expr__bitwise_count_ones()

expr__bitwise_count_zeros 303

Value

A polars expression

Examples
df <- pl$DataFrame(n = c(-1L, 0L, 2L, 1L))
df$with_columns(set_bits = pl$col("n")$bitwise_count_ones())

expr__bitwise_count_zeros
Evaluate the number of unset bits.

Description

Evaluate the number of unset bits.

Usage

expr__bitwise_count_zeros()

Value

A polars expression

Examples
df <- pl$DataFrame(n = c(-1L, 0L, 2L, 1L))
df$with_columns(unset_bits = pl$col("n")$bitwise_count_zeros())

expr__bitwise_leading_ones
Evaluate the number most-significant set bits before seeing an
unset bit.

Description

Evaluate the number most-significant set bits before seeing an unset bit.

Usage

expr__bitwise_leading_ones()

Value

A polars expression

Examples
df <- pl$DataFrame(n = c(-1L, 0L, 2L, 1L))
df$with_columns(leading_ones = pl$col("n")$bitwise_leading_ones())

304 expr__bitwise_or

expr__bitwise_leading_zeros
Evaluate the number most-significant unset bits before seeing a
set bit.

Description

Evaluate the number most-significant unset bits before seeing a set bit.

Usage

expr__bitwise_leading_zeros()

Value

A polars expression

Examples
df <- pl$DataFrame(n = c(-1L, 0L, 2L, 1L))
df$with_columns(leading_zeros = pl$col("n")$bitwise_leading_zeros())

expr__bitwise_or Perform an aggregation of bitwise ORs.

Description

Perform an aggregation of bitwise ORs.

Usage

expr__bitwise_or()

Value

A polars expression

Examples
df <- pl$DataFrame(n = -1:1)
df$select(pl$col("n")$bitwise_or())

df <- pl$DataFrame(
grouper = c("a", "a", "a", "b", "b"),
n = c(-1L, 0L, 1L, -1L, 1L)

)
df$group_by("grouper", .maintain_order = TRUE)$agg(pl$col("n")$bitwise_or())

expr__bitwise_trailing_ones 305

expr__bitwise_trailing_ones
Evaluate the number least-significant set bits before seeing an
unset bit.

Description

Evaluate the number least-significant set bits before seeing an unset bit.

Usage

expr__bitwise_trailing_ones()

Value

A polars expression

Examples

df <- pl$DataFrame(n = c(-1L, 0L, 2L, 1L))
df$with_columns(trailing_ones = pl$col("n")$bitwise_trailing_ones())

expr__bitwise_trailing_zeros
Evaluate the number least-significant unset bits before seeing a
set bit.

Description

Evaluate the number least-significant unset bits before seeing a set bit.

Usage

expr__bitwise_trailing_zeros()

Value

A polars expression

Examples

df <- pl$DataFrame(n = c(-1L, 0L, 2L, 1L))
df$with_columns(trailing_zeros = pl$col("n")$bitwise_trailing_zeros())

306 expr__bottom_k

expr__bitwise_xor Perform an aggregation of bitwise XORs.

Description

Perform an aggregation of bitwise XORs.

Usage

expr__bitwise_xor()

Value

A polars expression

Examples
df <- pl$DataFrame(n = -1:1)
df$select(pl$col("n")$bitwise_xor())

df <- pl$DataFrame(
grouper = c("a", "a", "a", "b", "b"),
n = c(-1L, 0L, 1L, -1L, 1L)

)
df$group_by("grouper", .maintain_order = TRUE)$agg(pl$col("n")$bitwise_xor())

expr__bottom_k Return the k smallest elements

Description

Non-null elements are always preferred over null elements. The output is not guaranteed
to be in any particular order, call $sort() after this function if you wish the output to be
sorted. This has time complexity O(n).

Usage

expr__bottom_k(k = 5)

Arguments

k Number of elements to return.

Value

A polars expression

expr__bottom_k_by 307

Examples
df <- pl$DataFrame(value = c(1, 98, 2, 3, 99, 4))
df$select(

top_k = pl$col("value")$top_k(k = 3),
bottom_k = pl$col("value")$bottom_k(k = 3)

)

expr__bottom_k_by Return the elements corresponding to the k smallest elements of
the by column(s)

Description

Non-null elements are always preferred over null elements. The output is not guaranteed
to be in any particular order, call $sort() after this function if you wish the output to be
sorted. This has time complexity O(n).

Usage

expr__bottom_k_by(by, k = 5, ..., reverse = FALSE)

Arguments

by Column(s) used to determine the smallest elements. Accepts expression
input. Strings are parsed as column names.

k Number of elements to return.
... These dots are for future extensions and must be empty.
reverse Consider the k largest elements of the by column(s) (instead of the k

smallest). This can be specified per column by passing a sequence of
booleans.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = 1:6,
b = 6:1,
c = c("Apple", "Orange", "Apple", "Apple", "Banana", "Banana")

)

Get the bottom 2 rows by column a or b:
df$select(

pl$all()$bottom_k_by("a", 2)$name$suffix("_btm_by_a"),
pl$all()$bottom_k_by("b", 2)$name$suffix("_btm_by_b")

)

308 expr__cast

Get the bottom 2 rows by multiple columns with given order.
df$select(

pl$all()$
bottom_k_by(c("c", "a"), 2, reverse = c(FALSE, TRUE))$
name$suffix("_btm_by_ca"),

pl$all()$
bottom_k_by(c("c", "b"), 2, reverse = c(FALSE, TRUE))$
name$suffix("_btm_by_cb"),

)

Get the bottom 2 rows by column a in each group
df$group_by("c", .maintain_order = TRUE)$agg(

pl$all()$bottom_k_by("a", 2)
)$explode(pl$all()$exclude("c"))

expr__cast Cast between DataType

Description

Cast between DataType

Usage

expr__cast(dtype, ..., strict = TRUE, wrap_numerical = FALSE)

Arguments

dtype DataType to cast to.
... These dots are for future extensions and must be empty.
strict If TRUE (default), an error will be thrown if cast failed at resolve time.
wrap_numerical

If TRUE, numeric casts wrap overflowing values instead of marking the
cast as invalid.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3, b = c(1, 2, 3))
df$with_columns(

pl$col("a")$cast(pl$Float64),
pl$col("b")$cast(pl$Int32)

)

strict FALSE, inserts null for any cast failure

expr__cbrt 309

pl$select(
pl$lit(c(100, 200, 300))$cast(pl$UInt8, strict = FALSE)

)$to_series()

strict TRUE, raise any failure as an error when query is executed.
tryCatch(

{
pl$select(

pl$lit("a")$cast(pl$Float64, strict = TRUE)
)$to_series()

},
error = function(e) e

)

expr__cbrt Compute cube root

Description

Compute cube root

Usage

expr__cbrt()

Value

A polars expression

Examples
pl$DataFrame(a = c(1, 2, 4))$

with_columns(cbrt = pl$col("a")$cbrt())

expr__ceil Rounds up to the nearest integer value

Description

This only works on floating point Series.

Usage

expr__ceil()

Value

A polars expression

310 expr__clip

Examples
df <- pl$DataFrame(a = c(0.3, 0.5, 1.0, 1.1))
df$with_columns(

ceil = pl$col("a")$ceil()
)

expr__clip Set values outside the given boundaries to the boundary value

Description

This method only works for numeric and temporal columns. To clip other data types,
consider writing a when-then-otherwise expression.

Usage

expr__clip(lower_bound = NULL, upper_bound = NULL)

Arguments

lower_bound Lower bound. Accepts expression input. Non-expression inputs are parsed
as literals.

upper_bound Upper bound. Accepts expression input. Non-expression inputs are
parsed as literals.

Details

This method only works for numeric and temporal columns. To clip other data types,
consider writing a when-then-otherwise expression.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(-50, 5, 50, NA))

Specifying both a lower and upper bound:
df$with_columns(

clip = pl$col("a")$clip(1, 10)
)

Specifying only a single bound:
df$with_columns(

clip = pl$col("a")$clip(upper_bound = 10)
)

expr__cos 311

expr__cos Compute cosine

Description

Compute cosine

Usage

expr__cos()

Value

A polars expression

Examples

pl$DataFrame(a = c(0, pi / 2, pi, NA))$
with_columns(cosine = pl$col("a")$cos())

expr__cosh Compute hyperbolic cosine

Description

Compute hyperbolic cosine

Usage

expr__cosh()

Value

A polars expression

Examples

pl$DataFrame(a = c(-1, acosh(2), 0, 1, NA))$
with_columns(cosh = pl$col("a")$cosh())

312 expr__count

expr__cot Compute cotangent

Description

Compute cotangent

Usage

expr__cot()

Value

A polars expression

Examples

pl$DataFrame(a = c(0, pi / 2, -5, NA))$
with_columns(cotangent = pl$col("a")$cot())

expr__count Get the number of non-null elements in the column

Description

Get the number of non-null elements in the column

Usage

expr__count()

Value

A polars expression

Examples

df <- pl$DataFrame(a = 1:3, b = c(NA, 4, 4))
df$select(pl$all()$count())

expr__cumulative_eval 313

expr__cumulative_eval
Return the cumulative count of the non-null values in the column

Description

[Experimental]

Usage

expr__cumulative_eval(expr, ..., min_samples = 1)

Arguments

expr Expression to evaluate.
... These dots are for future extensions and must be empty.
min_samples Number of valid values (i.e. length - null_count) there should be in

the window before the expression is evaluated.

Details

This can be really slow as it can have O(n^2) complexity. Don’t use this for operations
that visit all elements.

Value

A polars expression

Examples
df <- pl$DataFrame(values = 1:5)
df$with_columns(

pl$col("values")$cumulative_eval(
pl$element()$first() - pl$element()$last()**2

)
)

expr__cum_count Return the cumulative count of the non-null values in the column

Description

Return the cumulative count of the non-null values in the column

Usage

expr__cum_count(..., reverse = FALSE)

314 expr__cum_max

Arguments

... These dots are for future extensions and must be empty.
reverse If TRUE, reverse the count.

Value

A polars expression

Examples
pl$DataFrame(a = 1:4)$with_columns(

cum_count = pl$col("a")$cum_count(),
cum_count_reversed = pl$col("a")$cum_count(reverse = TRUE)

)

expr__cum_max Return the cumulative max computed at every element.

Description

Return the cumulative max computed at every element.

Usage

expr__cum_max(..., reverse = FALSE)

Arguments

... These dots are for future extensions and must be empty.
reverse If TRUE, start from the last value.

Details

The Dtypes Int8, UInt8, Int16 and UInt16 are cast to Int64 before summing to prevent
overflow issues.

Value

A polars expression

Examples
pl$DataFrame(a = c(1:4, 2L))$with_columns(

cum_max = pl$col("a")$cum_max(),
cum_max_reversed = pl$col("a")$cum_max(reverse = TRUE)

)

expr__cum_min 315

expr__cum_min Return the cumulative min computed at every element.

Description

Return the cumulative min computed at every element.

Usage

expr__cum_min(..., reverse = FALSE)

Arguments

... These dots are for future extensions and must be empty.
reverse If TRUE, start from the last value.

Details

The Dtypes Int8, UInt8, Int16 and UInt16 are cast to Int64 before summing to prevent
overflow issues.

Value

A polars expression

Examples
pl$DataFrame(a = c(1:4, 2L))$with_columns(

cum_min = pl$col("a")$cum_min(),
cum_min_reversed = pl$col("a")$cum_min(reverse = TRUE)

)

expr__cum_prod Return the cumulative product computed at every element.

Description

Return the cumulative product computed at every element.

Usage

expr__cum_prod(..., reverse = FALSE)

Arguments

... These dots are for future extensions and must be empty.
reverse If TRUE, start with the total product of elements and divide each row one

by one.

316 expr__cum_sum

Details

The Dtypes Int8, UInt8, Int16 and UInt16 are cast to Int64 before summing to prevent
overflow issues.

Value

A polars expression

Examples
pl$DataFrame(a = 1:4)$with_columns(

cum_prod = pl$col("a")$cum_prod(),
cum_prod_reversed = pl$col("a")$cum_prod(reverse = TRUE)

)

expr__cum_sum Return the cumulative sum computed at every element.

Description

Return the cumulative sum computed at every element.

Usage

expr__cum_sum(..., reverse = FALSE)

Arguments

... These dots are for future extensions and must be empty.
reverse If TRUE, start with the total sum of elements and substract each row one

by one.

Details

The Dtypes Int8, UInt8, Int16 and UInt16 are cast to Int64 before summing to prevent
overflow issues.

Value

A polars expression

Examples
pl$DataFrame(a = 1:4)$with_columns(

cum_sum = pl$col("a")$cum_sum(),
cum_sum_reversed = pl$col("a")$cum_sum(reverse = TRUE)

)

expr__cut 317

expr__cut Bin continuous values into discrete categories

Description

[Experimental]

Usage

expr__cut(
breaks,
...,
labels = NULL,
left_closed = FALSE,
include_breaks = FALSE

)

Arguments

breaks List of unique cut points.
... These dots are for future extensions and must be empty.
labels Names of the categories. The number of labels must be equal to the

number of cut points plus one.
left_closed Set the intervals to be left-closed instead of right-closed.
include_breaks

Include a column with the right endpoint of the bin each observation falls
in. This will change the data type of the output from a Categorical to a
Struct.

Value

A polars expression

Examples

Divide a column into three categories.
df <- pl$DataFrame(foo = -2:2)
df$with_columns(

cut = pl$col("foo")$cut(c(-1, 1), labels = c("a", "b", "c"))
)

Add both the category and the breakpoint.
df$with_columns(

cut = pl$col("foo")$cut(c(-1, 1), include_breaks = TRUE)
)$unnest("cut")

318 expr__diff

expr__degrees Convert from radians to degrees

Description

Convert from radians to degrees

Usage

expr__degrees()

Value

A polars expression

Examples
pl$DataFrame(a = c(1, 2, 4) * pi)$

with_columns(degrees = pl$col("a")$degrees())

expr__diff Calculate the n-th discrete difference between elements

Description

Calculate the n-th discrete difference between elements

Usage

expr__diff(n = 1, null_behavior = c("ignore", "drop"))

Arguments

n Integer indicating the number of slots to shift.
null_behavior How to handle null values. Must be "ignore" (default), or "drop".

Value

A polars expression

Examples
pl$DataFrame(a = c(20, 10, 30, 25, 35))$with_columns(

diff_default = pl$col("a")$diff(),
diff_2_ignore = pl$col("a")$diff(2, "ignore")

)

expr__dot 319

expr__dot Compute the dot/inner product between two Expressions

Description

Compute the dot/inner product between two Expressions

Usage

expr__dot(other)

Arguments

other Expression to compute dot product with.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 3, 5), b = c(2, 4, 6))
df$select(pl$col("a")$dot(pl$col("b")))

expr__drop_nans Drop all floating point NaN values

Description

The original order of the remaining elements is preserved. A NaN value is not the same as
a null value. To drop null values, use $drop_nulls().

Usage

expr__drop_nans()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, NA, 3, NaN))
df$select(pl$col("a")$drop_nans())

320 expr__entropy

expr__drop_nulls Drop all floating point null values

Description

The original order of the remaining elements is preserved. A null value is not the same as
a NaN value. To drop NaN values, use $drop_nans().

Usage

expr__drop_nulls()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, NA, 3, NaN))
df$select(pl$col("a")$drop_nulls())

expr__entropy Compute entropy

Description

Uses the formula -sum(pk * log(pk) where pk are discrete probabilities.

Usage

expr__entropy(base = exp(1), ..., normalize = TRUE)

Arguments

base Numeric value used as base, defaults to exp(1).
... These dots are for future extensions and must be empty.
normalize Normalize pk if it doesn’t sum to 1.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3)
df$select(pl$col("a")$entropy(base = 2))
df$select(pl$col("a")$entropy(base = 2, normalize = FALSE))

expr__eq 321

expr__eq Check equality

Description

This propagates null values, i.e. any comparison involving null will return null. Use
$eq_missing() to consider null values as equal.

Usage

expr__eq(other)

Arguments

other A literal or expression value to compare with.

Value

A polars expression

See Also

expr__eq_missing

Examples
df <- pl$DataFrame(x = c(NA, FALSE, TRUE), y = c(TRUE, TRUE, TRUE))
df$with_columns(

eq = pl$col("x")$eq(pl$col("y")),
eq_missing = pl$col("x")$eq_missing(pl$col("y"))

)

expr__eq_missing Check equality without null propagation

Description

This considers that null values are equal. It differs from $eq() where null values are
propagated.

Usage

expr__eq_missing(other)

Arguments

other A literal or expression value to compare with.

322 expr__ewm_mean

Value

A polars expression

See Also

expr__eq

Examples
df <- pl$DataFrame(x = c(NA, FALSE, TRUE), y = c(TRUE, TRUE, TRUE))
df$with_columns(

eq = pl$col("x")$eq("y"),
eq_missing = pl$col("x")$eq_missing("y")

)

expr__ewm_mean Compute exponentially-weighted moving mean

Description

Compute exponentially-weighted moving mean

Usage

expr__ewm_mean(
...,
com = NULL,
span = NULL,
half_life = NULL,
alpha = NULL,
adjust = TRUE,
min_samples = 1,
ignore_nulls = FALSE

)

Arguments

... These dots are for future extensions and must be empty.
com Specify decay in terms of center of mass, γ, with

α =
1

1 + γ
∀ γ ≥ 0

.
span Specify decay in terms of span, θ, with

α =
2

θ + 1
∀ θ ≥ 1

expr__ewm_mean_by 323

half_life Specify decay in terms of half-life, λ, with

α = 1− exp

{
− ln(2)

λ

}
∀ λ > 0

alpha Specify smoothing factor alpha directly, 0 < α ≤ 1.
adjust Divide by decaying adjustment factor in beginning periods to account for

imbalance in relative weightings:
• when TRUE (default), the EW function is calculated using weights

wi = (1− α)i;
• when FALSE, the EW function is calculated recursively by

y0 = x0

yt = (1− α)yt−1 + αxt

min_samples The number of values in the window that should be non-null before com-
puting a result. If NULL (default), it will be set equal to window_size.

ignore_nulls Ignore missing values when calculating weights.
• when FALSE (default), weights are based on absolute positions. For

example, the weights of x0 and x2 used in calculating the final weighted
average of (x0, null, x2) are (1 − α)2 and 1 if adjust = TRUE, and
(1− α)2 and α if adjust = FALSE.

• when TRUE, weights are based on relative positions. For example, the
weights of x0 and x2 used in calculating the final weighted average of
(x0, null, x2) are 1 − α and 1 if adjust = TRUE, and 1 − α and α if
adjust = FALSE.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3)
df$select(pl$col("a")$ewm_mean(com = 1, ignore_nulls = FALSE))

expr__ewm_mean_by Compute time-based exponentially weighted moving average

Description

Given observations x0, x1, …, xn−1 at times t0, t1, …, tn−1, the EWMA is calculated as

y0 = x0

αi = 1− exp

{
− ln(2)(ti − ti−1)

τ

}
yi = αixi + (1− αi)yi−1; i > 0

where τ is the half_life.

324 expr__ewm_mean_by

Usage

expr__ewm_mean_by(by, ..., half_life)

Arguments

by Times to calculate average by. Should be DateTime, Date, UInt64,
UInt32, Int64, or Int32 data type.

... These dots are for future extensions and must be empty.
half_life Unit over which observation decays to half its value. Can be created either

from a timedelta, or by using the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

Value

A polars expression

Examples

df <- pl$DataFrame(
values = c(0, 1, 2, NA, 4),
times = as.Date(
c("2020-01-01", "2020-01-03", "2020-01-10", "2020-01-15", "2020-01-17")

)
)
df$with_columns(

result = pl$col("values")$ewm_mean_by("times", half_life = "4d")
)

expr__ewm_std 325

expr__ewm_std Compute exponentially-weighted moving standard deviation

Description

Compute exponentially-weighted moving standard deviation

Usage

expr__ewm_std(
...,
com = NULL,
span = NULL,
half_life = NULL,
alpha = NULL,
adjust = TRUE,
bias = FALSE,
min_samples = 1,
ignore_nulls = FALSE

)

Arguments

... These dots are for future extensions and must be empty.
com Specify decay in terms of center of mass, γ, with

α =
1

1 + γ
∀ γ ≥ 0

.
span Specify decay in terms of span, θ, with

α =
2

θ + 1
∀ θ ≥ 1

half_life Specify decay in terms of half-life, λ, with

α = 1− exp

{
− ln(2)

λ

}
∀ λ > 0

alpha Specify smoothing factor alpha directly, 0 < α ≤ 1.
adjust Divide by decaying adjustment factor in beginning periods to account for

imbalance in relative weightings:
• when TRUE (default), the EW function is calculated using weights

wi = (1− α)i;
• when FALSE, the EW function is calculated recursively by

y0 = x0

yt = (1− α)yt−1 + αxt

326 expr__ewm_var

bias If FALSE (default), apply a correction to make the estimate statistically
unbiased.

min_samples The number of values in the window that should be non-null before com-
puting a result. If NULL (default), it will be set equal to window_size.

ignore_nulls Ignore missing values when calculating weights.
• when FALSE (default), weights are based on absolute positions. For

example, the weights of x0 and x2 used in calculating the final weighted
average of (x0, null, x2) are (1 − α)2 and 1 if adjust = TRUE, and
(1− α)2 and α if adjust = FALSE.

• when TRUE, weights are based on relative positions. For example, the
weights of x0 and x2 used in calculating the final weighted average of
(x0, null, x2) are 1 − α and 1 if adjust = TRUE, and 1 − α and α if
adjust = FALSE.

Value

A polars expression

Examples

df <- pl$DataFrame(a = 1:3)
df$select(pl$col("a")$ewm_std(com = 1, ignore_nulls = FALSE))

expr__ewm_var Compute exponentially-weighted moving variance

Description

Compute exponentially-weighted moving variance

Usage

expr__ewm_var(
...,
com = NULL,
span = NULL,
half_life = NULL,
alpha = NULL,
adjust = TRUE,
bias = FALSE,
min_samples = 1,
ignore_nulls = FALSE

)

expr__ewm_var 327

Arguments

... These dots are for future extensions and must be empty.
com Specify decay in terms of center of mass, γ, with

α =
1

1 + γ
∀ γ ≥ 0

.
span Specify decay in terms of span, θ, with

α =
2

θ + 1
∀ θ ≥ 1

half_life Specify decay in terms of half-life, λ, with

α = 1− exp

{
− ln(2)

λ

}
∀ λ > 0

alpha Specify smoothing factor alpha directly, 0 < α ≤ 1.
adjust Divide by decaying adjustment factor in beginning periods to account for

imbalance in relative weightings:
• when TRUE (default), the EW function is calculated using weights

wi = (1− α)i;
• when FALSE, the EW function is calculated recursively by

y0 = x0

yt = (1− α)yt−1 + αxt

bias If FALSE (default), apply a correction to make the estimate statistically
unbiased.

min_samples The number of values in the window that should be non-null before com-
puting a result. If NULL (default), it will be set equal to window_size.

ignore_nulls Ignore missing values when calculating weights.
• when FALSE (default), weights are based on absolute positions. For

example, the weights of x0 and x2 used in calculating the final weighted
average of (x0, null, x2) are (1 − α)2 and 1 if adjust = TRUE, and
(1− α)2 and α if adjust = FALSE.

• when TRUE, weights are based on relative positions. For example, the
weights of x0 and x2 used in calculating the final weighted average of
(x0, null, x2) are 1 − α and 1 if adjust = TRUE, and 1 − α and α if
adjust = FALSE.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3)
df$select(pl$col("a")$ewm_var(com = 1, ignore_nulls = FALSE))

328 expr__exp

expr__exclude Exclude columns from a multi-column expression.

Description

Exclude columns from a multi-column expression.

Usage

expr__exclude(...)

Arguments

... The name or datatype of the column(s) to exclude. Accepts regular ex-
pression input. Regular expressions should start with ^ and end with
$.

Value

A polars expression

Examples
df <- pl$DataFrame(aa = 1:2, ba = c("a", NA), cc = c(NA, 2.5))
df

Exclude by column name(s):
df$select(pl$all()$exclude("ba"))

Exclude by regex, e.g. removing all columns whose names end with the
letter "a":
df$select(pl$all()$exclude("^.*a$"))

Exclude by dtype(s), e.g. removing all columns of type Int64 or Float64:
df$select(pl$all()$exclude(pl$Int64, pl$Float64))

expr__exp Compute the exponential

Description

Compute the exponential

Usage

expr__exp()

expr__explode 329

Value

A polars expression

Examples

pl$DataFrame(a = c(1, 2, 4))$
with_columns(exp = pl$col("a")$exp())

expr__explode Explode a list expression

Description

This means that every item is expanded to a new row.

Usage

expr__explode(..., empty_as_null = TRUE, keep_nulls = TRUE)

Arguments

... These dots are for future extensions and must be empty.

empty_as_null Indicates to explode an empty list/array into a null.

keep_nulls Indicates to explode a null list/array into a null.

Value

A polars expression

Examples

df <- pl$DataFrame(
groups = c("a", "b"),
values = list(1:2, 3:4)

)

df$select(pl$col("values")$explode())

330 expr__fill_nan

expr__extend_constant
Extend the Series with n copies of a value

Description

Extend the Series with n copies of a value

Usage

expr__extend_constant(value, n)

Arguments

value A constant literal value or a unit expression with which to extend the
expression result Series. This can be NA to extend with nulls.

n The number of additional values that will be added.

Value

A polars expression

Examples

df <- pl$DataFrame(values = 1:3)
df$select(pl$col("values")$extend_constant(99, n = 2))

expr__fill_nan Fill floating point NaN value with a fill value

Description

Fill floating point NaN value with a fill value

Usage

expr__fill_nan(value)

Arguments

value Value used to fill NaN values.

Value

A polars expression

expr__fill_null 331

Examples

df <- pl$DataFrame(a = c(1, NA, 2, NaN))
df$with_columns(

filled_nan = pl$col("a")$fill_nan(99)
)

expr__fill_null Fill floating point null value with a fill value

Description

Fill floating point null value with a fill value

Usage

expr__fill_null(value = NULL, strategy = NULL, limit = NULL)

Arguments

value Value used to fill null values. Can be NULL if strategy is specified. Ac-
cepts expression input, strings are parsed as column names.

strategy Strategy used to fill null values. If value is NULL, must be one of "forward",
"backward", "min", "max", "mean", "zero", "one".

limit Number of consecutive null values to fill when using the "forward" or
"backward" strategy.

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(1, NA, 2, NaN))
df$with_columns(

filled_null_zero = pl$col("a")$fill_null(strategy = "zero"),
filled_null_99 = pl$col("a")$fill_null(99),
filled_null_forward = pl$col("a")$fill_null(strategy = "forward"),
filled_null_expr = pl$col("a")$fill_null(pl$col("a")$median())

)

332 expr__first

expr__filter Filter the expression based on one or more predicate expressions

Description

Elements where the filter does not evaluate to TRUE are discarded, including nulls. This is
mostly useful in an aggregation context. If you want to filter on a DataFrame level, use
DataFrame$filter() or LazyFrame$filter().

Usage

expr__filter(...)

Arguments

... <dynamic-dots> Expression(s) that evaluate to a boolean Series.

Value

A polars expression

Examples
df <- pl$DataFrame(

group_col = c("g1", "g1", "g2"),
b = c(1, 2, 3)

)
df

df$group_by("group_col")$agg(
lt = pl$col("b")$filter(pl$col("b") < 2),
gte = pl$col("b")$filter(pl$col("b") >= 2)

)

expr__first Get the first value

Description

Get the first value

Usage

expr__first()

Value

A polars expression

expr__flatten 333

Examples
pl$DataFrame(x = 3:1)$with_columns(first = pl$col("x")$first())

expr__flatten Flatten a list or string column

Description

This is an alias for $explode().

Usage

expr__flatten()

Value

A polars expression

Examples
df <- pl$DataFrame(

group = c("a", "b", "b"),
values = list(1:2, 2:3, 4)

)

df$group_by("group")$agg(pl$col("values")$flatten())

expr__floor Rounds down to the nearest integer value

Description

This only works on floating point Series.

Usage

expr__floor()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(0.3, 0.5, 1.0, 1.1))
df$with_columns(

floor = pl$col("a")$floor()
)

334 expr__forward_fill

expr__floor_div Floor divide using two expressions

Description

Method equivalent of floor division operator expr %/% other. $floordiv() is an alias for
$floor_div(), which exists for compatibility with Python Polars.

Usage

expr__floor_div(other)

expr__floordiv(other)

Arguments

other Numeric literal or expression value.

Value

A polars expression

See Also

• Arithmetic operators
• <Expr>$true_div()
• <Expr>$mod()

Examples
df <- pl$DataFrame(x = 1:5)

df$with_columns(
`x/2` = pl$col("x")$true_div(2),
`x%/%2` = pl$col("x")$floor_div(2)

)

expr__forward_fill Fill missing values with the last non-null value

Description

[Superseded] This is an alias of $fill_null(strategy = "forward").

Usage

expr__forward_fill(limit = NULL)

expr__gather 335

Arguments

limit The number of consecutive null values to forward fill.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 2, NA),
b = c(4, NA, 6),
c = c(2, NA, NA)

)
df$select(pl$all()$forward_fill())
df$select(pl$all()$forward_fill(limit = 1))

expr__gather Take values by index

Description

Take values by index

Usage

expr__gather(indices)

Arguments

indices An expression that leads to a UInt32 dtyped Series.

Value

A polars expression

Examples

df <- pl$DataFrame(
group = c("one", "one", "one", "two", "two", "two"),
value = c(1, 98, 2, 3, 99, 4)

)
df$group_by("group", maintain_order = TRUE)$agg(

pl$col("value")$gather(c(2, 1))
)

336 expr__ge

expr__gather_every Take every n-th value in the Series and return as a new Series

Description

Take every n-th value in the Series and return as a new Series

Usage

expr__gather_every(n, offset = 0)

Arguments

n Gather every n-th row.
offset Starting index.

Value

A polars expression

Examples

df <- pl$DataFrame(foo = 1:9)
df$select(pl$col("foo")$gather_every(3))
df$select(pl$col("foo")$gather_every(3, offset = 1))

expr__ge Check greater or equal inequality

Description

Check greater or equal inequality

Usage

expr__ge(other)

Arguments

other A literal or expression value to compare with.

Value

A polars expression

expr__get 337

Examples

df <- pl$DataFrame(x = 1:3)
df$with_columns(

with_ge = pl$col("x")$ge(pl$lit(2)),
with_symbol = pl$col("x") >= pl$lit(2)

)

expr__get Return a single value by index

Description

Return a single value by index

Usage

expr__get(index, ..., null_on_oob = FALSE)

Arguments

index An expression that leads to a UInt32 dtyped Series.

... These dots are for future extensions and must be empty.

null_on_oob If TRUE, return null if an index is out of bounds. Otherwise, raise an
error.

Value

A polars expression

Examples

df <- pl$DataFrame(
group = c("one", "one", "one", "two", "two", "two"),
value = c(1, 98, 2, 3, 99, 4)

)
df$group_by("group", maintain_order = TRUE)$agg(

pl$col("value")$get(1)
)

338 expr__hash

expr__gt Check greater or equal inequality

Description

Check greater or equal inequality

Usage

expr__gt(other)

Arguments

other A literal or expression value to compare with.

Value

A polars expression

Examples
df <- pl$DataFrame(x = 1:3)
df$with_columns(

with_gt = pl$col("x")$gt(pl$lit(2)),
with_symbol = pl$col("x") > pl$lit(2)

)

expr__hash Hash elements

Description

Hash elements

Usage

expr__hash(seed = 0, seed_1 = NULL, seed_2 = NULL, seed_3 = NULL)

Arguments

seed Integer, random seed parameter. Defaults to 0.
seed_1, seed_2, seed_3

Integer, random seed parameters. Default to seed if not set.

Details

This implementation of hash does not guarantee stable results across different Polars ver-
sions. Its stability is only guaranteed within a single version.

expr__has_nulls 339

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 2, NA), b = c("x", NA, "z"))
df$with_columns(pl$all()$hash(10, 20, 30, 40))

expr__has_nulls Check whether the expression contains one or more null values

Description

Check whether the expression contains one or more null values

Usage

expr__has_nulls()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(NA, 1, NA),
b = c(10, NA, 300),
c = c(350, 650, 850)

)
df$select(pl$all()$has_nulls())

expr__head Get the first n elements

Description

Get the first n elements

Usage

expr__head(n = 10)

Arguments

n Number of elements to take.

340 expr__hist

Value

A polars expression

Examples
pl$DataFrame(x = 1:11)$select(pl$col("x")$head(3))

expr__hist Bin values into buckets and count their occurrences

Description

[Experimental]

Usage

expr__hist(
bins = NULL,
...,
bin_count = NULL,
include_category = FALSE,
include_breakpoint = FALSE

)

Arguments

bins Discretizations to make. If NULL (default), we determine the boundaries
based on the data.

... These dots are for future extensions and must be empty.
bin_count If no bins provided, this will be used to determine the distance of the

bins.
include_category

Include a column that shows the intervals as categories.
include_breakpoint

Include a column that indicates the upper breakpoint.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 3, 8, 8, 2, 1, 3))
df$select(pl$col("a")$hist(bins = 1:3))
df$select(

pl$col("a")$hist(
bins = 1:3, include_category = TRUE, include_breakpoint = TRUE

)
)

expr__implode 341

expr__implode Aggregate values into a list

Description

Aggregate values into a list

Usage

expr__implode()

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3, b = 4:6)
df$with_columns(pl$col("a")$implode())

expr__index_of Get the index of the first occurrence of a value, or NA if it’s not
found

Description

Get the index of the first occurrence of a value, or NA if it’s not found

Usage

expr__index_of(element)

Arguments

element Value to find.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, NA, 17))
df$select(

seventeen = pl$col("a")$index_of(17),
null = pl$col("a")$index_of(NULL),
fiftyfive = pl$col("a")$index_of(55),

)

342 expr__interpolate_by

expr__interpolate Fill null values using interpolation

Description

Fill null values using interpolation

Usage

expr__interpolate(method = c("linear", "nearest"))

Arguments

method Interpolation method. Must be one of "linear" or "nearest".

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(1, NA, 3), b = c(1, NaN, 3))
df$with_columns(

a_interpolated = pl$col("a")$interpolate(),
b_interpolated = pl$col("b")$interpolate()

)

expr__interpolate_by Fill null values using interpolation based on another column

Description

Fill null values using interpolation based on another column

Usage

expr__interpolate_by(by)

Arguments

by Column to interpolate values based on.

Value

A polars expression

expr__is_between 343

Examples
df <- pl$DataFrame(a = c(1, NA, NA, 3), b = c(1, 2, 7, 8))
df$with_columns(

a_interpolated = pl$col("a")$interpolate_by("b")
)

expr__is_between Check if an expression is between the given lower and upper
bounds

Description

Check if an expression is between the given lower and upper bounds

Usage

expr__is_between(
lower_bound,
upper_bound,
closed = c("both", "left", "right", "none")

)

Arguments

lower_bound Lower bound value. Accepts expression input. Strings are parsed as
column names, other non-expression inputs are parsed as literals.

upper_bound Upper bound value. Accepts expression input. Strings are parsed as
column names, other non-expression inputs are parsed as literals.

closed Define which sides of the interval are closed (inclusive). Must be one of
"left", "right", "both" or "none".

Details

If the value of the lower_bound is greater than that of the upper_bound then the result
will be FALSE, as no value can satisfy the condition.

Value

A polars expression

Examples
df <- pl$DataFrame(num = 1:5)
df$with_columns(

is_between = pl$col("num")$is_between(2, 4)
)

Use the closed argument to include or exclude the values at the bounds:

344 expr__is_close

df$with_columns(
is_between = pl$col("num")$is_between(2, 4, closed = "left")

)

You can also use strings as well as numeric/temporal values (note: ensure
that string literals are wrapped with lit so as not to conflate them with
column names):
df <- pl$DataFrame(a = letters[1:5])
df$with_columns(

is_between = pl$col("a")$is_between(pl$lit("a"), pl$lit("c"))
)

Use column expressions as lower/upper bounds, comparing to a literal value:
df <- pl$DataFrame(a = 1:5, b = 5:1)
df$with_columns(

between_ab = pl$lit(3)$is_between(pl$col("a"), pl$col("b"))
)

expr__is_close Check if this expression is close, i.e. almost equal, to the other
expression

Description

Two values a and b are considered close if the following condition holds: |a−b| ≤ max{rel_tol·
max{|a|, |b|}, abs_tol}

Usage

expr__is_close(other, ..., abs_tol = 0, rel_tol = 1e-09, nans_equal = FALSE)

Arguments

other A literal or expression value to compare with.
... These dots are for future extensions and must be empty.
abs_tol Absolute tolerance. This is the maximum allowed absolute difference

between two values. Must be non-negative.
rel_tol Relative tolerance. This is the maximum allowed difference between two

values, relative to the larger absolute value. Must be non-negative.
nans_equal Whether NaN values should be considered equal.

Value

A polars expression

expr__is_duplicated 345

Examples
df <- pl$DataFrame(a = c(1.5, 2.0, 2.5), b = c(1.55, 2.2, 3.0))
df$with_columns(

is_close = pl$col("a")$is_close("b", abs_tol = 0.1)
)

expr__is_duplicated Return a boolean mask indicating duplicated values

Description

Return a boolean mask indicating duplicated values

Usage

expr__is_duplicated()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 1, 2, 3, 2))
df$select(pl$col("a")$is_duplicated())

expr__is_finite Check if elements are finite

Description

Check if elements are finite

Usage

expr__is_finite()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 2), b = c(3, Inf))
df$with_columns(

a_finite = pl$col("a")$is_finite(),
b_finite = pl$col("b")$is_finite()

)

346 expr__is_in

expr__is_first_distinct
Return a boolean mask indicating the first occurrence of each
distinct value

Description

Return a boolean mask indicating the first occurrence of each distinct value

Usage

expr__is_first_distinct()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 1, 2, 3, 2))
df$with_columns(

is_first_distinct = pl$col("a")$is_first_distinct()
)

expr__is_in Check if elements of an expression are present in another expres-
sion

Description

Check if elements of an expression are present in another expression

Usage

expr__is_in(other, ..., nulls_equal = FALSE)

Arguments

other Accepts expression input. Strings are parsed as column names.
... These dots are for future extensions and must be empty.
nulls_equal A bool to indicate treating null as a distinct value. If TRUE, null values

will not propagate.

Value

A polars expression

expr__is_infinite 347

Examples
df <- pl$DataFrame(

sets = list(1:3, 1:2, 9:10),
optional_members = 1:3

)
df$with_columns(

contains = pl$col("optional_members")$is_in("sets")
)

expr__is_infinite Check if elements are infinite

Description

Check if elements are infinite

Usage

expr__is_infinite()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 2), b = c(3, Inf))
df$with_columns(

a_infinite = pl$col("a")$is_infinite(),
b_infinite = pl$col("b")$is_infinite()

)

expr__is_last_distinct
Return a boolean mask indicating the last occurrence of each
distinct value

Description

Return a boolean mask indicating the last occurrence of each distinct value

Usage

expr__is_last_distinct()

Value

A polars expression

348 expr__is_not_nan

Examples
df <- pl$DataFrame(a = c(1, 1, 2, 3, 2))
df$with_columns(

is_last_distinct = pl$col("a")$is_last_distinct()
)

expr__is_nan Check if elements are NaN

Description

Floating point NaN (Not A Number) should not be confused with missing data represented
as NA (in R) or null (in Polars).

Usage

expr__is_nan()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(1, 2, NA, 1, 5),
b = c(1, 2, NaN, 1, 5)

)
df$with_columns(

a_nan = pl$col("a")$is_nan(),
b_nan = pl$col("b")$is_nan()

)

expr__is_not_nan Check if elements are not NaN

Description

Floating point NaN (Not A Number) should not be confused with missing data represented
as NA (in R) or null (in Polars).

Usage

expr__is_not_nan()

Value

A polars expression

expr__is_not_null 349

Examples
df <- pl$DataFrame(

a = c(1, 2, NA, 1, 5),
b = c(1, 2, NaN, 1, 5)

)
df$with_columns(

a_not_nan = pl$col("a")$is_not_nan(),
b_not_nan = pl$col("b")$is_not_nan()

)

expr__is_not_null Check if elements are not NULL

Description

Check if elements are not NULL

Usage

expr__is_not_null()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(1, 2, NA, 1, 5),
b = c(1, 2, NaN, 1, 5)

)
df$with_columns(

a_not_null = pl$col("a")$is_not_null(),
b_not_null = pl$col("b")$is_not_null()

)

expr__is_null Check if elements are NULL

Description

Check if elements are NULL

Usage

expr__is_null()

350 expr__item

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 2, NA, 1, 5),
b = c(1, 2, NaN, 1, 5)

)
df$with_columns(

a_null = pl$col("a")$is_null(),
b_null = pl$col("b")$is_null()

)

expr__is_unique Return a boolean mask indicating unique values

Description

Return a boolean mask indicating unique values

Usage

expr__is_unique()

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(1, 1, 2, 3, 2))
df$select(pl$col("a")$is_unique())

expr__item Get the single value

Description

This raises an error if there is not exactly one value.

Usage

expr__item(..., allow_empty = FALSE)

expr__kurtosis 351

Arguments

... These dots are for future extensions and must be empty.
allow_empty Allow having no values to return null.

Value

A polars expression

See Also

$get() to get a single value by index.

Examples

This function may be useful to force ourselves to handle cases where we
expect a single value but there are several. For example, we might expect
`$mode()` to return a single value...
df <- pl$DataFrame(x = c("a", "a", "c"))
df$select(

mode = pl$col("x")$mode()$item()
)

... but this is not always the case:
df <- pl$DataFrame(x = c("a", "b", "c"))
tryCatch(

{
df$select(

mode = pl$col("x")$mode()$item()
)

},
error = function(e) print(e)

)

expr__kurtosis Compute the kurtosis (Fisher or Pearson)

Description

Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s
definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution.
If bias is FALSE then the kurtosis is calculated using k statistics to eliminate bias coming
from biased moment estimators.

Usage

expr__kurtosis(..., fisher = TRUE, bias = TRUE)

352 expr__last

Arguments

... These dots are for future extensions and must be empty.

fisher If TRUE (default), Fisher’s definition is used (normal ==> 0.0). If FALSE,
Pearson’s definition is used (normal ==> 3.0).

bias If FALSE, the calculations are corrected for statistical bias.

Value

A polars expression

Examples

df <- pl$DataFrame(x = c(1, 2, 3, 2, 1))
df$select(pl$col("x")$kurtosis())

expr__last Get the last value

Description

Get the last value

Usage

expr__last()

Value

A polars expression

Examples

pl$DataFrame(x = 3:1)$with_columns(last = pl$col("x")$last())

expr__le 353

expr__le Check lower or equal inequality

Description

Check lower or equal inequality

Usage

expr__le(other)

Arguments

other A literal or expression value to compare with.

Value

A polars expression

Examples
df <- pl$DataFrame(x = 1:3)
df$with_columns(

with_le = pl$col("x")$le(pl$lit(2)),
with_symbol = pl$col("x") <= pl$lit(2)

)

expr__len Return the number of elements in the column

Description

Null values are counted in the total.

Usage

expr__len()

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3, b = c(NA, 4, 4))
df$select(pl$all()$len())

354 expr__log

expr__limit Get the first n rows

Description

This is an alias for $head().

Usage

expr__limit(n = 10)

Arguments

n Number of rows to return.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:9)
df$select(pl$col("a")$limit(3))

expr__log Compute the logarithm

Description

Compute the logarithm

Usage

expr__log(base = exp(1))

Arguments

base Numeric value used as base, defaults to exp(1).

Value

A polars expression

Examples
pl$DataFrame(a = c(1, 2, 4))$

with_columns(
log = pl$col("a")$log(),
log_base_2 = pl$col("a")$log(base = 2)

)

expr__log10 355

expr__log10 Compute the base-10 logarithm

Description

Compute the base-10 logarithm

Usage

expr__log10()

Value

A polars expression

Examples

pl$DataFrame(a = c(1, 2, 4))$
with_columns(log10 = pl$col("a")$log10())

expr__log1p Compute the natural logarithm plus one

Description

This computes log(1 + x) but is more numerically stable for x close to zero.

Usage

expr__log1p()

Value

A polars expression

Examples

pl$DataFrame(a = c(1, 2, 4))$
with_columns(log1p = pl$col("a")$log1p())

356 expr__lt

expr__lower_bound Calculate the lower bound

Description

Returns a unit Series with the lowest value possible for the dtype of this expression.

Usage

expr__lower_bound()

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3)
df$select(pl$col("a")$lower_bound())

expr__lt Check strictly lower inequality

Description

Check strictly lower inequality

Usage

expr__lt(other)

Arguments

other A literal or expression value to compare with.

Value

A polars expression

Examples
df <- pl$DataFrame(x = 1:3)
df$with_columns(

with_lt = pl$col("x")$lt(pl$lit(2)),
with_symbol = pl$col("x") < pl$lit(2)

)

expr__map_batches 357

expr__map_batches Apply a custom R function to a whole Series or sequence of
Series.

Description

[Experimental]
The output of this custom function is presumed to be either a Series, or an R vector that
will be converted into a Series by as_polars_series().

Usage

expr__map_batches(lambda, return_dtype = NULL, ...)

Arguments

lambda Function to apply.
return_dtype Dtype of the output Series. It is recommended to set this whenever pos-

sible. If this is NULL, it tries to infer the datatype by calling the function
with dummy data and looking at the output.

... These dots are for future extensions and must be empty.

Value

A polars expression

Examples
df <- pl$DataFrame(

sine = c(0.0, 1.0, 0.0, -1.0),
cosine = c(1.0, 0.0, -1.0, 0.0)

)
df$select(pl$all()$map_batches(\(x) {

x$to_r_vector() |>
which.max()

}))

Call a function that takes multiple arguments by creating a struct and
referencing its fields inside the function call.
df <- pl$DataFrame(

a = c(5, 1, 0, 3),
b = c(4, 2, 3, 4),

)
df$with_columns(

a_times_b = pl$struct("a", "b")$map_batches(
\(x) x$struct$field("a") * x$struct$field("b")

)
)

358 expr__max_by

expr__max Get the maximum value

Description

Get the maximum value

Usage

expr__max()

Value

A polars expression

Examples

pl$DataFrame(x = c(1, NaN, 3))$
with_columns(max = pl$col("x")$max())

expr__max_by Get maximum value, ordered by another expression

Description

[Experimental]

Usage

expr__max_by(by)

Arguments

by Column used to determine the largest element. Accepts expression input.
Strings are parsed as column names.

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(-1, NaN, 1), b = c("x", "y", "z"))
df$with_columns(max_b_by_a = pl$col("b")$max_by("a"))

expr__mean 359

expr__mean Get mean value

Description

Get mean value

Usage

expr__mean()

Value

A polars expression

Examples

pl$DataFrame(x = c(1, 3, 4, NA))$
with_columns(mean = pl$col("x")$mean())

expr__median Get median value

Description

Get median value

Usage

expr__median()

Value

A polars expression

Examples

pl$DataFrame(x = c(1, 3, 4, NA))$
with_columns(median = pl$col("x")$median())

360 expr__min_by

expr__min Get the minimum value

Description

Get the minimum value

Usage

expr__min()

Value

A polars expression

Examples

pl$DataFrame(x = c(1, NaN, 3))$
with_columns(min = pl$col("x")$min())

expr__min_by Get minimum value, ordered by another expression

Description

[Experimental]

Usage

expr__min_by(by)

Arguments

by Column used to determine the smallest element. Accepts expression in-
put. Strings are parsed as column names.

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(-1, NaN, 1), b = c("x", "y", "z"))
df$with_columns(min_b_by_a = pl$col("b")$min_by("a"))

expr__mod 361

expr__mod Modulo using two expressions

Description

Method equivalent of modulus operator expr %% other.

Usage

expr__mod(other)

Arguments

other Numeric literal or expression value.

Value

A polars expression

See Also

• Arithmetic operators
• <Expr>$floor_div()

Examples
df <- pl$DataFrame(x = -5L:5L)

df$with_columns(
`x%%2` = pl$col("x")$mod(2)

)

expr__mode Compute the most occurring value(s)

Description

Compute the most occurring value(s)

Usage

expr__mode(..., maintain_order = FALSE)

Arguments

... These dots are for future extensions and must be empty.
maintain_order

If TRUE, maintain order of data. This requires more work.

362 expr__mul

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(1, 1, 2, 3), b = c(1, 1, 2, 2))
df$select(pl$col("a")$mode())
df$select(pl$col("b")$mode())

expr__mul Multiply two expressions

Description

Method equivalent of multiplication operator expr * other.

Usage

expr__mul(other)

Arguments

other Numeric literal or expression value.

Value

A polars expression

See Also

• Arithmetic operators

Examples

df <- pl$DataFrame(x = c(1, 2, 4, 8, 16))

df$with_columns(
`x*2` = pl$col("x")$mul(2),
`x * xlog2` = pl$col("x")$mul(pl$col("x")$log(2))

)

expr__nan_max 363

expr__nan_max Get the maximum value with NaN

Description

This returns NaN if there are any.

Usage

expr__nan_max()

Value

A polars expression

Examples

pl$DataFrame(x = c(1, NA, 3, NaN, Inf))$
with_columns(nan_max = pl$col("x")$nan_max())

expr__nan_min Get the minimum value with NaN

Description

This returns NaN if there are any.

Usage

expr__nan_min()

Value

A polars expression

Examples

pl$DataFrame(x = c(1, NA, 3, NaN, Inf))$
with_columns(nan_min = pl$col("x")$nan_min())

364 expr__ne_missing

expr__ne Check inequality

Description

This propagates null values, i.e. any comparison involving null will return null. Use
$ne_missing() to consider null values as equal.

Usage

expr__ne(other)

Arguments

other A literal or expression value to compare with.

Value

A polars expression

See Also

expr__ne_missing

Examples
df <- pl$DataFrame(x = c(NA, FALSE, TRUE), y = c(TRUE, TRUE, TRUE))
df$with_columns(

ne = pl$col("x")$ne(pl$col("y")),
ne_missing = pl$col("x")$ne_missing(pl$col("y"))

)

expr__ne_missing Check inequality without null propagation

Description

Method equivalent of addition operator expr + other.

Usage

expr__ne_missing(other)

Arguments

other Element to add. Can be a string (only if expr is a string), a numeric
value or an other expression.

expr__not 365

Value

A polars expression

See Also

expr__ne

Examples

df <- pl$DataFrame(x = c(NA, FALSE, TRUE), y = c(TRUE, TRUE, TRUE))
df$with_columns(

ne = pl$col("x")$ne("y"),
ne_missing = pl$col("x")$ne_missing("y")

)

expr__not Negate a boolean expression

Description

Negate a boolean expression

Usage

expr__not()

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(TRUE, FALSE, FALSE, NA))

df$with_columns(a_not = pl$col("a")$not())

Same result with "!"
df$with_columns(a_not = !pl$col("a"))

366 expr__n_unique

expr__null_count Count null values

Description

Count null values

Usage

expr__null_count()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(NA, 1, NA),
b = c(10, NA, 300),
c = c(1, 2, 2)

)
df$select(pl$all()$null_count())

expr__n_unique Count unique values

Description

null is considered to be a unique value for the purposes of this operation.

Usage

expr__n_unique()

Value

A polars expression

Examples
df <- pl$DataFrame(

x = c(1, 1, 2, 2, 3),
y = c(1, 1, 1, NA, NA)

)
df$select(

x_unique = pl$col("x")$n_unique(),
y_unique = pl$col("y")$n_unique()

)

expr__or 367

expr__or Apply logical OR on two expressions

Description

Combine two boolean expressions with OR.

Usage

expr__or(...)

Arguments

... <dynamic-dots> One or more integer or boolean expressions to evalu-
ate/combine.

Value

A polars expression

Examples

df <- pl$DataFrame(
x = c(5, 6, 7, 4, 8),
y = c(1.5, 2.5, 1.0, 4.0, -5.75),
z = c(-9, 2, -1, 4, 8),

)
df$with_columns(

(pl$col("x") == pl$col("y"))$or(
pl$col("y") == pl$col("z"),
pl$col("y")$cast(pl$Int32) == pl$col("z"),

)$alias("any")
)

expr__over Compute expressions over the given groups

Description

This expression is similar to performing a group by aggregation and joining the result back
into the original DataFrame. The outcome is similar to how window functions work in
PostgreSQL.

https://www.postgresql.org/docs/current/tutorial-window.html

368 expr__over

Usage

expr__over(
...,
order_by = NULL,
mapping_strategy = c("group_to_rows", "join", "explode")

)

Arguments

... dynamic-dots> Column(s) to group by. Accepts expression input. Char-
acters are parsed as column names.

order_by Order the window functions/aggregations with the partitioned groups by
the result of the expression passed to order_by. Accepts expression input.
Strings are parsed as column names.

mapping_strategy
One of the following:
• "group_to_rows" (default): if the aggregation results in multiple

values, assign them back to their position in the DataFrame. This can
only be done if the group yields the same elements before aggregation
as after.

• "join": join the groups as List<group_dtype> to the row positions.
Note that this can be memory intensive.

• "explode": don’t do any mapping, but simply flatten the group.
This only makes sense if the input data is sorted.

Value

A polars expression

Examples
Pass the name of a column to compute the expression over that column.
df <- pl$DataFrame(

a = c("a", "a", "b", "b", "b"),
b = c(1, 2, 3, 5, 3),
c = c(5, 4, 2, 1, 3)

)

df$with_columns(
pl$col("c")$max()$over("a")$name$suffix("_max")

)

Expression input is supported.
df$with_columns(

pl$col("c")$max()$over(pl$col("b") %/% 2)$name$suffix("_max")
)

Group by multiple columns by passing several column names a or list of
expressions.

expr__pct_change 369

df$with_columns(
pl$col("c")$min()$over("a", "b")$name$suffix("_min")

)

group_vars <- list(pl$col("a"), pl$col("b"))
df$with_columns(

pl$col("c")$min()$over(!!!group_vars)$name$suffix("_min")
)

Or use positional arguments to group by multiple columns in the same way.
df$with_columns(

pl$col("c")$min()$over("a", pl$col("b") %% 2)$name$suffix("_min")
)

Alternative mapping strategy: join values in a list output
df$with_columns(

top_2 = pl$col("c")$top_k(2)$over("a", mapping_strategy = "join")
)

order_by specifies how values are sorted within a group, which is
essential when the operation depends on the order of values
df <- pl$DataFrame(

g = c(1, 1, 1, 1, 2, 2, 2, 2),
t = c(1, 2, 3, 4, 4, 1, 2, 3),
x = c(10, 20, 30, 40, 10, 20, 30, 40)

)

without order_by, the first and second values in the second group would
be inverted, which would be wrong
df$with_columns(

x_lag = pl$col("x")$shift(1)$over("g", order_by = "t")
)

expr__pct_change Computes percentage change between values

Description

Computes the percentage change (as fraction) between current element and most-recent
non-null element at least n period(s) before the current element. By default it computes
the change from the previous row.

Usage

expr__pct_change(n = 1)

Arguments

n Integer or Expr indicating the number of periods to shift for forming
percent change.

370 expr__peak_min

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(10:12, NA, 12))
df$with_columns(

pct_change = pl$col("a")$pct_change()
)

expr__peak_max Get a boolean mask of the local maximum peaks

Description

Get a boolean mask of the local maximum peaks

Usage

expr__peak_max()

Value

A polars expression

Examples
df <- pl$DataFrame(x = c(1, 2, 3, 2, 3, 4, 5, 2))
df$with_columns(peak_max = pl$col("x")$peak_max())

expr__peak_min Get a boolean mask of the local minimum peaks

Description

Get a boolean mask of the local minimum peaks

Usage

expr__peak_min()

Value

A polars expression

Examples
df <- pl$DataFrame(x = c(1, 2, 3, 2, 3, 4, 5, 2))
df$with_columns(peak_min = pl$col("x")$peak_min())

expr__pow 371

expr__pow Exponentiation using two expressions

Description

Method equivalent of exponentiation operator expr ^ exponent.

Usage

expr__pow(exponent)

Arguments

exponent Numeric literal or expression value.

Value

A polars expression

See Also

• Arithmetic operators

Examples
df <- pl$DataFrame(x = c(1, 2, 4, 8))

df$with_columns(
cube = pl$col("x")$pow(3),
`x^xlog2` = pl$col("x")$pow(pl$col("x")$log(2))

)

expr__product Compute the product of an expression.

Description

Compute the product of an expression.

Usage

expr__product()

Value

A polars expression

372 expr__qcut

Examples

pl$DataFrame(a = 1:3, b = c(NA, 4, 4))$
select(pl$all()$product())

expr__qcut Bin continuous values into discrete categories based on their
quantiles

Description

[Experimental]

Usage

expr__qcut(
quantiles,
...,
labels = NULL,
left_closed = FALSE,
allow_duplicates = FALSE,
include_breaks = FALSE

)

Arguments

quantiles Either a vector of quantile probabilities between 0 and 1 or a positive
integer determining the number of bins with uniform probability.

... These dots are for future extensions and must be empty.
labels Names of the categories. The number of labels must be equal to the

number of categories.
left_closed Set the intervals to be left-closed instead of right-closed.
allow_duplicates

If TRUE, duplicates in the resulting quantiles are dropped, rather than rais-
ing an error. This can happen even with unique probabilities, depending
on the data.

include_breaks
Include a column with the right endpoint of the bin each observation falls
in. This will change the data type of the output from a Categorical to a
Struct.

Value

A polars expression

expr__quantile 373

Examples
Divide a column into three categories according to pre-defined quantile
probabilities.
df <- pl$DataFrame(foo = -2:2)
df$with_columns(

qcut = pl$col("foo")$qcut(c(0.25, 0.75), labels = c("a", "b", "c"))
)

Divide a column into two categories using uniform quantile probabilities.
df$with_columns(

qcut = pl$col("foo")$qcut(2, labels = c("low", "high"), left_closed = TRUE)
)

Add both the category and the breakpoint.
df$with_columns(

qcut = pl$col("foo")$qcut(c(0.25, 0.75), include_breaks = TRUE)
)$unnest("qcut")

expr__quantile Get quantile value(s)

Description

Get quantile value(s)

Usage

expr__quantile(
quantile,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear", "equiprobable")

)

Arguments

quantile Quantile between 0.0 and 1.0.
interpolation Interpolation method. Must be one of "nearest", "higher", "lower",

"midpoint", "linear".

Value

A polars expression

Examples
df <- pl$DataFrame(a = 0:5)
df$select(pl$col("a")$quantile(0.3))
df$select(pl$col("a")$quantile(0.3, interpolation = "higher"))
df$select(pl$col("a")$quantile(0.3, interpolation = "lower"))
df$select(pl$col("a")$quantile(0.3, interpolation = "midpoint"))

374 expr__rank

df$select(pl$col("a")$quantile(0.3, interpolation = "linear"))
df$select(pl$col("a")$quantile(0.3, interpolation = "equiprobable"))

expr__radians Convert from degrees to radians

Description

Convert from degrees to radians

Usage

expr__radians()

Value

A polars expression

Examples

pl$DataFrame(a = c(-720, -540, -360, -180, 0, 180, 360, 540, 720))$
with_columns(radians = pl$col("a")$radians())

expr__rank Assign ranks to data, dealing with ties appropriately

Description

Assign ranks to data, dealing with ties appropriately

Usage

expr__rank(
method = c("average", "min", "max", "dense", "ordinal", "random"),
...,
descending = FALSE,
seed = NULL

)

expr__rank 375

Arguments

method The method used to assign ranks to tied elements. Must be one of the
following:

• "average" (default): The average of the ranks that would have been
assigned to all the tied values is assigned to each value.

• "min": The minimum of the ranks that would have been assigned to
all the tied values is assigned to each value. (This is also referred to
as ”competition” ranking.)

• "max" : The maximum of the ranks that would have been assigned
to all the tied values is assigned to each value.

• "dense": Like ’min’, but the rank of the next highest element is as-
signed the rank immediately after those assigned to the tied elements.

• "ordinal" : All values are given a distinct rank, corresponding to
the order that the values occur in the Series.

• "random" : Like ’ordinal’, but the rank for ties is not dependent on
the order that the values occur in the Series.

... These dots are for future extensions and must be empty.

descending Rank in descending order.

seed Integer. Only used if method = "random".

Value

A polars expression

Examples

Default is to use the "average" method to break ties
df <- pl$DataFrame(a = c(3, 6, 1, 1, 6))
df$with_columns(rank = pl$col("a")$rank())

Ordinal method
df$with_columns(rank = pl$col("a")$rank("ordinal"))

Use "rank" with "over" to rank within groups:
df <- pl$DataFrame(

a = c(1, 1, 2, 2, 2),
b = c(6, 7, 5, 14, 11)

)
df$with_columns(

rank = pl$col("b")$rank()$over("a")
)

376 expr__reinterpret

expr__rechunk Create a single chunk of memory for this Series

Description

Create a single chunk of memory for this Series

Usage

expr__rechunk()

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(1, 1, 2))

Create a Series with 3 nulls, append column a then rechunk
df$select(pl$repeat_(NA, 3)$append(pl$col("a"))$rechunk())

expr__reinterpret Reinterpret the underlying bits as a signed/unsigned integer

Description

This operation is only allowed for 64-bit integers. For lower bits integers, you can safely
use the $cast() operation.

Usage

expr__reinterpret(..., signed = TRUE)

Arguments

... These dots are for future extensions and must be empty.
signed If TRUE (default), reinterpret as pl$Int64. Otherwise, reinterpret as pl$UInt64.

Value

A polars expression

expr__repeat_by 377

Examples

df <- pl$DataFrame(a = c(1, 1, 2))$cast(pl$UInt64)

Create a Series with 3 nulls, append column a then rechunk
df$with_columns(

reinterpreted = pl$col("a")$reinterpret()
)

expr__repeat_by Repeat the elements in this Series as specified in the given ex-
pression

Description

The repeated elements are expanded into a List dtype.

Usage

expr__repeat_by(by)

Arguments

by Numeric column that determines how often the values will be repeated.
The column will be coerced to UInt32. Give this dtype to make the
coercion a no-op. Accepts expression input, strings are parsed as column
names.

Value

A polars expression

Examples

df <- pl$DataFrame(a = c("x", "y", "z"), n = 1:3)

df$with_columns(
repeated = pl$col("a")$repeat_by("n")

)

378 expr__replace

expr__replace Replace the given values by different values of the same data type.

Description

This allows one to recode values in a column, leaving all other values unchanged. See
$replace_strict() to give a default value to all other values and to specify the output
datatype.

Usage

expr__replace(old, new)

Arguments

old Value or vector of values to replace. Accepts expression input. Vectors
are parsed as Series, other non-expression inputs are parsed as literals.
Also accepts a list of values like list(old = new).

new Value or vector of values to replace by. Accepts expression input. Vectors
are parsed as Series, other non-expression inputs are parsed as literals.
Length must match the length of old or have length 1.

Details

The global string cache must be enabled when replacing categorical values.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 2, 2, 3))

"old" and "new" can take vectors of length 1 or of same length
df$with_columns(replaced = pl$col("a")$replace(2, 100))
df$with_columns(replaced = pl$col("a")$replace(c(2, 3), c(100, 200)))

"old" can be a named list where names are values to replace, and values are
the replacements
mapping <- list(`2` = 100, `3` = 200)
df$with_columns(replaced = pl$col("a")$replace(mapping))

The original data type is preserved when replacing by values of a
different data type. Use $replace_strict() to replace and change the
return data type.
df <- pl$DataFrame(a = c("x", "y", "z"))
mapping <- list(x = 1, y = 2, z = 3)
df$with_columns(replaced = pl$col("a")$replace(mapping))

expr__replace_strict 379

"old" and "new" can take Expr
df <- pl$DataFrame(a = c(1, 2, 2, 3), b = c(1.5, 2.5, 5, 1))
df$with_columns(

replaced = pl$col("a")$replace(
old = pl$col("a")$max(),
new = pl$col("b")$sum()

)
)

expr__replace_strict Replace all values by different values

Description

This changes all the values in a column, either using a specific replacement or a default
one. See $replace() to replace only a subset of values.

Usage

expr__replace_strict(old, new, ..., default = NULL, return_dtype = NULL)

Arguments

old Value or vector of values to replace. Accepts expression input. Vectors
are parsed as Series, other non-expression inputs are parsed as literals.
Also accepts a list of values like list(old = new).

new Value or vector of values to replace by. Accepts expression input. Vectors
are parsed as Series, other non-expression inputs are parsed as literals.
Length must match the length of old or have length 1.

... These dots are for future extensions and must be empty.
default Set values that were not replaced to this value. If NULL (default), an

error is raised if any values were not replaced. Accepts expression input.
Non-expression inputs are parsed as literals.

return_dtype The data type of the resulting expression. If NULL (default), the data type
is determined automatically based on the other inputs.

Details

The global string cache must be enabled when replacing categorical values.

Value

A polars expression

380 expr__reshape

Examples
df <- pl$DataFrame(a = c(1, 2, 2, 3))

"old" and "new" can take vectors of length 1 or of same length
df$with_columns(replaced = pl$col("a")$replace_strict(2, 100, default = 1))
df$with_columns(

replaced = pl$col("a")$replace_strict(c(2, 3), c(100, 200), default = 1)
)

"old" can be a named list where names are values to replace, and values are
the replacements
mapping <- list(`2` = 100, `3` = 200)
df$with_columns(replaced = pl$col("a")$replace_strict(mapping, default = -1))

By default, an error is raised if any non-null values were not replaced.
Specify a default to set all values that were not matched.
tryCatch(

df$with_columns(replaced = pl$col("a")$replace_strict(mapping)),
error = function(e) print(e)

)

one can specify the data type to return instead of automatically
inferring it
df$with_columns(

replaced = pl$col("a")$replace_strict(
mapping,
default = 1, return_dtype = pl$Int32

)
)

"old", "new", and "default" can take Expr
df <- pl$DataFrame(a = c(1, 2, 2, 3), b = c(1.5, 2.5, 5, 1))
df$with_columns(

replaced = pl$col("a")$replace_strict(
old = pl$col("a")$max(),
new = pl$col("b")$sum(),
default = pl$col("b"),

)
)

expr__reshape Reshape this Expr to a flat column or an Array column

Description

Reshape this Expr to a flat column or an Array column

Usage

expr__reshape(dimensions)

expr__reverse 381

Arguments

dimensions A integer vector of length of the dimension size. If -1 is used as the value
for the first dimension, that dimension is inferred. Because the size of the
Column may not be known in advance, it is only possible to use -1 for the
first dimension.

Details

If a single dimension is given, results in an expression of the original data type. If a multiple
dimensions are given, results in an expression of data type Array with shape dimensions.

Value

A polars expression

Examples

df <- pl$DataFrame(foo = 1:8)

df$select(pl$col("foo")$reshape(8))
df$select(pl$col("foo")$reshape(c(2, 4)))

Using `-1` for the first dimension to infer the other dimension
df$select(pl$col("foo")$reshape(c(-1, 4)))
df$select(pl$col("foo")$reshape(c(-1, 2)))

We can have more than 2 dimensions
df$select(pl$col("foo")$reshape(c(2, 2, 2)))
df$select(pl$col("foo")$reshape(c(-1, 2, 2)))

expr__reverse Reverse an expression

Description

Reverse an expression

Usage

expr__reverse()

Value

A polars expression

382 expr__rle_id

Examples
df <- pl$DataFrame(

a = 1:5,
fruits = c("banana", "banana", "apple", "apple", "banana"),
b = 5:1

)

df$with_columns(
pl$all()$reverse()$name$suffix("_reverse")

)

expr__rle Compress the column data using run-length encoding

Description

Run-length encoding (RLE) encodes data by storing each run of identical values as a single
value and its length.

Usage

expr__rle()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 1, 2, 1, NA, 1, 3, 3))

df$select(pl$col("a")$rle())$unnest("a")

expr__rle_id Get a distinct integer ID for each run of identical values

Description

The ID starts at 0 and increases by one each time the value of the column changes.

Usage

expr__rle_id()

Details

This functionality is especially useful for defining a new group for every time a column’s
value changes, rather than for every distinct value of that column.

expr__rolling 383

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(1, 2, 1, 1, 1),
b = c("x", "x", NA, "y", "y")

)

df$with_columns(
rle_id_a = pl$col("a")$rle_id(),
rle_id_ab = pl$struct("a", "b")$rle_id()

)

expr__rolling Create rolling groups based on a temporal or integer column

Description

If you have a time series <t_0, t_1, ..., t_n>, then by default the windows created will
be:

• (t_0 - period, t_0]
• (t_1 - period, t_1]
• …
• (t_n - period, t_n]

whereas if you pass a non-default offset, then the windows will be:

• (t_0 + offset, t_0 + offset + period]
• (t_1 + offset, t_1 + offset + period]
• …
• (t_n + offset, t_n + offset + period]

Usage

expr__rolling(index_column, ..., period, offset = NULL, closed = "right")

Arguments

index_column Something coercible to an Expr. Strings are not parsed as columns. Often
of type Date/Datetime. This column must be sorted in ascending order.
In case of a rolling group by on indices, dtype needs to be one of (UInt32,
UInt64, Int32, Int64). Note that the first three get temporarily cast to
Int64, so if performance matters use an Int64 column.

... These dots are for future extensions and must be empty.

384 expr__rolling_kurtosis

period Length of the window - must be non-negative.
offset Offset of the window. Default is -period.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
dates <- as.POSIXct(

c(
"2020-01-01 13:45:48", "2020-01-01 16:42:13", "2020-01-01 16:45:09",
"2020-01-02 18:12:48", "2020-01-03 19:45:32", "2020-01-08 23:16:43"

)
)
df <- pl$DataFrame(dt = dates, a = c(3, 7, 5, 9, 2, 1))

df$with_columns(
sum_a = pl$col("a")$sum()$rolling(index_column = "dt", period = "2d"),
min_a = pl$col("a")$min()$rolling(index_column = "dt", period = "2d"),
max_a = pl$col("a")$max()$rolling(index_column = "dt", period = "2d")

)

expr__rolling_kurtosis
Compute a rolling kurtosis

Description

[Experimental]
The window at a given row will include the row itself, and the window_size - 1 elements
before it.

Usage

expr__rolling_kurtosis(
window_size,
...,
fisher = TRUE,
bias = TRUE,
min_samples = NULL,
center = FALSE

)

expr__rolling_max 385

Arguments

window_size The length of the window in number of elements.
... These dots are for future extensions and must be empty.
fisher If TRUE (default), Fisher’s definition is used (normal ==> 0.0). If FALSE,

Pearson’s definition is used (normal ==> 3.0).
bias If FALSE, the calculations are corrected for statistical bias.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
center If TRUE, set the labels at the center of the window.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 4, 2, 9))

df$with_columns(
rolling_kurtosis = pl$col("a")$rolling_kurtosis(window_size = 3)

)

Center the values in the window
df$with_columns(

rolling_kurtosis = pl$col("a")$rolling_kurtosis(window_size = 3, center = TRUE)
)

expr__rolling_max Apply a rolling max over values

Description

[Experimental]
A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.
The window at a given row will include the row itself, and the window_size - 1 elements
before it.

Usage

expr__rolling_max(
window_size,
weights = NULL,
...,
min_samples = NULL,
center = FALSE

)

386 expr__rolling_max_by

Arguments

window_size The length of the window in number of elements.
weights An optional slice with the same length as the window that will be multi-

plied elementwise with the values in the window.
... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
center If TRUE, set the labels at the center of the window.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:6)
df$with_columns(

rolling_max = pl$col("a")$rolling_max(window_size = 2)
)

Specify weights to multiply the values in the window with:
df$with_columns(

rolling_max = pl$col("a")$rolling_max(
window_size = 2, weights = c(0.25, 0.75)

)
)

Center the values in the window
df$with_columns(

rolling_max = pl$col("a")$rolling_max(window_size = 3, center = TRUE)
)

expr__rolling_max_by Apply a rolling max based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:

• (t_0 - window_size, t_0]

expr__rolling_max_by 387

• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_max_by(
by,
window_size,
...,
min_samples = 1,
closed = c("right", "both", "left", "none")

)

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

388 expr__rolling_mean

Value

A polars expression

Examples
df_temporal <- pl$select(

index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)
)

Compute the rolling max with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_max = pl$col("index")$rolling_max_by(
"date",
window_size = "2h"

)
)

Compute the rolling max with the closure of windows on both sides
df_temporal$with_columns(

rolling_row_max = pl$col("index")$rolling_max_by(
"date",
window_size = "2h",
closed = "both"

)
)

expr__rolling_mean Apply a rolling mean over values

Description

[Experimental]
A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.
The window at a given row will include the row itself, and the window_size - 1 elements
before it.

Usage

expr__rolling_mean(
window_size,

expr__rolling_mean 389

weights = NULL,
...,
min_samples = NULL,
center = FALSE

)

Arguments

window_size The length of the window in number of elements.

weights An optional slice with the same length as the window that will be multi-
plied elementwise with the values in the window.

... These dots are for future extensions and must be empty.

min_samples The number of values in the window that should be non-null before com-
puting a result. If NULL (default), it will be set equal to window_size.

center If TRUE, set the labels at the center of the window.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples

df <- pl$DataFrame(a = 1:6)
df$with_columns(

rolling_mean = pl$col("a")$rolling_mean(window_size = 2)
)

Specify weights to multiply the values in the window with:
df$with_columns(

rolling_mean = pl$col("a")$rolling_mean(
window_size = 2, weights = c(0.25, 0.75)

)
)

Center the values in the window
df$with_columns(

rolling_mean = pl$col("a")$rolling_mean(window_size = 3, center = TRUE)
)

390 expr__rolling_mean_by

expr__rolling_mean_by
Apply a rolling mean based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:

• (t_0 - window_size, t_0]
• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_mean_by(
by,
window_size,
...,
min_samples = 1,
closed = c("right", "both", "left", "none")

)

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

expr__rolling_mean_by 391

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples

df_temporal <- pl$select(
index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)
)

Compute the rolling mean with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_mean = pl$col("index")$rolling_mean_by(
"date",
window_size = "2h"

)
)

Compute the rolling mean with the closure of windows on both sides
df_temporal$with_columns(

rolling_row_mean = pl$col("index")$rolling_mean_by(
"date",
window_size = "2h",
closed = "both"

)
)

392 expr__rolling_median

expr__rolling_median Apply a rolling median over values

Description

[Experimental]

A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.

The window at a given row will include the row itself, and the window_size - 1 elements
before it.

Usage

expr__rolling_median(
window_size,
weights = NULL,
...,
min_samples = NULL,
center = FALSE

)

Arguments

window_size The length of the window in number of elements.

weights An optional slice with the same length as the window that will be multi-
plied elementwise with the values in the window.

... These dots are for future extensions and must be empty.

min_samples The number of values in the window that should be non-null before com-
puting a result. If NULL (default), it will be set equal to window_size.

center If TRUE, set the labels at the center of the window.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

expr__rolling_median_by 393

Examples
df <- pl$DataFrame(a = 1:6)
df$with_columns(

rolling_median = pl$col("a")$rolling_median(window_size = 2)
)

Specify weights to multiply the values in the window with:
df$with_columns(

rolling_median = pl$col("a")$rolling_median(
window_size = 2, weights = c(0.25, 0.75)

)
)

Center the values in the window
df$with_columns(

rolling_median = pl$col("a")$rolling_median(window_size = 3, center = TRUE)
)

expr__rolling_median_by
Apply a rolling median based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:
• (t_0 - window_size, t_0]
• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_median_by(
by,
window_size,
...,
min_samples = 1,
closed = c("right", "both", "left", "none")

)

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

394 expr__rolling_median_by

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df_temporal <- pl$select(

index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)
)

Compute the rolling median with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_median = pl$col("index")$rolling_median_by(

expr__rolling_min 395

"date",
window_size = "2h"

)
)

Compute the rolling median with the closure of windows on both sides
df_temporal$with_columns(

rolling_row_median = pl$col("index")$rolling_median_by(
"date",
window_size = "2h",
closed = "both"

)
)

expr__rolling_min Apply a rolling min over values

Description

[Experimental]
A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.
The window at a given row will include the row itself, and the window_size - 1 elements
before it.

Usage

expr__rolling_min(
window_size,
weights = NULL,
...,
min_samples = NULL,
center = FALSE

)

Arguments

window_size The length of the window in number of elements.
weights An optional slice with the same length as the window that will be multi-

plied elementwise with the values in the window.
... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
center If TRUE, set the labels at the center of the window.

396 expr__rolling_min_by

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:6)
df$with_columns(

rolling_min = pl$col("a")$rolling_min(window_size = 2)
)

Specify weights to multiply the values in the window with:
df$with_columns(

rolling_min = pl$col("a")$rolling_min(
window_size = 2, weights = c(0.25, 0.75)

)
)

Center the values in the window
df$with_columns(

rolling_min = pl$col("a")$rolling_min(window_size = 3, center = TRUE)
)

expr__rolling_min_by Apply a rolling min based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:
• (t_0 - window_size, t_0]
• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_min_by(
by,
window_size,
...,
min_samples = 1,
closed = c("right", "both", "left", "none")

)

expr__rolling_min_by 397

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df_temporal <- pl$select(

index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)

398 expr__rolling_quantile

)

Compute the rolling min with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_min = pl$col("index")$rolling_min_by(
"date",
window_size = "2h"

)
)

Compute the rolling min with the closure of windows on both sides
df_temporal$with_columns(

rolling_row_min = pl$col("index")$rolling_min_by(
"date",
window_size = "2h",
closed = "both"

)
)

expr__rolling_quantile
Apply a rolling quantile over values

Description

[Experimental]

A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.

The window at a given row will include the row itself, and the window_size - 1 elements
before it.

Usage

expr__rolling_quantile(
quantile,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear", "equiprobable"),
window_size,
weights = NULL,
...,
min_samples = NULL,
center = FALSE

)

expr__rolling_quantile 399

Arguments

quantile Quantile between 0.0 and 1.0.
interpolation Interpolation method. Must be one of "nearest", "higher", "lower",

"midpoint", "linear".
window_size The length of the window in number of elements.
weights An optional slice with the same length as the window that will be multi-

plied elementwise with the values in the window.
... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
center If TRUE, set the labels at the center of the window.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:6)
df$with_columns(

rolling_quantile = pl$col("a")$rolling_quantile(
quantile = 0.25, window_size = 4

)
)

Specify weights to multiply the values in the window with:
df$with_columns(

rolling_quantile = pl$col("a")$rolling_quantile(
quantile = 0.25, window_size = 4, weights = c(0.2, 0.4, 0.4, 0.2)

)
)

Specify weights and interpolation method:
df$with_columns(

rolling_quantile = pl$col("a")$rolling_quantile(
quantile = 0.25, window_size = 4, weights = c(0.2, 0.4, 0.4, 0.2),
interpolation = "linear"

)
)

Center the values in the window
df$with_columns(

rolling_quantile = pl$col("a")$rolling_quantile(
quantile = 0.25, window_size = 5, center = TRUE

400 expr__rolling_quantile_by

)
)

expr__rolling_quantile_by
Apply a rolling quantile based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:

• (t_0 - window_size, t_0]
• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_quantile_by(
by,
window_size,
...,
quantile,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear", "equiprobable"),
min_samples = 1,
closed = c("right", "both", "left", "none")

)

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)

expr__rolling_quantile_by 401

• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

... These dots are for future extensions and must be empty.
quantile Quantile between 0.0 and 1.0.
interpolation Interpolation method. Must be one of "nearest", "higher", "lower",

"midpoint", "linear".
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df_temporal <- pl$select(

index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)
)

Compute the rolling quantile with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_quantile = pl$col("index")$rolling_quantile_by(
"date",
window_size = "2h",
quantile = 0.3

)
)

Compute the rolling quantile with the closure of windows on both sides
df_temporal$with_columns(

402 expr__rolling_rank

rolling_row_quantile = pl$col("index")$rolling_quantile_by(
"date",
window_size = "2h",
quantile = 0.3,
closed = "both"

)
)

expr__rolling_rank Apply a rolling rank over values

Description

[Experimental]
A window of length window_size will traverse the array. The values that fill this window
will be ranked according to the method parameter. The resulting values will be the rank of
the value that is at the end of the sliding window.

Usage

expr__rolling_rank(
window_size,
method = c("average", "min", "max", "dense", "random"),
...,
seed = NULL,
min_samples = NULL,
center = FALSE

)

Arguments

window_size The length of the window in number of elements.
method The method used to assign ranks to tied elements. Must be one of the

following:
• "average" (default): The average of the ranks that would have been

assigned to all the tied values is assigned to each value.
• "min": The minimum of the ranks that would have been assigned to

all the tied values is assigned to each value. (This is also referred to
as ”competition” ranking.)

• "max": The maximum of the ranks that would have been assigned to
all the tied values is assigned to each value.

• "dense": Like "min", but the rank of the next highest element is as-
signed the rank immediately after those assigned to the tied elements.

• "random": Choose a random rank for each value in a tie.
... These dots are for future extensions and must be empty.

expr__rolling_rank_by 403

seed Random seed used when method = "random". If NULL (default), a random
seed is generated for each rolling rank operation.

min_samples The number of values in the window that should be non-null before com-
puting a result. If NULL (default), it will be set equal to window_size.

center If TRUE, set the labels at the center of the window.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 4, 4, 1, 9))

df$select(pl$col("a")$rolling_rank(3, method = "average"))

expr__rolling_rank_by
Apply a rolling rank based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:

• (t_0 - window_size, t_0]
• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_rank_by(
by,
window_size,
method = c("average", "min", "max", "dense", "random"),
...,
seed = NULL,
min_samples = 1,
closed = c("right", "both", "left", "none")

)

404 expr__rolling_rank_by

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

method The method used to assign ranks to tied elements. Must be one of the
following:
• "average" (default): The average of the ranks that would have been

assigned to all the tied values is assigned to each value.
• "min": The minimum of the ranks that would have been assigned to

all the tied values is assigned to each value. (This is also referred to
as ”competition” ranking.)

• "max": The maximum of the ranks that would have been assigned to
all the tied values is assigned to each value.

• "dense": Like "min", but the rank of the next highest element is as-
signed the rank immediately after those assigned to the tied elements.

• "random": Choose a random rank for each value in a tie.
... These dots are for future extensions and must be empty.
seed Random seed used when method = "random". If NULL (default), a random

seed is generated for each rolling rank operation.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".

expr__rolling_skew 405

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df_temporal <- pl$select(

index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)
)

Compute the rolling rank with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_rank = pl$col("index")$rolling_rank_by(
"date",
window_size = "2h"

)
)

Compute the rolling rank with the closure of windows on both sides
df_temporal$with_columns(

rolling_row_rank = pl$col("index")$rolling_rank_by(
"date",
window_size = "2h",
closed = "both"

)
)

expr__rolling_skew Apply a rolling skew over values

Description

[Experimental]
A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.
The window at a given row will include the row itself, and the window_size - 1 elements
before it.

406 expr__rolling_std

Usage

expr__rolling_skew(
window_size,
...,
bias = TRUE,
min_samples = NULL,
center = FALSE

)

Arguments

window_size The length of the window in number of elements.
... These dots are for future extensions and must be empty.
bias If FALSE, the calculations are corrected for statistical bias.
min_samples The number of values in the window that should be non-null before

computing a result. If set to NULL (default), it will be set equal to
window_size.

center Set the labels at the center of the window.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(1, 4, 2, 9))
df$with_columns(

rolling_skew = pl$col("a")$rolling_skew(3)
)

expr__rolling_std Apply a rolling standard deviation over values

Description

[Experimental]
A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.
The window at a given row will include the row itself, and the window_size - 1 elements
before it.

expr__rolling_std 407

Usage

expr__rolling_std(
window_size,
weights = NULL,
...,
min_samples = NULL,
center = FALSE,
ddof = 1

)

Arguments

window_size The length of the window in number of elements.
weights An optional slice with the same length as the window that will be multi-

plied elementwise with the values in the window.
... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
center If TRUE, set the labels at the center of the window.
ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -

ddof, where N represents the number of elements. By default ddof is 1.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:6)
df$with_columns(

rolling_std = pl$col("a")$rolling_std(window_size = 2)
)

Specify weights to multiply the values in the window with:
df$with_columns(

rolling_std = pl$col("a")$rolling_std(
window_size = 2, weights = c(0.25, 0.75)

)
)

Center the values in the window
df$with_columns(

rolling_std = pl$col("a")$rolling_std(window_size = 3, center = TRUE)
)

408 expr__rolling_std_by

expr__rolling_std_by Apply a rolling standard deviation based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:

• (t_0 - window_size, t_0]
• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_std_by(
by,
window_size,
...,
min_samples = 1,
closed = c("right", "both", "left", "none"),
ddof = 1

)

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

expr__rolling_std_by 409

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".
ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -

ddof, where N represents the number of elements. By default ddof is 1.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df_temporal <- pl$select(

index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)
)

Compute the rolling std with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_std = pl$col("index")$rolling_std_by(
"date",
window_size = "2h"

)
)

Compute the rolling std with the closure of windows on both sides
df_temporal$with_columns(

rolling_row_std = pl$col("index")$rolling_std_by(
"date",
window_size = "2h",
closed = "both"

)
)

410 expr__rolling_sum

expr__rolling_sum Apply a rolling sum over values

Description

[Experimental]

A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.

The window at a given row will include the row itself, and the window_size - 1 elements
before it.

Usage

expr__rolling_sum(
window_size,
weights = NULL,
...,
min_samples = NULL,
center = FALSE

)

Arguments

window_size The length of the window in number of elements.

weights An optional slice with the same length as the window that will be multi-
plied elementwise with the values in the window.

... These dots are for future extensions and must be empty.

min_samples The number of values in the window that should be non-null before com-
puting a result. If NULL (default), it will be set equal to window_size.

center If TRUE, set the labels at the center of the window.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

expr__rolling_sum_by 411

Examples
df <- pl$DataFrame(a = 1:6)
df$with_columns(

rolling_sum = pl$col("a")$rolling_sum(window_size = 2)
)

Specify weights to multiply the values in the window with:
df$with_columns(

rolling_sum = pl$col("a")$rolling_sum(
window_size = 2, weights = c(0.25, 0.75)

)
)

Center the values in the window
df$with_columns(

rolling_sum = pl$col("a")$rolling_sum(window_size = 3, center = TRUE)
)

expr__rolling_sum_by Apply a rolling sum based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:

• (t_0 - window_size, t_0]
• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_sum_by(
by,
window_size,
...,
min_samples = 1,
closed = c("right", "both", "left", "none")

)

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

412 expr__rolling_sum_by

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df_temporal <- pl$select(

index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)
)

Compute the rolling sum with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_sum = pl$col("index")$rolling_sum_by(

expr__rolling_var 413

"date",
window_size = "2h"

)
)

Compute the rolling sum with the closure of windows on both sides
df_temporal$with_columns(

rolling_row_sum = pl$col("index")$rolling_sum_by(
"date",
window_size = "2h",
closed = "both"

)
)

expr__rolling_var Apply a rolling variance over values

Description

[Experimental]
A window of length window_size will traverse the array. The values that fill this window
will (optionally) be multiplied with the weights given by the weights vector. The resulting
values will be aggregated.
The window at a given row will include the row itself, and the window_size - 1 elements
before it.

Usage

expr__rolling_var(
window_size,
weights = NULL,
...,
min_samples = NULL,
center = FALSE,
ddof = 1

)

Arguments

window_size The length of the window in number of elements.
weights An optional slice with the same length as the window that will be multi-

plied elementwise with the values in the window.
... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
center If TRUE, set the labels at the center of the window.
ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -

ddof, where N represents the number of elements. By default ddof is 1.

414 expr__rolling_var_by

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:6)
df$with_columns(

rolling_var = pl$col("a")$rolling_var(window_size = 2)
)

Specify weights to multiply the values in the window with:
df$with_columns(

rolling_var = pl$col("a")$rolling_var(
window_size = 2, weights = c(0.25, 0.75)

)
)

Center the values in the window
df$with_columns(

rolling_var = pl$col("a")$rolling_var(window_size = 3, center = TRUE)
)

expr__rolling_var_by Apply a rolling variance based on another column

Description

[Experimental]
Given a by column <t_0, t_1, ..., t_n>, then closed = "right" (the default) means
the windows will be:

• (t_0 - window_size, t_0]
• (t_1 - window_size, t_1]
• …
• (t_n - window_size, t_n]

Usage

expr__rolling_var_by(
by,
window_size,
...,
min_samples = 1,

expr__rolling_var_by 415

closed = c("right", "both", "left", "none"),
ddof = 1

)

Arguments

by Should be DateTime, Date, UInt64, UInt32, Int64, or Int32 data type
after conversion by as_polars_expr(). Note that the integer ones require
using "i" in window_size. Accepts expression input. Strings are parsed
as column names.

window_size The length of the window. Can be a dynamic temporal size indicated by
a timedelta or the following string language:
• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25
seconds
By ”calendar day”, we mean the corresponding time on the next day
(which may not be 24 hours, due to daylight savings). Similarly for ”cal-
endar week”, ”calendar month”, ”calendar quarter”, and ”calendar year”.

... These dots are for future extensions and must be empty.
min_samples The number of values in the window that should be non-null before com-

puting a result. If NULL (default), it will be set equal to window_size.
closed Define which sides of the interval are closed (inclusive). Default is "right".
ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -

ddof, where N represents the number of elements. By default ddof is 1.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

A polars expression

416 expr__round

Examples

df_temporal <- pl$select(
index = 0:24,
date = pl$datetime_range(
as.POSIXct("2001-01-01"),
as.POSIXct("2001-01-02"),
"1h"

)
)

Compute the rolling var with the temporal windows closed on the right
(default)
df_temporal$with_columns(

rolling_row_var = pl$col("index")$rolling_var_by(
"date",
window_size = "2h"

)
)

Compute the rolling var with the closure of windows on both sides
df_temporal$with_columns(

rolling_row_var = pl$col("index")$rolling_var_by(
"date",
window_size = "2h",
closed = "both"

)
)

expr__round Round underlying floating point data by decimals digits

Description

Round underlying floating point data by decimals digits

Usage

expr__round(decimals = 0L, mode = c("half_to_even", "half_away_from_zero"))

Arguments

decimals Number of decimals to round by.
mode Rounding mode. One of the following:

• "half_to_even" (default): round to the nearest even number;
• "half_away_from_zero": round to the nearest number away from

zero.

expr__round_sig_figs 417

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(0.33, 0.52, 1.02, 1.17))
df$select(pl$col("a")$round(1))

df <- pl$DataFrame(
f64 = c(-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5),
d = c("-3.5", "-2.5", "-1.5", "-0.5", "0.5", "1.5", "2.5", "3.5")

)$cast(d = pl$Decimal(scale = 1))

df$with_columns(
pl$all()$round(mode = "half_away_from_zero")$name$suffix("_away"),
pl$all()$round(mode = "half_to_even")$name$suffix("_to_even"),

)

expr__round_sig_figs Round to a number of significant figures

Description

Round to a number of significant figures

Usage

expr__round_sig_figs(digits)

Arguments

digits Number of significant figures to round to.

Value

A polars expression

Examples

df <- pl$DataFrame(a = c(0.01234, 3.333, 1234))

df$with_columns(
rounded = pl$col("a")$round_sig_figs(2)

)

418 expr__sample

expr__sample Sample from this expression

Description

Sample from this expression

Usage

expr__sample(
n = NULL,
...,
fraction = NULL,
with_replacement = FALSE,
shuffle = FALSE,
seed = NULL

)

Arguments

n Number of items to return. Cannot be used with fraction. Defaults to
1 if fraction is NULL.

... These dots are for future extensions and must be empty.

fraction Fraction of items to return. Cannot be used with n.
with_replacement

Allow values to be sampled more than once.

shuffle Shuffle the order of sampled data points.

seed Seed for the random number generator. If NULL (default), a random seed
is generated for each sample operation.

Value

A polars expression

Examples

df <- pl$DataFrame(a = 1:3)
df$select(pl$col("a")$sample(

fraction = 1, with_replacement = TRUE, seed = 1
))

expr__search_sorted 419

expr__search_sorted Find indices where elements should be inserted to maintain order

Description

This returns -1 if x is lower than 0, 0 if x == 0, and 1 if x is greater than 0.

Usage

expr__search_sorted(
element,
side = c("any", "left", "right"),
...,
descending = FALSE

)

Arguments

element Expression or scalar value.

side Must be one of the following:

• "any": the index of the first suitable location found is given;
• "left": the index of the leftmost suitable location found is given;
• "right": the index the rightmost suitable location found is given.

... These dots are for future extensions and must be empty.

descending Boolean indicating whether the values are descending or not.

Value

A polars expression

Examples

df <- pl$DataFrame(values = c(1, 2, 3, 5))
df$select(

zero = pl$col("values")$search_sorted(0),
three = pl$col("values")$search_sorted(3),
six = pl$col("values")$search_sorted(6),

)

420 expr__shift

expr__set_sorted Flags the expression as ”sorted”

Description

Enables downstream code to user fast paths for sorted arrays.
Warning: This can lead to incorrect results if the data is NOT sorted!! Use with care!

Usage

expr__set_sorted(..., descending = FALSE)

Arguments

... These dots are for future extensions and must be empty.
descending Whether the Series order is descending.

Value

A polars expression

Examples

df <- pl$DataFrame(a = 1:3)
df$select(pl$col("a")$set_sorted()$max())

expr__shift Shift values by the given number of indices

Description

Shift values by the given number of indices

Usage

expr__shift(n = 1, ..., fill_value = NULL)

Arguments

n Number of indices to shift forward. If a negative value is passed, values
are shifted in the opposite direction instead.

... These dots are for future extensions and must be empty.
fill_value Fill the resulting null values with this value.

expr__shrink_dtype 421

Value

A polars expression

Examples
By default, values are shifted forward by one index.
df <- pl$DataFrame(a = 1:4)
df$with_columns(shift = pl$col("a")$shift())

Pass a negative value to shift in the opposite direction instead.
df$with_columns(shift = pl$col("a")$shift(-2))

Specify fill_value to fill the resulting null values.
df$with_columns(shift = pl$col("a")$shift(-2, fill_value = 100))

expr__shrink_dtype Shrink numeric columns to the minimal required datatype

Description

[Deprecated] Deprecated as of polars 1.3.0 and turned into a no-op. Use <series>$shrink_dtype
instead.

Usage

expr__shrink_dtype()

Value

A polars expression

expr__shuffle Shuffle the contents of this expression

Description

Note this is shuffled independently of any other column or Expression. If you want each
row to stay the same use df$sample(shuffle = TRUE).

Usage

expr__shuffle(seed = NULL)

Arguments

seed Integer indicating the seed for the random number generator. If NULL
(default), a random seed is generated each time the shuffle is called.

422 expr__sin

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3)
df$with_columns(

shuffled = pl$col("a")$shuffle(seed = 1)
)

expr__sign Compute the sign

Description

This returns -1 if x is lower than 0, 0 if x == 0, and 1 if x is greater than 0.

Usage

expr__sign()

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(-9, 0, 0, 4, NA))
df$with_columns(sign = pl$col("a")$sign())

expr__sin Compute sine

Description

Compute sine

Usage

expr__sin()

Value

A polars expression

Examples
pl$DataFrame(a = c(0, pi / 2, pi, NA))$

with_columns(sine = pl$col("a")$sin())

expr__sinh 423

expr__sinh Compute hyperbolic sine

Description

Compute hyperbolic sine

Usage

expr__sinh()

Value

A polars expression

Examples

pl$DataFrame(a = c(-1, asinh(0.5), 0, 1, NA))$
with_columns(sinh = pl$col("a")$sinh())

expr__skew Compute the skewness

Description

For normally distributed data, the skewness should be about zero. For unimodal continuous
distributions, a skewness value greater than zero means that there is more weight in the
right tail of the distribution.

Usage

expr__skew(..., bias = TRUE)

Arguments

... These dots are for future extensions and must be empty.

bias If FALSE, the calculations are corrected for statistical bias.

424 expr__slice

Details

The sample skewness is computed as the Fisher-Pearson coefficient of skewness, i.e.

g1 =
m3

m
3/2
2

where

mi =
1

N

N∑
n=1

(x[n]− x̄)i

is the biased sample ith central moment, and x̄ is the sample mean. If bias = FALSE, the
calculations are corrected for bias and the value computed is the adjusted Fisher-Pearson
standardized moment coefficient, i.e.

G1 =
k3

k
3/2
2

=

√
N(N − 1)

N − 2

m3

m
3/2
2

Value

A polars expression

Examples
df <- pl$DataFrame(x = c(1, 2, 3, 2, 1))
df$select(pl$col("x")$skew())

expr__slice Get a slice of this expression

Description

Get a slice of this expression

Usage

expr__slice(offset, length = NULL)

Arguments

offset Numeric or expression, zero-indexed. Indicates where to start the slice.
A negative value is one-indexed and starts from the end.

length Maximum number of elements contained in the slice. If NULL (default),
all rows starting at the offset will be selected.

Value

A polars expression

expr__sort 425

Examples
as head
pl$DataFrame(a = 0:100)$select(

pl$all()$slice(0, 6)
)

as tail
pl$DataFrame(a = 0:100)$select(

pl$all()$slice(-6, 6)
)

pl$DataFrame(a = 0:100)$select(
pl$all()$slice(80)

)

expr__sort Sort this expression

Description

If used in a groupby context, values within each group are sorted.

Usage

expr__sort(..., descending = FALSE, nulls_last = FALSE)

Arguments

... These dots are for future extensions and must be empty.
descending Sort in descending order.
nulls_last Place null values last.

Value

A polars expression

Examples
df <- pl$DataFrame(a = c(6, 1, 0, NA, Inf, NaN))

df$with_columns(
sorted = pl$col("a")$sort(),
sorted_desc = pl$col("a")$sort(descending = TRUE),
sorted_nulls_last = pl$col("a")$sort(nulls_last = TRUE)

)

When sorting in a group by context, values in each group are sorted.
df <- pl$DataFrame(

group = c("one", "one", "one", "two", "two", "two"),

426 expr__sort_by

value = c(1, 98, 2, 3, 99, 4)
)

df$group_by("group")$agg(pl$col("value")$sort())

expr__sort_by Sort this column by the ordering of another column, or multiple
other columns.

Description

If used in a groupby context, values within each group are sorted.

Usage

expr__sort_by(
...,
descending = FALSE,
nulls_last = FALSE,
multithreaded = TRUE,
maintain_order = FALSE

)

Arguments

... <dynamic-dots>Column(s) to sort by. Accepts expression input. Strings
are parsed as column names.

descending Sort in descending order. When sorting by multiple columns, can be
specified per column by passing a sequence of booleans.

nulls_last Place null values last; can specify a single boolean applying to all columns
or a sequence of booleans for per-column control.

multithreaded Sort using multiple threads.
maintain_order

Whether the order should be maintained if elements are equal.

Value

A polars expression

Examples
df <- pl$DataFrame(

group = c("a", "a", "b", "b"),
value1 = c(1, 3, 4, 2),
value2 = c(8, 7, 6, 5)

)

by one column/expression

expr__sqrt 427

df$with_columns(
sorted = pl$col("group")$sort_by("value1")

)

by two columns/expressions
df$with_columns(

sorted = pl$col("group")$sort_by(
"value2", pl$col("value1"),
descending = c(TRUE, FALSE)

)
)

by some expression
df$with_columns(

sorted = pl$col("group")$sort_by(pl$col("value1") + pl$col("value2"))
)

in an aggregation context, values are sorted within groups
df$group_by("group")$agg(

pl$col("value1")$sort_by("value2")
)

expr__sqrt Compute square root

Description

Compute square root

Usage

expr__sqrt()

Value

A polars expression

Examples

pl$DataFrame(a = c(1, 2, 4))$
with_columns(sqrt = pl$col("a")$sqrt())

428 expr__sub

expr__std Compute the standard deviation

Description

Compute the standard deviation

Usage

expr__std(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars expression

Examples
pl$DataFrame(a = c(1, 3, 5, 6))$

select(pl$all()$std())

expr__sub Substract two expressions

Description

Method equivalent of subtraction operator expr - other.

Usage

expr__sub(other)

Arguments

other Numeric literal or expression value.

Value

A polars expression

See Also

• Arithmetic operators

expr__sum 429

Examples
df <- pl$DataFrame(x = 0:4)

df$with_columns(
`x-2` = pl$col("x")$sub(2),
`x-expr` = pl$col("x")$sub(pl$col("x")$cum_sum())

)

expr__sum Get sum value

Description

Get sum value

Usage

expr__sum()

Details

The dtypes Int8, UInt8, Int16 and UInt16 are cast to Int64 before summing to prevent
overflow issues.

Value

A polars expression

Examples
pl$DataFrame(x = c(1L, NA, 2L))$

with_columns(sum = pl$col("x")$sum())

expr__tail Get the last n elements

Description

Get the last n elements

Usage

expr__tail(n = 10)

Arguments

n Number of elements to take.

430 expr__tanh

Value

A polars expression

Examples
pl$DataFrame(x = 1:11)$select(pl$col("x")$tail(3))

expr__tan Compute tangent

Description

Compute tangent

Usage

expr__tan()

Value

A polars expression

Examples
pl$DataFrame(a = c(0, pi / 2, pi, NA))$

with_columns(tangent = pl$col("a")$tan())

expr__tanh Compute hyperbolic tangent

Description

Compute hyperbolic tangent

Usage

expr__tanh()

Value

A polars expression

Examples
pl$DataFrame(a = c(-1, atanh(0.5), 0, 1, NA))$

with_columns(tanh = pl$col("a")$tanh())

expr__top_k 431

expr__top_k Return the k largest elements

Description

Non-null elements are always preferred over null elements. The output is not guaranteed
to be in any particular order, call $sort() after this function if you wish the output to be
sorted. This has time complexity O(n).

Usage

expr__top_k(k = 5)

Arguments

k Number of elements to return.

Value

A polars expression

Examples

df <- pl$DataFrame(value = c(1, 98, 2, 3, 99, 4))
df$select(

top_k = pl$col("value")$top_k(k = 3),
bottom_k = pl$col("value")$bottom_k(k = 3)

)

expr__top_k_by Return the elements corresponding to the k largest elements of
the by column(s)

Description

Non-null elements are always preferred over null elements. The output is not guaranteed
to be in any particular order, call $sort() after this function if you wish the output to be
sorted. This has time complexity O(n).

Usage

expr__top_k_by(by, k = 5, ..., reverse = FALSE)

432 expr__to_physical

Arguments

by Column(s) used to determine the smallest elements. Accepts expression
input. Strings are parsed as column names.

k Number of elements to return.

... These dots are for future extensions and must be empty.

reverse Consider the k smallest elements of the by column(s) (instead of the
k largest). This can be specified per column by passing a sequence of
booleans.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = 1:6,
b = 6:1,
c = c("Apple", "Orange", "Apple", "Apple", "Banana", "Banana")

)

Get the top 2 rows by column a or b:
df$select(

pl$all()$top_k_by("a", 2)$name$suffix("_btm_by_a"),
pl$all()$top_k_by("b", 2)$name$suffix("_btm_by_b")

)

Get the top 2 rows by multiple columns with given order.
df$select(

pl$all()$
top_k_by(c("c", "a"), 2, reverse = c(FALSE, TRUE))$
name$suffix("_btm_by_ca"),

pl$all()$
top_k_by(c("c", "b"), 2, reverse = c(FALSE, TRUE))$
name$suffix("_btm_by_cb"),

)

Get the top 2 rows by column a in each group
df$group_by("c", .maintain_order = TRUE)$agg(

pl$all()$top_k_by("a", 2)
)$explode(pl$all()$exclude("c"))

expr__to_physical Cast to physical representation of the logical dtype

expr__true_div 433

Description

The following data types will be changed:

• Date -> Int32
• Datetime -> Int64
• Time -> Int64
• Duration -> Int64
• Categorical -> UInt32

Other data types will be left unchanged.
Note that the physical representations are an implementation detail and not guaranteed to
be stable.

Usage

expr__to_physical()

Value

A polars expression

Examples

df <- pl$DataFrame(a = factor(c("a", "x", NA, "a")))
df$with_columns(

phys = pl$col("a")$to_physical()
)

expr__true_div Divide two expressions

Description

Method equivalent of float division operator expr / other. $truediv() is an alias for
$true_div(), which exists for compatibility with Python Polars.

Usage

expr__true_div(other)

expr__truediv(other)

Arguments

other Numeric literal or expression value.

434 expr__unique

Details

Zero-division behaviour follows IEEE-754:

• 0/0: Invalid operation - mathematically undefined, returns NaN.
• n/0: On finite operands gives an exact infinite result, e.g.: ±infinity.

Value

A polars expression

See Also

• Arithmetic operators
• <Expr>$floor_div()

Examples
df <- pl$DataFrame(

x = -2:2,
y = c(0.5, 0, 0, -4, -0.5)

)

df$with_columns(
`x/2` = pl$col("x")$true_div(2),
`x/y` = pl$col("x")$true_div(pl$col("y"))

)

expr__unique Get unique values

Description

This method differs from $value_counts() in that it does not return the values, only the
counts and might be faster.

Usage

expr__unique(..., maintain_order = FALSE)

Arguments

... These dots are for future extensions and must be empty.
maintain_order

Maintain order of data. This requires more work.

Value

A polars expression

expr__unique_counts 435

Examples
df <- pl$DataFrame(a = c(1, 1, 2))
df$select(pl$col("a")$unique())

expr__unique_counts Count unique values in the order of appearance

Description

This method differs from $value_counts() in that it does not return the values, only the
counts and might be faster.

Usage

expr__unique_counts()

Value

A polars expression

Examples
df <- pl$DataFrame(id = c("a", "b", "b", "c", "c", "c"))
df$select(pl$col("id")$unique_counts())

expr__upper_bound Calculate the upper bound

Description

Returns a unit Series with the highest value possible for the dtype of this expression.

Usage

expr__upper_bound()

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:3)
df$select(pl$col("a")$upper_bound())

436 expr__value_counts

expr__value_counts Count the occurrences of unique values

Description

Count the occurrences of unique values

Usage

expr__value_counts(
...,
sort = FALSE,
parallel = FALSE,
name = NULL,
normalize = FALSE

)

Arguments

... These dots are for future extensions and must be empty.
sort Sort the output by count in descending order. If FALSE (default), the

order of the output is random.
parallel Execute the computation in parallel. This option should likely not be

enabled in a group by context, as the computation is already parallelized
per group.

name Give the resulting count field a specific name. If normalize is TRUE it
defaults to "proportion", otherwise it defaults to "count".

normalize If TRUE, gives relative frequencies of the unique values.

Value

A polars expression

Examples

df <- pl$DataFrame(color = c("red", "blue", "red", "green", "blue", "blue"))
df$select(pl$col("color")$value_counts())

Sort the output by (descending) count and customize the count field name.
df <- df$select(pl$col("color")$value_counts(sort = TRUE, name = "n"))
df

df$unnest("color")

expr__var 437

expr__var Compute the variance

Description

Compute the variance

Usage

expr__var(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars expression

Examples
pl$DataFrame(a = c(1, 3, 5, 6))$

select(pl$all()$var())

expr__xor Apply logical XOR on two expressions

Description

Combine two boolean expressions with XOR.

Usage

expr__xor(other)

Arguments

other Element to add. Can be a string (only if expr is a string), a numeric
value or an other expression.

Value

A polars expression

Examples
pl$lit(TRUE)$xor(pl$lit(FALSE))

438 groupby__agg

groupby__agg Compute aggregations for each group of a group by operation

Description

Compute aggregations for each group of a group by operation

Usage

groupby__agg(...)

Arguments

... <dynamic-dots> Aggregations to compute for each group of the group
by operation. Accepts expression input. Strings are parsed as column
names.

Value

A polars DataFrame

Examples

Compute the aggregation of the columns for each group.
df <- pl$DataFrame(

a = c("a", "b", "a", "b", "c"),
b = c(1, 2, 1, 3, 3),
c = c(5, 4, 3, 2, 1)

)
df$group_by("a")$agg(pl$col("b"), pl$col("c"))

Compute the sum of a column for each group.
df$group_by("a")$agg(pl$col("b")$sum())

Compute multiple aggregates at once by passing a list of expressions.
df$group_by("a")$agg(pl$sum("b"), pl$col("c")$mean())

Use keyword arguments to easily name your expression inputs.
df$group_by("a")$agg(

b_sum = pl$sum("b"),
c_mean_squared = (pl$col("c") ** 2)$mean()

)

groupby__having 439

groupby__having Filter groups with a list of predicates after aggregation

Description

Using this method is equivalent to adding the predicates to the aggregation and filtering
afterwards.
This method can be chained and all conditions will be combined using &.

Usage

groupby__having(...)

Arguments

... <dynamic-dots> Expression that evaluates to a boolean Series.

Value

An object of class polars_group_by

Examples
df <- pl$DataFrame(x = c("a", "b", "a", "b", "c"))

Only keep groups that contain more than one element:
df$group_by("x")$having(

pl$len() > 1
)$agg()

groupby__head Get the first n rows of each group

Description

Get the first n rows of each group

Usage

groupby__head(n = 5)

Arguments

n Number of rows to return.

Value

A polars DataFrame

440 groupby__len

Examples

df <- pl$DataFrame(
letters = c("c", "c", "a", "c", "a", "b"),
nrs = 1:6

)
df

df$group_by("letters")$head(2)$sort("letters")

groupby__len Return the number of rows in each group

Description

Return the number of rows in each group

Usage

groupby__len(name = NULL)

Arguments

name Assign a name to the resulting column. If NULL, defaults to "len".

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
a = c("Apple", "Apple", "Orange"),
b = c(1, NA, 2)

)
df$group_by("a")$len()

df$group_by("a")$len("n")

groupby__max 441

groupby__max Reduce the groups to the maximal value

Description

Reduce the groups to the maximal value

Usage

groupby__max()

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
df

df$group_by("grp")$max()

groupby__mean Return the mean per group

Description

Return the mean per group

Usage

groupby__mean()

Value

A polars DataFrame

442 groupby__min

Examples
df <- pl$DataFrame(

grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
df

df$group_by("grp")$mean()

groupby__median Return the median per group

Description

Return the median per group

Usage

groupby__median()

Value

A polars DataFrame

Examples
df <- pl$DataFrame(

grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
df

df$group_by("grp")$median()

groupby__min Reduce the groups to the minimal value

Description

Reduce the groups to the minimal value

Usage

groupby__min()

groupby__n_unique 443

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
df

df$group_by("grp")$min()

groupby__n_unique Count the unique values per group

Description

Count the unique values per group

Usage

groupby__n_unique()

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
df

df$group_by("grp")$n_unique()

444 groupby__sum

groupby__quantile Compute the quantile per group

Description

Compute the quantile per group

Usage

groupby__quantile(
quantile,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear", "equiprobable")

)

Arguments

quantile Quantile between 0.0 and 1.0.
interpolation Interpolation method.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
df

df$group_by("grp")$quantile(0.5)

groupby__sum Return the sum per group

Description

Return the sum per group

Usage

groupby__sum()

groupby__tail 445

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
df

df$group_by("grp")$sum()

groupby__tail Get the last n rows of each group

Description

Get the last n rows of each group

Usage

groupby__tail(n = 5)

Arguments

n Number of rows to return.

Value

A polars DataFrame

Examples

df <- pl$DataFrame(
letters = c("c", "c", "a", "c", "a", "b"),
nrs = 1:6

)
df

df$group_by("letters")$tail(2)$sort("letters")

446 infer_polars_dtype

infer_polars_dtype Infer Polars DataType corresponding to a given R object

Description

infer_polars_dtype() is a helper function used to quickly find the DataType correspond-
ing to an R object, in order words, it infers the type of the Polars Series that would be
constructed from the object. In many cases, this function simply performs something like
head(x, 0) |> as_polars_series(). It is much faster than actually constructing a Series
using the entire object. This function is similar to nanoarrow::infer_nanoarrow_schema().
is_convertible_to_polars_series() and is_convertible_to_polars_expr() are helper
functions that check if the object can be converted to a Series or Expr respectively. These
functions call infer_polars_dtype() internally and return TRUE if the type can be inferred
without error. (Or, that object is already a Polars Expr for is_convertible_to_polars_expr().)

Usage

infer_polars_dtype(x, ...)

is_convertible_to_polars_series(x, ...)

is_convertible_to_polars_expr(x, ...)

Default S3 method:
infer_polars_dtype(x, ...)

S3 method for class 'polars_series'
infer_polars_dtype(x, ...)

S3 method for class 'polars_data_frame'
infer_polars_dtype(x, ...)

S3 method for class 'polars_lazy_frame'
infer_polars_dtype(x, ...)

S3 method for class '`NULL`'
infer_polars_dtype(x, ...)

S3 method for class 'list'
infer_polars_dtype(x, ..., strict = FALSE, infer_dtype_length = 10L)

S3 method for class 'AsIs'
infer_polars_dtype(x, ...)

S3 method for class 'data.frame'
infer_polars_dtype(x, ...)

infer_polars_dtype 447

S3 method for class 'nanoarrow_array_stream'
infer_polars_dtype(x, ...)

S3 method for class 'nanoarrow_array'
infer_polars_dtype(x, ...)

S3 method for class 'RecordBatchReader'
infer_polars_dtype(x, ...)

S3 method for class 'ArrowTabular'
infer_polars_dtype(x, ...)

S3 method for class 'vctrs_vctr'
infer_polars_dtype(x, ...)

Arguments

x An R object.
... Additional arguments passed to the methods.
strict A logical value to indicate whether throwing an error when the input

list’s elements have different data types. If FALSE (default), all elements
are automatically cast to the super type, or, casting to the super type is
failed, the value will be null. If TRUE, the first non-NULL element’s data
type is used as the data type of the inner Series.

infer_dtype_length
The number of non-NULL elements to use for type inference. Must be a
single positive integer-ish value. The default is 10. If you want to infer
the type of the entire list, set this to Inf, but be aware that it may be
slow.

Details

S3 objects based on atomic vectors or classes built on the vctrs package will work accurately
if the S3 method of the as_polars_series() function is defined.

Value

A polars DataType

See Also

• as_polars_series()
• check_polars: Functions to check if the object is a polars object.

Examples
infer_polars_dtype(1:10)

The type inference is also fast for objects

448 knit_print.polars_data_frame

that would take a long time to construct a Series.
infer_polars_dtype(1:100000000)

For lists, it is not possible to infer the type
without inspecting all elements.
However, this function can be configured to inspect only a few elements
via the `infer_dtype_length` argument.
If a sufficient length is specified, the correct type can be inferred.
(By default, the length is set to 10.)
mixed_list <- list(1, NULL, "foo")
infer_polars_dtype(mixed_list)
infer_polars_dtype(mixed_list, infer_dtype_length = 2)

But if the length is too short, an incorrect type may be inferred.
infer_polars_dtype(mixed_list, infer_dtype_length = 1)

is_convertible_to_polars_* functions are useful for checking if
the object can be converted to a Series or Expr quickly.
try(infer_polars_dtype(1i))
is_convertible_to_polars_series(1i)
is_convertible_to_polars_expr(1i)

For polars Expr objects, infer_polars_dtype() will raise an error
because Expr can't be converted to a Series by `as_polars_series()`.
try(infer_polars_dtype(pl$lit(1)))
is_convertible_to_polars_series(pl$lit(1))
is_convertible_to_polars_expr(pl$lit(1))

knit_print.polars_data_frame
knit print polars DataFrame

Description

Mimics Python Polars’ NotebookFormatter for HTML outputs.

Usage

S3 method for class 'polars_data_frame'
knit_print(x, ...)

S3 method for class 'polars_series'
knit_print(x, ...)

Arguments

x A polars object
... Additional arguments passed to the S3 method. Currently ignored, except

two optional arguments options and inline; see the references below.

lazyframe__bottom_k 449

Details

Outputs HTML tables if the output format is HTML and the document’s df_print option
is not "default" or "tibble".
Or, the output format can be enforced with R’s options function as follows:

• options(polars.df_knitr_print = "default") for the default print method.
• options(polars.df_knitr_print = "html") for the HTML table.

Value

x invisibly or knit_asis object.

Examples

Using the default print method
withr::with_options(

list(polars.df_knitr_print = "default"),
knitr::knit_print(as_polars_df(mtcars))

)

Returning HTML table
withr::with_options(

list(polars.df_knitr_print = "html"),
knitr::knit_print(as_polars_df(mtcars))

)

lazyframe__bottom_k Return the k smallest rows

Description

Non-null elements are always preferred over null elements, regardless of the value of reverse.
The output is not guaranteed to be in any particular order, call sort() after this function
if you wish the output to be sorted.

Usage

lazyframe__bottom_k(k, ..., by, reverse = FALSE)

Arguments

k Number of rows to return.
... These dots are for future extensions and must be empty.
by Column(s) used to determine the bottom rows. Accepts expression input.

Strings are parsed as column names.
reverse Consider the k largest elements of the by column(s) (instead of the k

smallest). This can be specified per column by passing a sequence of
booleans.

450 lazyframe__cast

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
a = c("a", "b", "a", "b", "b", "c"),
b = c(2, 1, 1, 3, 2, 1)

)

Get the rows which contain the 4 smallest values in column b.
lf$bottom_k(4, by = "b")$collect()

Get the rows which contain the 4 smallest values when sorting on column a
and b$
lf$bottom_k(4, by = c("a", "b"))$collect()

lazyframe__cast Cast LazyFrame column(s) to the specified dtype(s)

Description

This allows to convert all columns to a datatype or to convert only specific columns. Con-
trarily to the Python implementation, it is not possible to convert all columns of a specific
datatype to another datatype.

Usage

lazyframe__cast(..., .strict = TRUE)

Arguments

... <dynamic-dots> Either a datatype to which all columns will be cast, or
a list where the names are column names and the values are the datatypes
to convert to.

.strict If TRUE (default), throw an error if a cast could not be done (for instance,
due to an overflow). Otherwise, return null.

Value

A LazyFrame

lazyframe__clear 451

Examples

lf <- pl$LazyFrame(
foo = 1:3,
bar = c(6, 7, 8),
ham = as.Date(c("2020-01-02", "2020-03-04", "2020-05-06"))

)

Cast only some columns
lf$cast(foo = pl$Float32, bar = pl$UInt8)$collect()

Cast all columns to the same type
lf$cast(pl$String)$collect()

lazyframe__clear Create an empty or n-row null-filled copy of the frame

Description

Returns a n-row null-filled frame with an identical schema. n can be greater than the
current number of rows in the frame.

Usage

lazyframe__clear(n = 0)

Arguments

n Number of (null-filled) rows to return in the cleared frame.

Value

A polars LazyFrame

Examples

df <- pl$LazyFrame(
a = c(NA, 2, 3, 4),
b = c(0.5, NA, 2.5, 13),
c = c(TRUE, TRUE, FALSE, NA)

)
df$clear()$collect()

df$clear(n = 2)$collect()

452 lazyframe__clone

lazyframe__clone Clone a LazyFrame

Description

This makes a very cheap deep copy/clone of an existing LazyFrame. Rarely useful as
LazyFrames are nearly 100% immutable. Any modification of a LazyFrame should lead to
a clone anyways, but this can be useful when dealing with attributes (see examples).

Usage

lazyframe__clone()

Value

A polars LazyFrame

Examples

df1 <- as_polars_lf(iris)

Make a function to take a LazyFrame, add an attribute, and return a LazyFrame
give_attr <- function(data) {

attr(data, "created_on") <- "2024-01-29"
data

}
df2 <- give_attr(df1)

Problem: the original LazyFrame also gets the attribute while it shouldn't!
attributes(df1)

Use $clone() inside the function to avoid that
give_attr <- function(data) {

data <- data$clone()
attr(data, "created_on") <- "2024-01-29"
data

}
df1 <- as_polars_lf(iris)
df2 <- give_attr(df1)

now, the original LazyFrame doesn't get this attribute
attributes(df1)

lazyframe__collect 453

lazyframe__collect Materialize this LazyFrame into a DataFrame

Description

By default, all query optimizations are enabled. Individual optimizations may be disabled
by setting the corresponding parameter to FALSE.

Usage

lazyframe__collect(
...,
engine = c("auto", "in-memory", "streaming"),
optimizations = pl$QueryOptFlags(),
type_coercion = deprecated(),
predicate_pushdown = deprecated(),
projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),
comm_subplan_elim = deprecated(),
comm_subexpr_elim = deprecated(),
cluster_with_columns = deprecated(),
collapse_joins = deprecated(),
no_optimization = deprecated()

)

Arguments

... These dots are for future extensions and must be empty.
engine The engine name to use for processing the query. One of the followings:

• "auto" (default): Select the engine automatically. The "in-memory"
engine will be selected for most cases.

• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

predicate_pushdown
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

454 lazyframe__collect

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

comm_subplan_elim
[Deprecated] Use the comm_subplan_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

comm_subexpr_elim
[Deprecated] Use the comm_subexpr_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

cluster_with_columns
[Deprecated] Use the cluster_with_columns property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

collapse_joins
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

no_optimization
[Deprecated] Use the optimizations argument with pl$QueryOptFlags()$no_optimizations()
instead.

Value

A polars DataFrame

See Also

• $profile() - same as $collect() but also returns a table with each operation profiled.
• $sink_parquet() streams query to a parquet file.
• $sink_ipc() streams query to a arrow file.

Examples

lf <- pl$LazyFrame(
a = c("a", "b", "a", "b", "b", "c"),
b = 1:6,
c = 6:1,

)
lf$group_by("a")$agg(pl$all()$sum())$collect()

Collect in streaming mode
lf$group_by("a")$agg(pl$all()$sum())$collect(

engine = "streaming"
)

lazyframe__collect_schema 455

lazyframe__collect_schema
Resolve the schema of this LazyFrame

Description

This resolves the query plan but does not trigger computations.

Usage

lazyframe__collect_schema()

Value

A named list with names indicating column names and values indicating column data types.

Examples

lf <- pl$LazyFrame(
foo = 1:3,
bar = 6:8,
ham = c("a", "b", "c")

)

lf$collect_schema()

lf$with_columns(
baz = (pl$col("foo") + pl$col("bar"))$cast(pl$String),
pl$col("bar")$cast(pl$Int64)

)$collect_schema()

lazyframe__count Return the number of non-null elements for each column

Description

Return the number of non-null elements for each column

Usage

lazyframe__count()

Value

A polars LazyFrame

456 lazyframe__describe

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, NA), c = rep(NA, 4))
lf$count()$collect()

lazyframe__describe Creates a summary of statistics for a LazyFrame, returning a
DataFrame.

Description

This method does not maintain the laziness of the frame, and will collect the final result.
This could potentially be an expensive operation.
We do not guarantee the output of describe() to be stable. It will show statistics that we
deem informative, and may be updated in the future. Using describe() programmatically
(versus interactive exploration) is not recommended for this reason.

Usage

lazyframe__describe(
percentiles = c(0.25, 0.5, 0.75),
...,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear", "equiprobable")

)

Arguments

percentiles One or more percentiles to include in the summary statistics. All values
must be in the range [0; 1].

... These dots are for future extensions and must be empty.
interpolation Interpolation method for computing quantiles. Must be one of "nearest",

"higher", "lower", "midpoint", or "linear".

Details

The median is included by default as the 50% percentile.

Value

A polars DataFrame

Examples
lf <- pl$LazyFrame(

int = 1:3,
float = c(0.5, NA, 2.5),
string = c(letters[1:2], NA),
date = c(as.Date("2024-01-20"), as.Date("2024-01-21"), NA),
cat = factor(c(letters[1:2], NA)),

lazyframe__drop 457

bool = c(TRUE, FALSE, NA)
)
lf$collect()

Show default frame statistics:
lf$describe()

Customize which percentiles are displayed, applying linear interpolation:
lf$describe(

percentiles = c(0.1, 0.3, 0.5, 0.7, 0.9),
interpolation = "linear"

)

lazyframe__drop Remove columns

Description

Remove columns

Usage

lazyframe__drop(..., strict = TRUE)

Arguments

... <dynamic-dots> Column names or selectors that should be removed.
strict Validate that all column names exist in the current schema, and throw

an exception if any do not.

Value

A polars LazyFrame

Examples
Drop columns by passing the name of those columns
lf <- pl$LazyFrame(

foo = 1:3,
bar = c(6, 7, 8),
ham = c("a", "b", "c")

)
lf$drop("ham")$collect()
lf$drop("ham", "bar")$collect()

Drop multiple columns by passing a selector
lf$drop(cs$all())$collect()

458 lazyframe__drop_nans

lazyframe__drop_nans Drop all rows that contain NaN values

Description

The original order of the remaining rows is preserved.

Usage

lazyframe__drop_nans(...)

Arguments

... <dynamic-dots> Column names or selectors for which are considered.
If empty (default), use all columns (same as specifying with the selector
cs$all()).

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
foo = c(1, NaN, 2.5),
bar = c(NaN, 110, 25.5),
ham = c("a", "b", NA)

)

The default behavior of this method is to drop rows where any single value
of the row is NaN.
lf$drop_nans()$collect()

This behaviour can be constrained to consider only a subset of columns, as
defined by name or with a selector. For example, dropping rows if there is
a null in the "bar" column:
lf$drop_nans("bar")$collect()

Dropping a row only if *all* values are NaN requires a different
formulation:
df <- pl$LazyFrame(

a = c(NaN, NaN, NaN, NaN),
b = c(10.0, 2.5, NaN, 5.25),
c = c(65.75, NaN, NaN, 10.5)

)
df$filter(!pl$all_horizontal(pl$all()$is_nan()))$collect()

lazyframe__drop_nulls 459

lazyframe__drop_nulls
Drop all rows that contain null values

Description

The original order of the remaining rows is preserved.

Usage

lazyframe__drop_nulls(...)

Arguments

... <dynamic-dots> Column names or selectors for which are considered.
If empty (default), use all columns (same as specifying with the selector
cs$all()).

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

foo = 1:3,
bar = c(6L, NA, 8L),
ham = c("a", "b", NA)

)

The default behavior of this method is to drop rows where any single value
of the row is null.
lf$drop_nulls()$collect()

This behaviour can be constrained to consider only a subset of columns, as
defined by name or with a selector. For example, dropping rows if there is
a null in any of the integer columns:
lf$drop_nulls(cs$integer())$collect()

lazyframe__explain Create a string representation of the query plan

Description

The query plan is read from bottom to top. When optimized = FALSE, the query as
it was written by the user is shown. This is not what Polars runs. Instead, it applies
optimizations that are displayed by default by $explain(). One classic example is the
predicate pushdown, which applies the filter as early as possible (i.e. at the bottom of the
plan).

460 lazyframe__explain

Usage

lazyframe__explain(
...,
format = c("plain", "tree"),
engine = c("auto", "in-memory", "streaming"),
optimized = TRUE,
optimizations = pl$QueryOptFlags(),
type_coercion = deprecated(),
predicate_pushdown = deprecated(),
projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),
comm_subplan_elim = deprecated(),
comm_subexpr_elim = deprecated(),
cluster_with_columns = deprecated(),
collapse_joins = deprecated()

)

Arguments

... These dots are for future extensions and must be empty.
format The format to use for displaying the logical plan. Must be either "plain"

(default) or "tree".
engine The engine name to use for processing the query. One of the followings:

• "auto" (default): Select the engine automatically. The "in-memory"
engine will be selected for most cases.

• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimized Return an optimized query plan. If TRUE (default), the subsequent opti-
mization flags control which optimizations run.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

predicate_pushdown
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

lazyframe__explode 461

comm_subplan_elim
[Deprecated] Use the comm_subplan_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

comm_subexpr_elim
[Deprecated] Use the comm_subexpr_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

cluster_with_columns
[Deprecated] Use the cluster_with_columns property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

collapse_joins
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

Value

A character value containing the query plan.

Examples

lazy_frame <- as_polars_lf(iris)

Prepare your query
lazy_query <- lazy_frame$sort("Species")$filter(pl$col("Species") != "setosa")

This is the query that was written by the user, without any optimizations
(use writeLines() for better printing)
lazy_query$explain(optimized = FALSE) |> writeLines()

This is the query after `polars` optimizes it: instead of sorting first and
then filtering, it is faster to filter first and then sort the rest.
lazy_query$explain() |> writeLines()

You can disable specific optimizations.
lazy_query$explain(

optimizations = pl$QueryOptFlags(predicate_pushdown = FALSE)
) |>

writeLines()

Also possible to see this as tree format
lazy_query$explain(format = "tree") |> writeLines()

lazyframe__explode Explode the frame to long format by exploding the given columns

Description

Explode the frame to long format by exploding the given columns

462 lazyframe__fill_nan

Usage

lazyframe__explode(..., empty_as_null = TRUE, keep_nulls = TRUE)

Arguments

... <dynamic-dots> Column names or selectors defining them. The under-
lying columns being exploded must be of the List or Array data type.

empty_as_null Indicates to explode an empty list/array into a null.
keep_nulls Indicates to explode a null list/array into a null.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

letters = c("a", "a", "b", "c"),
numbers = list(1, c(2, 3), c(4, 5), c(6, 7, 8))

)

lf$explode("numbers")$collect()

lazyframe__fill_nan Fill floating point NaN value with a fill value

Description

Fill floating point NaN value with a fill value

Usage

lazyframe__fill_nan(value)

Arguments

value Value used to fill NaN values.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

a = c(1.5, 2, NaN, 4),
b = c(1.5, NaN, NaN, 4)

)
lf$fill_nan(99)$collect()

lazyframe__fill_null 463

lazyframe__fill_null Fill null values using the specified value or strategy

Description

Fill null values using the specified value or strategy

Usage

lazyframe__fill_null(
value = NULL,
strategy = NULL,
limit = NULL,
...,
matches_supertype = TRUE

)

Arguments

value Value used to fill null values.
strategy Strategy used to fill null values. Must be one of: "forward", "backward",

"min", "max", "mean", "zero", "one", or NULL (default).
limit Number of consecutive null values to fill when using the "forward" or

"backward" strategy.
... These dots are for future extensions and must be empty.
matches_supertype

Fill all matching supertypes of the fill value literal.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
a = c(1.5, 2, NA, 4),
b = c(1.5, NA, NA, 4)

)
lf$fill_null(99)$collect()

lf$fill_null(strategy = "forward")$collect()

lf$fill_null(strategy = "max")$collect()

lf$fill_null(strategy = "zero")$collect()

464 lazyframe__filter

lazyframe__filter Filter the rows in the LazyFrame based on a predicate expression

Description

The original order of the remaining rows is preserved. Rows where the filter does not
evaluate to TRUE are discarded, including nulls.

Usage

lazyframe__filter(...)

Arguments

... <dynamic-dots> Expression that evaluates to a boolean Series.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
foo = c(1, 2, 3, NA, 4, NA, 0),
bar = c(6, 7, 8, NA, NA, 9, 0),
ham = c("a", "b", "c", NA, "d", "e", "f")

)

Filter on one condition
lf$filter(pl$col("foo") > 1)$collect()

Filter on multiple conditions
lf$filter((pl$col("foo") < 3) & (pl$col("ham") == "a"))$collect()

Filter on an OR condition
lf$filter((pl$col("foo") == 1) | (pl$col("ham") == " c"))$collect()

Filter by comparing two columns against each other
lf$filter(pl$col("foo") == pl$col("bar"))$collect()
lf$filter(pl$col("foo") != pl$col("bar"))$collect()

Notice how the row with null values is filtered out$ In order to keep the
rows with nulls, use:
lf$filter(pl$col("foo")$ne_missing(pl$col("bar")))$collect()

lazyframe__first 465

lazyframe__first Get the first row of the LazyFrame

Description

Get the first row of the LazyFrame

Usage

lazyframe__first()

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$first()$collect()

lazyframe__gather_every
Take every nth row in the LazyFrame

Description

Take every nth row in the LazyFrame

Usage

lazyframe__gather_every(n, offset = 0)

Arguments

n Gather every n-th row.
offset Starting index.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = 5:8)
lf$gather_every(2)$collect()

lf$gather_every(2, offset = 1)$collect()

466 lazyframe__group_by

lazyframe__group_by Start a group by operation

Description

Start a group by operation

Usage

lazyframe__group_by(..., .maintain_order = FALSE)

Arguments

... <dynamic-dots> Column(s) to group by. Accepts expression input.
Strings are parsed as column names.

.maintain_order
Ensure that the order of the groups is consistent with the input data.
This is slower than a default group by. Setting this to TRUE blocks the
possibility to run on the streaming engine.

Value

A lazy groupby

Examples

Group by one column and call agg() to compute the grouped sum of another
column.
lf <- pl$LazyFrame(

a = c("a", "b", "a", "b", "c"),
b = c(1, 2, 1, 3, 3),
c = c(5, 4, 3, 2, 1)

)
lf$group_by("a")$agg(pl$col("b")$sum())$collect()

Set .maintain_order = TRUE to ensure the order of the groups is consistent
with the input.
lf$group_by("a", .maintain_order = TRUE)$agg(pl$col("b")$sum())$collect()

Group by multiple columns by passing a vector of column names.
lf$group_by(c("a", "b"))$agg(pl$col("c")$max())$collect()

Or use positional arguments to group by multiple columns in the same way.
Expressions are also accepted.
lf$

group_by("a", pl$col("b") / 2)$
agg(pl$col("c")$mean())$collect()

lazyframe__group_by_dynamic 467

lazyframe__group_by_dynamic
Group based on a date/time or integer column

Description

Time windows are calculated and rows are assigned to windows. Different from a normal
group by is that a row can be member of multiple groups. By default, the windows look
like:

• [start, start + period)
• [start + every, start + every + period)
• [start + 2 * every, start + 2 * every + period)
• …

where start is determined by start_by, offset, every, and the earliest datapoint. See
the start_by argument description for details.

Usage

lazyframe__group_by_dynamic(
index_column,
...,
every,
period = NULL,
offset = NULL,
include_boundaries = FALSE,
closed = c("left", "right", "both", "none"),
label = c("left", "right", "datapoint"),
group_by = NULL,
start_by = "window"

)

Arguments

index_column Column used to group based on the time window. Often of type Date/Datetime.
This column must be sorted in ascending order (or, if group_by is speci-
fied, then it must be sorted in ascending order within each group). In case
of a dynamic group by on indices, the data type needs to be either Int32
or In64. Note that Int32 gets temporarily cast to Int64, so if performance
matters, use an Int64 column.

... These dots are for future extensions and must be empty.
every Interval of the window.
period Length of the window. If NULL (default), it will equal every.
offset Offset of the window, does not take effect if start_by = "datapoint".

Defaults to zero.

468 lazyframe__group_by_dynamic

include_boundaries
Add two columns "_lower_boundary" and "_upper_boundary" columns
that show the boundaries of the window. This will impact performance
because it’s harder to parallelize.

closed Define which sides of the interval are closed (inclusive). Default is "left".
label Define which label to use for the window:

• "left": lower boundary of the window
• "right": upper boundary of the window
• "datapoint": the first value of the index column in the given window.

If you don’t need the label to be at one of the boundaries, choose this
option for maximum performance.

group_by Also group by this column/these columns. Can be expressions or objects
coercible to expressions.

start_by The strategy to determine the start of the first window by:
• "window": start by taking the earliest timestamp, truncating it with

every, and then adding offset. Note that weekly windows start on
Monday.

• "datapoint": start from the first encountered data point.
• a day of the week (only takes effect if every contains "w"): "monday"

starts the window on the Monday before the first data point, etc.

Details

The every, period, and offset arguments are created with the following string language:

• 1ns # 1 nanosecond
• 1us # 1 microsecond
• 1ms # 1 millisecond
• 1s # 1 second
• 1m # 1 minute
• 1h # 1 hour
• 1d # 1 day
• 1w # 1 calendar week
• 1mo # 1 calendar month
• 1y # 1 calendar year These strings can be combined:

– 3d12h4m25s # 3 days, 12 hours, 4 minutes, and 25 seconds

In case of a group_by_dynamic on an integer column, the windows are defined by:

• 1i # length 1
• 10i # length 10

Value

An object of class polars_lazy_group_by

lazyframe__group_by_dynamic 469

See Also

• <LazyFrame>$rolling()

Examples

lf <- pl$select(
time = pl$datetime_range(
start = strptime("2021-12-16 00:00:00", format = "%Y-%m-%d %H:%M:%S", tz = "UTC"),
end = strptime("2021-12-16 03:00:00", format = "%Y-%m-%d %H:%M:%S", tz = "UTC"),
interval = "30m"

),
n = 0:6

)$lazy()
lf$collect()

Group by windows of 1 hour.
lf$group_by_dynamic("time", every = "1h", closed = "right")$agg(

vals = pl$col("n")
)$collect()

The window boundaries can also be added to the aggregation result
lf$group_by_dynamic(

"time",
every = "1h", include_boundaries = TRUE, closed = "right"

)$agg(
pl$col("n")$mean()

)$collect()

When closed = "left", the window excludes the right end of interval:
[lower_bound, upper_bound)
lf$group_by_dynamic("time", every = "1h", closed = "left")$agg(

pl$col("n")
)$collect()

When closed = "both" the time values at the window boundaries belong to 2
groups.
lf$group_by_dynamic("time", every = "1h", closed = "both")$agg(

pl$col("n")
)$collect()

Dynamic group bys can also be combined with grouping on normal keys
lf <- lf$with_columns(

groups = as_polars_series(c("a", "a", "a", "b", "b", "a", "a"))
)
lf$collect()

lf$group_by_dynamic(
"time",
every = "1h",
closed = "both",
group_by = "groups",
include_boundaries = TRUE

470 lazyframe__head

)$agg(pl$col("n"))$collect()

We can also create a dynamic group by based on an index column
lf <- pl$LazyFrame(

idx = 0:5,
A = c("A", "A", "B", "B", "B", "C")

)$with_columns(pl$col("idx")$set_sorted())
lf$collect()

lf$group_by_dynamic(
"idx",
every = "2i",
period = "3i",
include_boundaries = TRUE,
closed = "right"

)$agg(A_agg_list = pl$col("A"))$collect()

lazyframe__head Get the first n rows

Description
$limit() is an alias for $head().

Usage

lazyframe__head(n = 5)

lazyframe__limit(n = 5)

Arguments

n Number of rows to return.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(a = 1:6, b = 7:12)
lf$head()$collect()
lf$head(2)$collect()

lazyframe__interpolate 471

lazyframe__interpolate
Interpolate intermediate values

Description

The interpolation method is linear.

Usage

lazyframe__interpolate()

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

foo = c(1, NA, 9, 10),
bar = c(6, 7, 9, NA),
ham = c(1, NA, NA, 9)

)

lf$interpolate()$collect()

lazyframe__join Join LazyFrames

Description

This function can do both mutating joins (adding columns based on matching observations,
for example with how = "left") and filtering joins (keeping observations based on matching
observations, for example with how = "inner").

Usage

lazyframe__join(
other,
on = NULL,
how = c("inner", "full", "left", "right", "semi", "anti", "cross"),
...,
left_on = NULL,
right_on = NULL,
suffix = "_right",
validate = c("m:m", "1:m", "m:1", "1:1"),
nulls_equal = FALSE,

472 lazyframe__join

coalesce = NULL,
maintain_order = c("none", "left", "right", "left_right", "right_left"),
allow_parallel = TRUE,
force_parallel = FALSE

)

Arguments

other LazyFrame to join with.
on Either a vector of column names or a list of expressions and/or strings.

Use left_on and right_on if the column names to match on are different
between the two LazyFrames.

how One of the following methods:
• ”inner”: returns rows that have matching values in both tables
• ”left”: returns all rows from the left table, and the matched rows

from the right table
• ”right”: returns all rows from the right table, and the matched rows

from the left table
• ”full”: returns all rows when there is a match in either left or right

table
• ”cross”: returns the Cartesian product of rows from both tables
• ”semi”: returns rows from the left table that have a match in the

right table.
• ”anti”: returns rows from the left table that have no match in the

right table.
... These dots are for future extensions and must be empty.
left_on, right_on

Same as on but only for the left or the right DataFrame. They must have
the same length.

suffix Suffix to add to duplicated column names.
validate Checks if join is of specified type:

• "m:m" (default): many-to-many, doesn’t perform any checks;
• "1:1": one-to-one, check if join keys are unique in both left and right

datasets;
• "1:m": one-to-many, check if join keys are unique in left dataset
• "m:1": many-to-one, check if join keys are unique in right dataset

Note that this is currently not supported by the streaming engine.
nulls_equal Join on null values. By default null values will never produce matches.
coalesce Coalescing behavior (merging of join columns).

• NULL: join specific.
• TRUE: Always coalesce join columns.
• FALSE: Never coalesce join columns. Note that joining on any other

expressions than col will turn off coalescing.

lazyframe__join 473

maintain_order
Which frame row order to preserve, if any. Do not rely on any observed
ordering without explicitly setting this parameter, as your code may break
in a future release. Not specifying any ordering can improve performance.

• "none": No specific ordering is desired. The ordering might differ
across Polars versions or even between different runs.

• "left": Preserves the order of the left frame.
• "right": Preserves the order of the right frame.
• "left_right": First preserves the order of the left frame, then the

right.
• "right_left": First preserves the order of the right frame, then the

left.
allow_parallel

Allow the physical plan to optionally evaluate the computation of both
LazyFrames up to the join in parallel.

force_parallel
Force the physical plan to evaluate the computation of both LazyFrames
up to the join in parallel.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
foo = 1:3,
bar = c(6, 7, 8),
ham = c("a", "b", "c")

)
other_lf <- pl$LazyFrame(

apple = c("x", "y", "z"),
ham = c("a", "b", "d")

)
lf$join(other_lf, on = "ham")$collect()

lf$join(other_lf, on = "ham", how = "full")$collect()

lf$join(other_lf, on = "ham", how = "left", coalesce = TRUE)$collect()

lf$join(other_lf, on = "ham", how = "semi")$collect()

lf$join(other_lf, on = "ham", how = "anti")$collect()

474 lazyframe__join_asof

lazyframe__join_asof Perform joins on nearest keys

Description

This is similar to a left-join except that we match on nearest key rather than equal keys.
Both frames must be sorted by the asof_join key.

Usage

lazyframe__join_asof(
other,
...,
left_on = NULL,
right_on = NULL,
on = NULL,
by_left = NULL,
by_right = NULL,
by = NULL,
strategy = c("backward", "forward", "nearest"),
suffix = "_right",
tolerance = NULL,
allow_parallel = TRUE,
force_parallel = FALSE,
coalesce = TRUE,
allow_exact_matches = TRUE,
check_sortedness = TRUE

)

Arguments

other LazyFrame to join with.
... These dots are for future extensions and must be empty.
left_on, right_on

Same as on but only for the left or the right DataFrame. They must have
the same length.

on Either a vector of column names or a list of expressions and/or strings.
Use left_on and right_on if the column names to match on are different
between the two LazyFrames.

by_left, by_right
Same as by but only for the left or the right table. They must have the
same length.

by Join on these columns before performing asof join. Either a vector of
column names or a list of expressions and/or strings. Use left_by and
right_by if the column names to match on are different between the two
tables.

lazyframe__join_asof 475

strategy Strategy for where to find match:
• "backward" (default): search for the last row in the right table whose

on key is less than or equal to the left key.
• "forward": search for the first row in the right table whose on key

is greater than or equal to the left key.
• "nearest": search for the last row in the right table whose value is

nearest to the left key. String keys are not currently supported for a
nearest search.

suffix Suffix to add to duplicated column names.
tolerance Numeric tolerance. By setting this the join will only be done if the near

keys are within this distance. If an asof join is done on columns of dtype
”Date”, ”Datetime”, ”Duration” or ”Time”, use the Polars duration string
language (see details).

allow_parallel
Allow the physical plan to optionally evaluate the computation of both
LazyFrames up to the join in parallel.

force_parallel
Force the physical plan to evaluate the computation of both LazyFrames
up to the join in parallel.

coalesce Coalescing behavior (merging of on / left_on / right_on columns):
• TRUE: Always coalesce join columns;
• FALSE: Never coalesce join columns. Note that joining on any other

expressions than col will turn off coalescing.
allow_exact_matches

Whether exact matches are valid join predicates. If TRUE (default), allow
matching with the same on value (i.e. less-than-or-equal-to / greater-
than-or-equal-to). Otherwise, don’t match the same on value (i.e., strictly
less-than / strictly greater-than).

check_sortedness
Check the sortedness of the asof keys. If the keys are not sorted, polars
will error, or raise a warning if the by argument is provided. This might
become a hard error in the future.

Value

A polars LazyFrame

Polars duration string language

Polars duration string language is a simple representation of durations. It is used in many
Polars functions that accept durations.
It has the following format:

• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)

476 lazyframe__join_asof

• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.

Examples
gdp <- pl$LazyFrame(

date = as.Date(c("2016-1-1", "2017-5-1", "2018-1-1", "2019-1-1", "2020-1-1")),
gdp = c(4164, 4411, 4566, 4696, 4827)

)

pop <- pl$LazyFrame(
date = as.Date(c("2016-3-1", "2018-8-1", "2019-1-1")),
population = c(82.19, 82.66, 83.12)

)

optional make sure tables are already sorted with "on" join-key
gdp <- gdp$sort("date")
pop <- pop$sort("date")

Note how the dates don’t quite match. If we join them using join_asof and
strategy = 'backward', then each date from population which doesn’t have
an exact match is matched with the closest earlier date from gdp:
pop$join_asof(gdp, on = "date", strategy = "backward")$collect()

Note how:
- date 2016-03-01 from population is matched with 2016-01-01 from gdp;
- date 2018-08-01 from population is matched with 2018-01-01 from gdp.
You can verify this by passing coalesce = FALSE:
pop$join_asof(

gdp,
on = "date", strategy = "backward", coalesce = FALSE

)$collect()

If we instead use strategy = 'forward', then each date from population
which doesn’t have an exact match is matched with the closest later date
from gdp:
pop$join_asof(gdp, on = "date", strategy = "forward")$collect()

lazyframe__join_where 477

Note how:
- date 2016-03-01 from population is matched with 2017-01-01 from gdp;
- date 2018-08-01 from population is matched with 2019-01-01 from gdp.

Finally, strategy = 'nearest' gives us a mix of the two results above, as
each date from population which doesn’t have an exact match is matched
with the closest date from gdp, regardless of whether it’s earlier or
later:
pop$join_asof(gdp, on = "date", strategy = "nearest")$collect()

Note how:
- date 2016-03-01 from population is matched with 2016-01-01 from gdp;
- date 2018-08-01 from population is matched with 2019-01-01 from gdp.

The `by` argument allows joining on another column first, before the asof
join. In this example we join by country first, then asof join by date, as
above.
gdp2 <- pl$LazyFrame(

country = rep(c("Germany", "Netherlands"), each = 5),
date = rep(
as.Date(c("2016-1-1", "2017-1-1", "2018-1-1", "2019-1-1", "2020-1-1")),
2

),
gdp = c(4164, 4411, 4566, 4696, 4827, 784, 833, 914, 910, 909)

)$sort("country", "date")
gdp2$collect()

pop2 <- pl$LazyFrame(
country = rep(c("Germany", "Netherlands"), each = 3),
date = rep(as.Date(c("2016-3-1", "2018-8-1", "2019-1-1")), 2),
population = c(82.19, 82.66, 83.12, 17.11, 17.32, 17.40)

)$sort("country", "date")
pop2$collect()

pop2$join_asof(
gdp2,
by = "country", on = "date", strategy = "nearest"

)$collect()

lazyframe__join_where
Perform a join based on one or multiple (in)equality predicates

Description

[Experimental]
This performs an inner join, so only rows where all predicates are true are included in the
result, and a row from either LazyFrame may be included multiple times in the result.
Note that the row order of the input LazyFrames is not preserved.

478 lazyframe__last

Usage

lazyframe__join_where(other, ..., suffix = "_right")

Arguments

other LazyFrame to join with.
... <dynamic-dots> (In)Equality condition to join the two tables on. When

a column name occurs in both tables, the proper suffix must be applied
in the predicate. For example, if both tables have a column "x" that you
want to use in the conditions, you must refer to the column of the right
table as "x<suffix>".

suffix Suffix to append to columns with a duplicate name.

Value

A polars LazyFrame

Examples
east <- pl$LazyFrame(

id = c(100, 101, 102),
dur = c(120, 140, 160),
rev = c(12, 14, 16),
cores = c(2, 8, 4)

)

west <- pl$LazyFrame(
t_id = c(404, 498, 676, 742),
time = c(90, 130, 150, 170),
cost = c(9, 13, 15, 16),
cores = c(4, 2, 1, 4)

)

east$join_where(
west,
pl$col("dur") < pl$col("time"),
pl$col("rev") < pl$col("cost")

)$collect()

lazyframe__last Get the last row of the LazyFrame

Description

Get the last row of the LazyFrame

Usage

lazyframe__last()

lazyframe__max 479

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$last()$collect()

lazyframe__max Aggregate the columns in the LazyFrame to their maximum value

Description

Aggregate the columns in the LazyFrame to their maximum value

Usage

lazyframe__max()

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$max()$collect()

lazyframe__mean Aggregate the columns in the LazyFrame to their mean value

Description

Aggregate the columns in the LazyFrame to their mean value

Usage

lazyframe__mean()

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$mean()$collect()

480 lazyframe__merge_sorted

lazyframe__median Aggregate the columns in the LazyFrame to their median value

Description

Aggregate the columns in the LazyFrame to their median value

Usage

lazyframe__median()

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$median()$collect()

lazyframe__merge_sorted
Take two sorted LazyFrames and merge them by the sorted key

Description

The output of this operation will also be sorted. It is the callers responsibility that the
frames are sorted by that key, otherwise the output will not make sense. The schemas of
both LazyFrames must be equal.

Usage

lazyframe__merge_sorted(other, key)

Arguments

other Other LazyFrame that must be merged.
key Key that is sorted.

Value

A polars LazyFrame

lazyframe__min 481

Examples
lf1 <- pl$LazyFrame(

name = c("steve", "elise", "bob"),
age = c(42, 44, 18)

)$sort("age")

lf2 <- pl$LazyFrame(
name = c("anna", "megan", "steve", "thomas"),
age = c(21, 33, 42, 20)

)$sort("age")

lf1$merge_sorted(lf2, key = "age")$collect()

lazyframe__min Aggregate the columns in the LazyFrame to their minimum value

Description

Aggregate the columns in the LazyFrame to their minimum value

Usage

lazyframe__min()

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$min()$collect()

lazyframe__null_count
Return the number of null elements for each column

Description

Return the number of null elements for each column

Usage

lazyframe__null_count()

Value

A polars LazyFrame

482 lazyframe__pivot

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, NA), c = rep(NA, 4))
lf$null_count()$collect()

lazyframe__pivot Pivot a frame from long to wide format

Description

Reshape data from long to wide format, known as ”pivot wider”.
Unlike for DataFrame, the values contained in the columns must be specified beforehand
using on_columns.

Usage

lazyframe__pivot(
on,
on_columns,
...,
index = NULL,
values = NULL,
aggregate_function = NULL,
maintain_order = FALSE,
separator = "_"

)

Arguments

on The column(s) whose values will be used as the new columns of the output.
on_columns What value combinations will be considered for the output table. Some-

thing can be converted to a DataFrame by as_polars_series(on_columns)
|> as_polars_df(). If on contains multiple columns, the DataFrame
passed to on_columns must have exactly the same columns in the same
order as on. See examples for details.

... These dots are for future extensions and must be empty.
index The column(s) that remain from the input to the output. The output

will have one row for each unique combination of the index’s values. If
NULL, all remaining columns not specified in on and values will be used.
At least one of index and values must be specified.

values The existing column(s) of values which will be moved under the new
columns from index. If an aggregation is specified, these are the values on
which the aggregation will be computed. If NULL, all remaining columns
not specified in on and index will be used. At least one of index and
values must be specified.

aggregate_function
Choose from:

lazyframe__pivot 483

• NULL (default): no aggregation takes place, will raise error if multiple
values are in group. Same as pl$element()$item(allow_empty =
TRUE).

• A predefined aggregate function string, one of "min", "max", "first",
"last", "sum", "mean", "median", "len", "item". Same as pl$element()$<function>().

• An expression to do the aggregation.
maintain_order

Ensure the values of index are sorted by discovery order.
separator Used as separator/delimiter in generated column names in case of multiple

values columns.

Value

A polars LazyFrame

Examples

df <- pl$DataFrame(
name = c("Cady", "Cady", "Karen", "Karen"),
subject = c("maths", "physics", "maths", "physics"),
test_1 = c(98, 99, 61, 58),
test_2 = c(100, 100, 60, 60),

)
df

Using `pivot`, we can reshape so we have one row per student, with different
subjects as columns, and their `test_1` scores as values:
df$lazy()$pivot(

"subject",
on_columns = c("maths", "physics"),
index = "name",
values = "test_1",

)$collect()

You can use selectors too - here we include all test scores in the pivoted table:
df$lazy()$pivot(

"subject",
on_columns = c("maths", "physics"),
values = cs$starts_with("test"),

)$collect()

If you end up with multiple values per cell, you can specify how to aggregate
them with `aggregate_function`:
lf <- pl$LazyFrame(

ix = c(1, 1, 2, 2, 1, 2),
col = c("a", "a", "a", "a", "b", "b"),
foo = c(0, 1, 2, 2, 7, 1),
bar = c(0, 2, 0, 0, 9, 4),

)
lf$pivot(

484 lazyframe__profile

"col", on_columns = c("a", "b"), index = "ix", aggregate_function = "sum"
)$collect()

You can also pass a custom aggregation function using `pl$element()` expressions:
lf <- pl$LazyFrame(

col1 = c("a", "a", "a", "b", "b", "b"),
col2 = c("x", "x", "x", "x", "y", "y"),
col3 = c(6, 7, 3, 2, 5, 7),

)
lf$pivot(

"col2",
on_columns = c("x", "y"),
index = "col1",
values = "col3",
aggregate_function = pl$element()$tanh()$mean(),

)$collect()

Note that `on_columns` must contain all combinations of the values in `on`.
For example, you can use the `expand.grid()` function to create all combinations
of multiple columns as follows:
as_polars_lf(datasets::penguins)$pivot(

on = c("species", "sex"),
on_columns = expand.grid(
species = c("Adelie", "Gentoo", "Chinstrap"),
sex = c("male", "female")

),
index = "island",
values = "body_mass",
aggregate_function = "mean",

)$collect()

lazyframe__profile Collect and profile a lazy query

Description

This will run the query and return a list containing the materialized DataFrame and a
DataFrame that contains profiling information of each node that is executed.

Usage

lazyframe__profile(
...,
show_plot = FALSE,
truncate_nodes = 0,
engine = c("auto", "in-memory", "streaming"),
optimizations = pl$QueryOptFlags(),
type_coercion = deprecated(),
predicate_pushdown = deprecated(),

lazyframe__profile 485

projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),
comm_subplan_elim = deprecated(),
comm_subexpr_elim = deprecated(),
cluster_with_columns = deprecated(),
collapse_joins = deprecated(),
no_optimization = deprecated()

)

Arguments

... These dots are for future extensions and must be empty.
show_plot Show a Gantt chart of the profiling result
truncate_nodes

Truncate the label lengths in the Gantt chart to this number of characters.
If 0 (default), do not truncate.

engine The engine name to use for processing the query. One of the followings:
• "auto" (default): Select the engine automatically. The "in-memory"

engine will be selected for most cases.
• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

predicate_pushdown
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

comm_subplan_elim
[Deprecated] Use the comm_subplan_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

comm_subexpr_elim
[Deprecated] Use the comm_subexpr_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

cluster_with_columns
[Deprecated] Use the cluster_with_columns property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

486 lazyframe__quantile

collapse_joins
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

no_optimization
[Deprecated] Use the optimizations argument with pl$QueryOptFlags()$no_optimizations()
instead.

Details

The units of the timings are microseconds.

Value

List of two DataFrames: one with the collected result, the other with the timings of each
step. If show_plot = TRUE, then the plot is also stored in the list.

See Also

• $collect() - regular collect.
• $sink_parquet() streams query to a parquet file.
• $sink_ipc() streams query to a arrow file.

Examples

lf <- pl$LazyFrame(
a = c("a", "b", "a", "b", "b", "c"),
b = 1:6,
c = 6:1,

)

lf$group_by("a", .maintain_order = TRUE)$agg(
pl$all()$sum()

)$sort("a")$profile()

lazyframe__quantile Aggregate the columns to a unique quantile value

Description

Aggregate the columns to a unique quantile value

Usage

lazyframe__quantile(
quantile,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear", "equiprobable")

)

lazyframe__remove 487

Arguments

quantile Quantile between 0.0 and 1.0.
interpolation Interpolation method.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$quantile(0.7)$collect()

lazyframe__remove Remove rows, dropping those that match the given predicate ex-
pression(s)

Description

The original order of the remaining rows is preserved. Rows where the filter does not
evaluate to TRUE are retained (this includes rows where the predicate evaluates as null).

Usage

lazyframe__remove(...)

Arguments

... <dynamic-dots> Expression that evaluates to a boolean Series.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

ccy = c("USD", "EUR", "USD", "JPY"),
year = c(2021, 2022, 2023, 2023),
total = c(3245, NA, -6680, 25000),

)

Remove rows matching a condition. Note that the row where `total` is null
is kept:
lf$remove(pl$col("total") >= 0)$collect()

Note that this is *not* the same as simply inverting the condition in
`$filter()` because `$filter()` doesn't keep predicates that evaluate to
null:

488 lazyframe__rename

lf$filter(pl$col("total") < 0)$collect()

We can use multiple conditions, combined with and/or operators:
lf$remove((pl$col("total") >= 0) & (pl$col("ccy") == "USD"))$collect()

lf$remove((pl$col("total") >= 0) | (pl$col("ccy") == "USD"))$collect()

lazyframe__rename Rename column names

Description

Rename column names

Usage

lazyframe__rename(..., .strict = TRUE)

Arguments

... <dynamic-dots> Either a function that takes a character vector as input
and returns a character vector as output, or named values where names
are old column names and values are the new ones.

.strict Validate that all column names exist in the current schema, and throw
an error if any do not. (Note that this parameter is a no-op when passing
a function to ...).

Details

If existing names are swapped (e.g. ’A’ points to ’B’ and ’B’ points to ’A’), polars will
block projection and predicate pushdowns at this node.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
foo = 1:3,
bar = 6:8,
ham = letters[1:3]

)

lf$rename(foo = "apple")$collect()

lazyframe__reverse 489

lazyframe__reverse Reverse the LazyFrame

Description

Reverse the LazyFrame

Usage

lazyframe__reverse()

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(key = c("a", "b", "c"), val = 1:3)
lf$reverse()$collect()

lazyframe__rolling Create rolling groups based on a date/time or integer column

Description

Different from group_by_dynamic(), the windows are now determined by the individual
values and are not of constant intervals. For constant intervals use group_by_dynamic().
If you have a time series <t_0, t_1, ..., t_n>, then by default the windows created will
be:

• (t_0 - period, t_0]
• (t_1 - period, t_1]

• …
• (t_n - period, t_n]

whereas if you pass a non-default offset, then the windows will be:

• (t_0 + offset, t_0 + offset + period]
• (t_1 + offset, t_1 + offset + period]

• …
• (t_n + offset, t_n + offset + period]

490 lazyframe__rolling

Usage

lazyframe__rolling(
index_column,
...,
period,
offset = NULL,
closed = c("right", "left", "both", "none"),
group_by = NULL

)

Arguments

index_column Column used to group based on the time window. Often of type Date/Datetime.
This column must be sorted in ascending order (or, if group_by is speci-
fied, then it must be sorted in ascending order within each group). In case
of a dynamic group by on indices, the data type needs to be either Int32
or In64. Note that Int32 gets temporarily cast to Int64, so if performance
matters, use an Int64 column.

... These dots are for future extensions and must be empty.
period Length of the window - must be non-negative.
offset Offset of the window. Default is -period.
closed Define which sides of the interval are closed (inclusive). Default is "left".
group_by Also group by this column/these columns. Can be expressions or objects

coercible to expressions.

Details

If you want to compute multiple aggregation statistics over the same dynamic window,
consider using $rolling() - this method can cache the window size computation.

Value

An object of class polars_lazy_group_by

See Also

• <LazyFrame>$group_by_dynamic()

Examples
dates <- c(

"2020-01-01 13:45:48",
"2020-01-01 16:42:13",
"2020-01-01 16:45:09",
"2020-01-02 18:12:48",
"2020-01-03 19:45:32",
"2020-01-08 23:16:43"

)

lazyframe__select 491

df <- pl$LazyFrame(dt = dates, a = c(3, 7, 5, 9, 2, 1))$with_columns(
pl$col("dt")$str$strptime(pl$Datetime())

)

df$rolling(index_column = "dt", period = "2d")$agg(
sum_a = pl$col("a")$sum(),
min_a = pl$col("a")$min(),
max_a = pl$col("a")$max()

)$collect()

lazyframe__select Select and modify columns of a LazyFrame

Description

Select and perform operations on a subset of columns only. This discards unmentioned
columns (like .() in data.table and contrarily to dplyr::mutate()).
One cannot use new variables in subsequent expressions in the same $select() call. For
instance, if you create a variable x, you will only be able to use it in another $select() or
$with_columns() call.

Usage

lazyframe__select(...)

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

Value

A polars LazyFrame

Examples
Pass the name of a column to select that column.
lf <- pl$LazyFrame(

foo = 1:3,
bar = 6:8,
ham = letters[1:3]

)
lf$select("foo")$collect()

Multiple columns can be selected by passing a list of column names.
lf$select("foo", "bar")$collect()

492 lazyframe__select_seq

Expressions are also accepted.
lf$select(pl$col("foo"), pl$col("bar") + 1)$collect()

Name expression (used as the column name of the output DataFrame)
lf$select(

threshold = pl$when(pl$col("foo") > 2)$then(10)$otherwise(0)
)$collect()

lazyframe__select_seq
Select columns from this LazyFrame

Description

This will run all expression sequentially instead of in parallel. Use this when the work per
expression is cheap.

Usage

lazyframe__select_seq(...)

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
foo = 1:3,
bar = 6:8,
ham = letters[1:3]

)
lf$select_seq("foo", bar2 = pl$col("bar") * 2)$collect()

lazyframe__serialize 493

lazyframe__serialize Serialize the logical plan of this LazyFrame

Description

Serialize the logical plan of this LazyFrame

Usage

lazyframe__serialize(..., format = c("binary", "json"))

pl__deserialize_lf(data)

Arguments

... These dots are for future extensions and must be empty.

format A character of the format in which to serialize. One of:

• "binary" (default): Serialize to binary format (raw vector).
• "json": [Deprecated] Serialize to JSON format (character vector).

data A raw vector of serialized LazyFrame.

Value

• <lazyframe>$serialize() returns raw or character, depending on the format argu-
ment.

• pl$deserialize_lf() returns a deserialized LazyFrame.

Examples

lf <- pl$LazyFrame(a = 1:3)$sum()

Serialize the logical plan to a binary representation.
serialized <- lf$serialize()
serialized

The bytes can later be deserialized back into a LazyFrame.
pl$deserialize_lf(serialized)$collect()

494 lazyframe__shift

lazyframe__set_sorted
Indicate that one or multiple columns are sorted

Description

This can speed up future operations, but it can lead to incorrect results if the data is not
sorted! Use with care!

Usage

lazyframe__set_sorted(column, ..., descending = FALSE)

Arguments

column Column that is sorted.
... These dots are for future extensions and must be empty.
descending Whether the columns are sorted in descending order.

Value

A polars LazyFrame

lazyframe__shift Shift values by the given number of indices

Description

Shift values by the given number of indices

Usage

lazyframe__shift(n = 1, ..., fill_value = NULL)

Arguments

n Number of indices to shift forward. If a negative value is passed, values
are shifted in the opposite direction instead.

... These dots are for future extensions and must be empty.
fill_value Fill the resulting null values with this value. Accepts expression input.

Non-expression inputs are parsed as literals.

Value

A polars LazyFrame

lazyframe__sink_batches 495

Examples
lf <- pl$LazyFrame(a = 1:4, b = 5:8)

By default, values are shifted forward by one index.
lf$shift()$collect()

Pass a negative value to shift in the opposite direction instead.
lf$shift(-2)$collect()

Specify fill_value to fill the resulting null values.
lf$shift(-2, fill_value = 100)$collect()

lazyframe__sink_batches
Evaluate the query and call a user-defined function for every
ready batch

Description

[Experimental] This allows streaming results that are larger than RAM in certain cases.
Note that this method is much slower than native sinks. Only use it if you cannot implement
your logic otherwise.
<lazyframe>$sink_batches() is a shortcut for <lazyframe>$lazy_sink_batches()$collect().

Usage

lazyframe__sink_batches(
lambda,
...,
chunk_size = NULL,
maintain_order = TRUE,
engine = c("auto", "in-memory", "streaming"),
optimizations = pl$QueryOptFlags()

)

lazyframe__lazy_sink_batches(
lambda,
...,
chunk_size = NULL,
maintain_order = TRUE

)

Arguments

lambda A function that will receive a DataFrame as the first argument and called
for side effects (e.g., writing to a file). If the function returns TRUE and
using the streaming engine, this signals that no more results are needed,
allowing for early stopping.

496 lazyframe__sink_batches

... These dots are for future extensions and must be empty.
chunk_size A positive integer or NULL (default). The number of rows that are buffered

before the callback is called.
maintain_order

Maintain the order in which data is processed. Setting this to FALSE will
be slightly faster.

engine The engine name to use for processing the query. One of the followings:
• "auto" (default): Select the engine automatically. The "in-memory"

engine will be selected for most cases.
• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

Value
• <lazyframe>$sink_batches() returns NULL invisibly.
• <lazyframe>$lazy_sink_batches() returns a new LazyFrame.

Examples
lf <- as_polars_lf(mtcars)

Each batch is a Polars DataFrame
lf$sink_batches(\(df) print(df), chunk_size = 10)

We can stop reading the batches by returning `TRUE`:
lf$sort("cyl")$sink_batches(

\(df) {
print(df)

We want to stop if this condition is respected:
max(df[["cyl"]])$to_r_vector() > 4

},
chunk_size = 10

)

One usecase for this function is to export larger-than-RAM data to file
formats for which polars doesn't provide a writer out of the box.
The example below writes a LazyFrame by batches to a CSV file for the
sake of the example, but one could replace `write.csv()` by
`haven::write_dta()`, `saveRDS()`, or other functions.
#
Note that if `chunk_size` is missing, then Polars tries to compute it
automatically. However, depending on the characteristics of the data (for
instance very long string elements), this can lead to out-of-memory errors.
It is therefore recommended to set `chunk_size` manually.

withr::with_tempdir({
file_idx <- 1

lazyframe__sink_batches 497

lf$sink_batches(
\(df) {

dest <- paste0("file_", file_idx, ".csv")
cat(sprintf("Writing %s rows to %s\n", nrow(df), dest))
write.csv(as.data.frame(df), dest)
file_idx <<- file_idx + 1

}
)

cat("\nFiles in the directory:\n")
cat(list.files("."))
cat("\n\n")

pl$read_csv(".")
})

The number of rows in each chunk can be adjusted with `chunk_size`.
withr::with_tempdir({

file_idx <- 1

lf$sink_batches(
\(df) {

dest <- paste0("file_", file_idx, ".csv")
cat(sprintf("Writing %s rows to %s\n", nrow(df), dest))
write.csv(as.data.frame(df), dest)
file_idx <<- file_idx + 1

}
)

cat("\nFiles in the directory:\n")
cat(list.files("."))

})

To avoid manually creating paths and incrementing `file_idx` in the
anonymous function, we can use function factories:
withr::with_tempdir({

writer_factory <- function(dir) {
i <- 0
function(df) {

i <<- i + 1
dest <- file.path(dir, sprintf("%03d.csv", i))
cat(sprintf("Writing %s rows to %s\n", nrow(df), dest))
as.data.frame(df) |>
write.csv(dest, row.names = FALSE)

}
}

writer <- writer_factory(".")

lf$sink_batches(writer, chunk_size = 10)

cat("\nFiles in the directory:\n")

498 lazyframe__sink_csv

cat(list.files("."))
})

lazyframe__sink_csv Evaluate the query in streaming mode and write to a CSV file

Description

[Experimental]
This allows streaming results that are larger than RAM to be written to disk.

• <lazyframe>$lazy_sink_*() don’t write directly to the output file(s) until $collect()
is called. This is useful if you want to save a query to review or run later.

• <lazyframe>$sink_*() write directly to the output file(s) (they are shortcuts for
<lazyframe>$lazy_sink_*()$collect()).

Usage

lazyframe__sink_csv(
path,
...,
include_bom = FALSE,
include_header = TRUE,
separator = ",",
line_terminator = "\n",
quote_char = "\"",
batch_size = 1024,
datetime_format = NULL,
date_format = NULL,
time_format = NULL,
float_scientific = NULL,
float_precision = NULL,
decimal_comma = FALSE,
null_value = "",
quote_style = c("necessary", "always", "never", "non_numeric"),
maintain_order = TRUE,
storage_options = NULL,
retries = 2,
sync_on_close = c("none", "data", "all"),
mkdir = FALSE,
engine = c("auto", "in-memory", "streaming"),
optimizations = pl$QueryOptFlags(),
type_coercion = deprecated(),
predicate_pushdown = deprecated(),
projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),

lazyframe__sink_csv 499

collapse_joins = deprecated(),
no_optimization = deprecated()

)

lazyframe__lazy_sink_csv(
path,
...,
include_bom = FALSE,
include_header = TRUE,
separator = ",",
line_terminator = "\n",
quote_char = "\"",
batch_size = 1024,
datetime_format = NULL,
date_format = NULL,
time_format = NULL,
float_scientific = NULL,
float_precision = NULL,
decimal_comma = FALSE,
null_value = "",
quote_style = c("necessary", "always", "never", "non_numeric"),
maintain_order = TRUE,
storage_options = NULL,
retries = 2,
sync_on_close = c("none", "data", "all"),
mkdir = FALSE

)

Arguments

path A character. File path to which the file should be written.
... These dots are for future extensions and must be empty.
include_bom Logical, whether to include UTF-8 BOM in the CSV output.
include_header

Logical, whether to include header in the CSV output.
separator Separate CSV fields with this symbol.
line_terminator

String used to end each row.
quote_char Byte to use as quoting character.
batch_size Number of rows that will be processed per thread.
datetime_format

A format string, with the specifiers defined by the chrono Rust crate.
If no format specified, the default fractional-second precision is inferred
from the maximum timeunit found in the frame’s Datetime cols (if any).

date_format A format string, with the specifiers defined by the chrono Rust crate.
time_format A format string, with the specifiers defined by the chrono Rust crate.

https://docs.rs/chrono/latest/chrono/format/strftime/index.html
https://docs.rs/chrono/latest/chrono/format/strftime/index.html
https://docs.rs/chrono/latest/chrono/format/strftime/index.html

500 lazyframe__sink_csv

float_scientific
Whether to use scientific form always (TRUE), never (FALSE), or automat-
ically (NULL) for Float32 and Float64 datatypes.

float_precision
Number of decimal places to write, applied to both Float32 and Float64
datatypes.

decimal_comma If TRUE, use a comma "," as the decimal separator instead of a point.
Floats will be encapsulated in quotes if necessary.

null_value A string representing null values (defaulting to the empty string).
quote_style Determines the quoting strategy used. Must be one of:

• "necessary" (default): This puts quotes around fields only when
necessary. They are necessary when fields contain a quote, delim-
iter or record terminator. Quotes are also necessary when writing
an empty record (which is indistinguishable from a record with one
empty field). This is the default.

• "always": This puts quotes around every field. Always.
• "never": This never puts quotes around fields, even if that results in

invalid CSV data (e.g.: by not quoting strings containing the sepa-
rator).

• "non_numeric": This puts quotes around all fields that are non-
numeric. Namely, when writing a field that does not parse as a valid
float or integer, then quotes will be used even if they aren‘t strictly
necessary.

maintain_order
Maintain the order in which data is processed. Setting this to FALSE will
be slightly faster.

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
sync_on_close Sync to disk when before closing a file. Must be one of:

• "none": does not sync;
• "data": syncs the file contents;
• "all": syncs the file contents and metadata.

mkdir Recursively create all the directories in the path.

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

lazyframe__sink_csv 501

engine The engine name to use for processing the query. One of the followings:
• "auto" (default): Select the engine automatically. The "in-memory"

engine will be selected for most cases.
• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

predicate_pushdown
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

collapse_joins
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

no_optimization
[Deprecated] Use the optimizations argument with pl$QueryOptFlags()$no_optimizations()
instead.

Value
• <lazyframe>$sink_*() returns NULL invisibly.
• <lazyframe>$lazy_sink_*() returns a new LazyFrame.

Examples
Sink table 'mtcars' from mem to CSV
tmpf <- tempfile(fileext = ".csv")
as_polars_lf(mtcars)$sink_csv(tmpf)

Create a query that can be run in streaming end-to-end
tmpf2 <- tempfile(fileext = ".csv")
lf <- pl$scan_csv(tmpf)$select(pl$col("cyl") * 2)$lazy_sink_csv(tmpf2)
lf$explain() |>

cat()

Execute the query and write to disk
lf$collect()

502 lazyframe__sink_ipc

Load CSV directly into a DataFrame / memory
pl$read_csv(tmpf2)

lazyframe__sink_ipc Evaluate the query in streaming mode and write to Arrow IPC
File Format

Description

[Experimental]
This allows streaming results that are larger than RAM to be written to disk.

• <lazyframe>$lazy_sink_*() don’t write directly to the output file(s) until $collect()
is called. This is useful if you want to save a query to review or run later.

• <lazyframe>$sink_*() write directly to the output file(s) (they are shortcuts for
<lazyframe>$lazy_sink_*()$collect()).

Usage

lazyframe__sink_ipc(
path,
...,
compression = c("zstd", "lz4", "uncompressed"),
compat_level = c("newest", "oldest"),
maintain_order = TRUE,
storage_options = NULL,
retries = 2,
sync_on_close = c("none", "data", "all"),
mkdir = FALSE,
engine = c("auto", "in-memory", "streaming"),
optimizations = pl$QueryOptFlags(),
type_coercion = deprecated(),
predicate_pushdown = deprecated(),
projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),
collapse_joins = deprecated(),
no_optimization = deprecated()

)

lazyframe__lazy_sink_ipc(
path,
...,
compression = c("zstd", "lz4", "uncompressed"),
compat_level = c("newest", "oldest"),
maintain_order = TRUE,
storage_options = NULL,

lazyframe__sink_ipc 503

retries = 2,
sync_on_close = c("none", "data", "all"),
mkdir = FALSE

)

Arguments

path A character. File path to which the file should be written.
... These dots are for future extensions and must be empty.
compression Determines the compression algorithm. Must be one of:

• "uncompressed" or NULL: Write an uncompressed Arrow file.
• "lz4": Fast compression/decompression.
• "zstd" (default): Good compression performance.

compat_level Determines the compatibility level when exporting Polars’ internal data
structures. When specifying a new compatibility level, Polars exports its
internal data structures that might not be interpretable by other Arrow
implementations. The level can be specified as the name (e.g., "newest")
or as a scalar integer (Currently, 0 and 1 are supported).
• "newest" [Experimental] (default): Use the highest level, currently

same as 1 (Low compatibility).
• "oldest": Same as 0 (High compatibility).

maintain_order
Maintain the order in which data is processed. Setting this to FALSE will
be slightly faster.

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
sync_on_close Sync to disk when before closing a file. Must be one of:

• "none": does not sync;
• "data": syncs the file contents;
• "all": syncs the file contents and metadata.

mkdir Recursively create all the directories in the path.
engine The engine name to use for processing the query. One of the followings:

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

504 lazyframe__sink_ndjson

• "auto" (default): Select the engine automatically. The "in-memory"
engine will be selected for most cases.

• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

predicate_pushdown
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

collapse_joins
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

no_optimization
[Deprecated] Use the optimizations argument with pl$QueryOptFlags()$no_optimizations()
instead.

Value
• <lazyframe>$sink_*() returns NULL invisibly.
• <lazyframe>$lazy_sink_*() returns a new LazyFrame.

Examples

tmpf <- tempfile(fileext = ".arrow")
as_polars_lf(mtcars)$sink_ipc(tmpf)

pl$read_ipc(tmpf)

lazyframe__sink_ndjson
Evaluate the query in streaming mode and write to a NDJSON
file

lazyframe__sink_ndjson 505

Description

[Experimental]
This allows streaming results that are larger than RAM to be written to disk.

Usage

lazyframe__sink_ndjson(
path,
...,
maintain_order = TRUE,
storage_options = NULL,
retries = 2,
sync_on_close = c("none", "data", "all"),
mkdir = FALSE,
engine = c("auto", "in-memory", "streaming"),
optimizations = pl$QueryOptFlags(),
type_coercion = deprecated(),
predicate_pushdown = deprecated(),
projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),
collapse_joins = deprecated(),
no_optimization = deprecated()

)

lazyframe__lazy_sink_ndjson(
path,
...,
maintain_order = TRUE,
storage_options = NULL,
retries = 2,
sync_on_close = c("none", "data", "all"),
mkdir = FALSE

)

Arguments

path A character. File path to which the file should be written.
... These dots are for future extensions and must be empty.
maintain_order

Maintain the order in which data is processed. Setting this to FALSE will
be slightly faster.

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html

506 lazyframe__sink_ndjson

• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
sync_on_close Sync to disk when before closing a file. Must be one of:

• "none": does not sync;
• "data": syncs the file contents;
• "all": syncs the file contents and metadata.

mkdir Recursively create all the directories in the path.
engine The engine name to use for processing the query. One of the followings:

• "auto" (default): Select the engine automatically. The "in-memory"
engine will be selected for most cases.

• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

predicate_pushdown
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

collapse_joins
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

no_optimization
[Deprecated] Use the optimizations argument with pl$QueryOptFlags()$no_optimizations()
instead.

Value
• <lazyframe>$sink_*() returns NULL invisibly.
• <lazyframe>$lazy_sink_*() returns a new LazyFrame.

https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

lazyframe__slice 507

Examples

dat <- as_polars_lf(head(mtcars))
destination <- tempfile()

dat$select(pl$col("drat", "mpg"))$sink_ndjson(destination)
jsonlite::stream_in(file(destination))

lazyframe__slice Get a slice of the LazyFrame.

Description

Get a slice of the LazyFrame.

Usage

lazyframe__slice(offset, length = NULL)

Arguments

offset Start index. Negative indexing is supported.
length Length of the slice. If NULL (default), all rows starting at the offset will

be selected.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(x = c("a", "b", "c"), y = 1:3, z = 4:6)
lf$slice(1, 2)$collect()

lazyframe__sort Sort the LazyFrame by the given columns

Description

Sort the LazyFrame by the given columns

508 lazyframe__sort

Usage

lazyframe__sort(
...,
descending = FALSE,
nulls_last = FALSE,
multithreaded = TRUE,
maintain_order = FALSE

)

Arguments

... <dynamic-dots> Column(s) to sort by. Can be character values indi-
cating column names or Expr(s).

descending Sort in descending order. When sorting by multiple columns, this can be
specified per column by passing a logical vector.

nulls_last Place null values last. When sorting by multiple columns, this can be
specified per column by passing a logical vector.

multithreaded Sort using multiple threads.
maintain_order

Whether the order should be maintained if elements are equal. If TRUE,
streaming is not possible and performance might be worse since this re-
quires a stable search.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
a = c(1, 2, NA, 4),
b = c(6, 5, 4, 3),
c = c("a", "c", "b", "a")

)

Pass a single column name to sort by that column.
lf$sort("a")$collect()

Sorting by expressions is also supported
lf$sort(pl$col("a") + pl$col("b") * 2, nulls_last = TRUE)$collect()

Sort by multiple columns by passing a vector of columns
lf$sort(c("c", "a"), descending = TRUE)$collect()

Or use positional arguments to sort by multiple columns in the same way
lf$sort("c", "a", descending = c(FALSE, TRUE))$collect()

lazyframe__sql 509

lazyframe__sql Execute a SQL query against the LazyFrame

Description

[Experimental] Execute a SQL query against the LazyFrame.

Usage

lazyframe__sql(query, ..., table_name = "self")

Arguments

query SQL query to execute.
... These dots are for future extensions and must be empty.
table_name Optionally provide an explicit name for the table that represents the

calling frame (defaults to "self").

Details

The calling frame is automatically registered as a table in the SQL context under the name
"self".
More control over registration and execution behaviour is available by using the SQLContext
object.

Value

A polars LazyFrame

Examples
lf1 <- pl$LazyFrame(a = 1:3, b = 6:8, c = c("z", "y", "x"))

Query the LazyFrame using SQL:
lf1$sql("SELECT c, b FROM self WHERE a > 1")$collect()

Apply SQL transforms (aliasing "self" to "frame") then filter natively
(you can freely mix SQL and native operations):
lf1$sql(

query = "
SELECT

a,
(a % 2 == 0) AS a_is_even,
(b::float4 / 2) AS 'b/2',
CONCAT_WS(':', c, c, c) AS c_c_c

FROM frame
ORDER BY a

",

510 lazyframe__sum

table_name = "frame",
)$filter(!pl$col("c_c_c")strstarts_with("x"))$collect()

lazyframe__std Aggregate the columns of this LazyFrame to their standard devi-
ation values

Description

Aggregate the columns of this LazyFrame to their standard deviation values

Usage

lazyframe__std(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$std()$collect()
lf$std(ddof = 0)$collect()

lazyframe__sum Aggregate the columns of this LazyFrame to their sum values

Description

Aggregate the columns of this LazyFrame to their sum values

Usage

lazyframe__sum()

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$sum()$collect()

lazyframe__tail 511

lazyframe__tail Get the last n rows.

Description

Get the last n rows.

Usage

lazyframe__tail(n = 5L)

Arguments

n Number of rows to return.

Value

A polars LazyFrame

See Also

<LazyFrame>$head()

Examples

lf <- pl$LazyFrame(a = 1:6, b = 7:12)
lf$tail()$collect()
lf$tail(2)$collect()

lazyframe__top_k Return the k largest rows

Description

Non-null elements are always preferred over null elements, regardless of the value of reverse.
The output is not guaranteed to be in any particular order, call sort() after this function
if you wish the output to be sorted.

Usage

lazyframe__top_k(k, ..., by, reverse = FALSE)

512 lazyframe__to_dot

Arguments

k Number of rows to return.
... These dots are for future extensions and must be empty.
by Column(s) used to determine the bottom rows. Accepts expression input.

Strings are parsed as column names.
reverse Consider the k smallest elements of the by column(s) (instead of the

k largest). This can be specified per column by passing a sequence of
booleans.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

a = c("a", "b", "a", "b", "b", "c"),
b = c(2, 1, 1, 3, 2, 1)

)

Get the rows which contain the 4 largest values in column b.
lf$top_k(4, by = "b")$collect()

Get the rows which contain the 4 largest values when sorting on column a
and b
lf$top_k(4, by = c("a", "b"))$collect()

lazyframe__to_dot Plot the query plan

Description

This only returns the ”dot” output that can be passed to other packages, such as DiagrammeR::grViz().

Usage

lazyframe__to_dot(
...,
optimized = TRUE,
optimizations = pl$QueryOptFlags(),
type_coercion = deprecated(),
predicate_pushdown = deprecated(),
projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),
comm_subplan_elim = deprecated(),
comm_subexpr_elim = deprecated(),

lazyframe__to_dot 513

cluster_with_columns = deprecated(),
collapse_joins = deprecated()

)

Arguments

... [Deprecated] Ignored.
optimized Optimize the query plan.
optimizations [Experimental] A QueryOptFlags object to indicate optimization passes

done during query optimization.
type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-

ject, then pass that to the optimizations argument instead.
predicate_pushdown

[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

comm_subplan_elim
[Deprecated] Use the comm_subplan_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

comm_subexpr_elim
[Deprecated] Use the comm_subexpr_elim property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

cluster_with_columns
[Deprecated] Use the cluster_with_columns property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

collapse_joins
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

Value

A character vector

Examples
lf <- pl$LazyFrame(

a = c("a", "b", "a", "b", "b", "c"),
b = 1:6,
c = 6:1

514 lazyframe__unique

)

query <- lf$group_by("a", .maintain_order = TRUE)$agg(
pl$all()$sum()

)$sort("a")

query$to_dot() |> cat()

You could print the graph by using DiagrammeR for example, with
query$to_dot() |> DiagrammeR::grViz().

lazyframe__unique Drop duplicate rows

Description

Drop duplicate rows

Usage

lazyframe__unique(
...,
keep = c("any", "none", "first", "last"),
maintain_order = FALSE,
subset = deprecated()

)

Arguments

... <dynamic-dots> Column names or selectors for which are considered.
If empty (default), use all columns (same as specifying with the selector
cs$all()).

keep Which of the duplicate rows to keep. Must be one of:
• "any": does not give any guarantee of which row is kept. This allows

more optimizations.
• "none": don’t keep duplicate rows.
• "first": keep first unique row.
• "last": keep last unique row.

maintain_order
Keep the same order as the original data. This is more expensive to com-
pute. Setting this to TRUE blocks the possibility to run on the streaming
engine.

subset [Deprecated] Replaced by ... in 1.1.0.

Value

A polars LazyFrame

lazyframe__unnest 515

Examples
lf <- pl$LazyFrame(

foo = c(1, 2, 3, 1),
bar = c("a", "a", "a", "a"),
ham = c("b", "b", "b", "b"),

)
lf$unique(maintain_order = TRUE)$collect()

lf$unique(c("bar", "ham"), maintain_order = TRUE)$collect()

lf$unique(keep = "last", maintain_order = TRUE)$collect()

lazyframe__unnest Decompose struct columns into separate columns for each of their
fields

Description

The new columns will be inserted at the location of the struct column.

Usage

lazyframe__unnest(..., separator = NULL)

Arguments

... <dynamic-dots> Name of the struct column(s) or selectors that should
be unnested.

separator NULL (default) or single string. Rename output column names as combi-
nation of the struct column name, name separator and field name.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

a = 1:5,
b = c("one", "two", "three", "four", "five"),
c = 6:10

)$select(
pl$struct("b"),
pl$struct(c("a", "c"))$alias("a_and_c")

)
lf$collect()

lf$unnest("a_and_c")$collect()
lf$unnest("a_and_c", separator = ":")$collect()

516 lazyframe__unpivot

lazyframe__unpivot Unpivot a frame from wide to long format

Description

This function is useful to massage a frame into a format where one or more columns are
identifier variables (index) while all other columns, considered measured variables (on), are
”unpivoted” to the row axis leaving just two non-identifier columns, ”variable” and ”value”.

Usage

lazyframe__unpivot(
on = NULL,
...,
index = NULL,
variable_name = NULL,
value_name = NULL

)

Arguments

on Column(s) or selector(s) to use as values variables. If on is empty (cs$empty()),
no columns will be used. If set to NULL (default), all columns that are not
in index will be used.

... These dots are for future extensions and must be empty.
index Column(s) or selector(s) to use as identifier variables.
variable_name Name to give to the new column containing the names of the melted

columns. Defaults to "variable".
value_name Name to give to the new column containing the values of the melted

columns. Defaults to "value".

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
a = c("x", "y", "z"),
b = c(1, 3, 5),
c = c(2, 4, 6)

)
lf$unpivot(index = "a", on = c("b", "c"))$collect()

lazyframe__var 517

lazyframe__var Aggregate the columns in the LazyFrame to their variance value

Description

Aggregate the columns in the LazyFrame to their variance value

Usage

lazyframe__var(ddof = 1)

Arguments

ddof ”Delta Degrees of Freedom”: the divisor used in the calculation is N -
ddof, where N represents the number of elements. By default ddof is 1.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(a = 1:4, b = c(1, 2, 1, 1))
lf$var()$collect()
lf$var(ddof = 0)$collect()

lazyframe__with_columns
Modify/append column(s) of a LazyFrame

Description

Add columns or modify existing ones with expressions. This is similar to dplyr::mutate()
as it keeps unmentioned columns (unlike $select()).
However, unlike dplyr::mutate(), one cannot use new variables in subsequent expressions
in the same $with_columns()call. For instance, if you create a variable x, you will only be
able to use it in another $with_columns() or $select() call.

Usage

lazyframe__with_columns(...)

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

518 lazyframe__with_columns_seq

Value

A polars LazyFrame

Examples

Pass an expression to add it as a new column.
lf <- pl$LazyFrame(

a = 1:4,
b = c(0.5, 4, 10, 13),
c = c(TRUE, TRUE, FALSE, TRUE),

)
lf$with_columns((pl$col("a")^2)$alias("a^2"))$collect()

Added columns will replace existing columns with the same name.
lf$with_columns(a = pl$col("a")$cast(pl$Float64))$collect()

Multiple columns can be added
lf$with_columns(

(pl$col("a")^2)$alias("a^2"),
(pl$col("b") / 2)$alias("b/2"),
(pl$col("c")$not())$alias("not c"),

)$collect()

Name expression instead of `$alias()`
lf$with_columns(

`a^2` = pl$col("a")^2,
`b/2` = pl$col("b") / 2,
`not c` = pl$col("c")$not(),

)$collect()

lazyframe__with_columns_seq
Modify/append column(s) of a LazyFrame

Description

This will run all expression sequentially instead of in parallel. Use this only when the work
per expression is cheap.
Add columns or modify existing ones with expressions. This is similar to dplyr::mutate()
as it keeps unmentioned columns (unlike $select()).
However, unlike dplyr::mutate(), one cannot use new variables in subsequent expressions
in the same $with_columns_seq()call. For instance, if you create a variable x, you will
only be able to use it in another $with_columns_seq() or $select() call.

Usage

lazyframe__with_columns_seq(...)

lazyframe__with_row_index 519

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

Value

A polars LazyFrame

Examples
Pass an expression to add it as a new column.
lf <- pl$LazyFrame(

a = 1:4,
b = c(0.5, 4, 10, 13),
c = c(TRUE, TRUE, FALSE, TRUE),

)
lf$with_columns_seq((pl$col("a")^2)$alias("a^2"))$collect()

Added columns will replace existing columns with the same name.
lf$with_columns_seq(a = pl$col("a")$cast(pl$Float64))$collect()

Multiple columns can be added
lf$with_columns_seq(

(pl$col("a")^2)$alias("a^2"),
(pl$col("b") / 2)$alias("b/2"),
(pl$col("c")$not())$alias("not c"),

)$collect()

Name expression instead of `$alias()`
lf$with_columns_seq(

`a^2` = pl$col("a")^2,
`b/2` = pl$col("b") / 2,
`not c` = pl$col("c")$not(),

)$collect()

lazyframe__with_row_index
Add a row index as the first column in the LazyFrame

Description

Using this function can have a negative effect on query performance. This may, for instance,
block predicate pushdown optimization.

Usage

lazyframe__with_row_index(name = "index", offset = 0)

520 lazygroupby__agg

Arguments

name Name of the index column.

offset Start the index at this offset. Cannot be negative.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(x = c(1, 3, 5), y = c(2, 4, 6))
lf$with_row_index()$collect()

lf$with_row_index("id", offset = 1000)$collect()

An index column can also be created using the expressions int_range()
and len()$
lf$with_columns(

index = pl$int_range(pl$len(), dtype = pl$UInt32)
)$collect()

lazygroupby__agg Compute aggregations for each group of a group by operation

Description

Compute aggregations for each group of a group by operation

Usage

lazygroupby__agg(...)

Arguments

... <dynamic-dots> Aggregations to compute for each group of the group
by operation. Accepts expression input. Strings are parsed as column
names.

Value

A polars LazyFrame

lazygroupby__having 521

Examples
Compute the aggregation of the columns for each group.
lf <- pl$LazyFrame(

a = c("a", "b", "a", "b", "c"),
b = c(1, 2, 1, 3, 3),
c = c(5, 4, 3, 2, 1)

)
lf$group_by("a")$agg(pl$col("b"), pl$col("c"))$collect()

Compute the sum of a column for each group.
lf$group_by("a")$agg(pl$col("b")$sum())$collect()

Compute multiple aggregates at once by passing a list of expressions.
lf$group_by("a")$agg(pl$sum("b"), pl$col("c")$mean())$collect()

Use keyword arguments to easily name your expression inputs.
lf$group_by("a")$agg(

b_sum = pl$sum("b"),
c_mean_squared = (pl$col("c") ** 2)$mean()

)$collect()

lazygroupby__having Filter groups with a list of predicates after aggregation

Description

Using this method is equivalent to adding the predicates to the aggregation and filtering
afterwards.
This method can be chained and all conditions will be combined using &.

Usage

lazygroupby__having(...)

Arguments

... <dynamic-dots> Expression that evaluates to a boolean Series.

Value

A lazy groupby

Examples
lf <- pl$LazyFrame(x = c("a", "b", "a", "b", "c"))

Only keep groups that contain more than one element:
lf$group_by("x")$having(

pl$len() > 1
)$agg()$collect()

522 lazygroupby__len

lazygroupby__head Get the first n rows of each group

Description

Get the first n rows of each group

Usage

lazygroupby__head(n = 5)

Arguments

n Number of rows to return.

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

letters = c("c", "c", "a", "c", "a", "b"),
nrs = 1:6

)
lf$collect()

lf$group_by("letters")$head(2)$sort("letters")$collect()

lazygroupby__len Return the number of rows in each group

Description

Return the number of rows in each group

Usage

lazygroupby__len(name = NULL)

Arguments

name Assign a name to the resulting column. If NULL, defaults to "len".

Value

A polars LazyFrame

lazygroupby__max 523

Examples
lf <- pl$LazyFrame(

a = c("Apple", "Apple", "Orange"),
b = c(1, NA, 2)

)
lf$group_by("a")$len()$collect()

lf$group_by("a")$len("n")$collect()

lazygroupby__max Reduce the groups to the maximal value

Description

Reduce the groups to the maximal value

Usage

lazygroupby__max()

Value

A polars LazyFrame

Examples
lf <- pl$LazyFrame(

grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
lf$collect()

lf$group_by("grp")$max()$collect()

lazygroupby__mean Return the mean per group

Description

Return the mean per group

Usage

lazygroupby__mean()

524 lazygroupby__median

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
lf$collect()

lf$group_by("grp")$mean()$collect()

lazygroupby__median Return the median per group

Description

Return the median per group

Usage

lazygroupby__median()

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
lf$collect()

lf$group_by("grp")$median()$collect()

lazygroupby__min 525

lazygroupby__min Reduce the groups to the minimal value

Description

Reduce the groups to the minimal value

Usage

lazygroupby__min()

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
lf$collect()

lf$group_by("grp")$min()$collect()

lazygroupby__n_unique
Count the unique values per group

Description

Count the unique values per group

Usage

lazygroupby__n_unique()

Value

A polars LazyFrame

526 lazygroupby__quantile

Examples

lf <- pl$LazyFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
lf$collect()

lf$group_by("grp")$n_unique()$collect()

lazygroupby__quantile
Compute the quantile per group

Description

Compute the quantile per group

Usage

lazygroupby__quantile(
quantile,
interpolation = c("nearest", "higher", "lower", "midpoint", "linear", "equiprobable")

)

Arguments

quantile Quantile between 0.0 and 1.0.
interpolation Interpolation method.

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
lf$collect()

lf$group_by("grp")$quantile(0.5)$collect()

lazygroupby__sum 527

lazygroupby__sum Return the sum per group

Description

Return the sum per group

Usage

lazygroupby__sum()

Value

A polars LazyFrame

Examples

lf <- pl$LazyFrame(
grp = c("c", "c", "a", "c", "a", "b"),
x = c(0.5, 0.5, 4, 10, 13, 14),
y = 1:6,
z = c(TRUE, TRUE, FALSE, TRUE, FALSE, TRUE)

)
lf$collect()

lf$group_by("grp")$sum()$collect()

lazygroupby__tail Get the last n rows of each group

Description

Get the last n rows of each group

Usage

lazygroupby__tail(n = 5)

Arguments

n Number of rows to return.

Value

A polars LazyFrame

528 parquet_statistics

Examples
lf <- pl$LazyFrame(

letters = c("c", "c", "a", "c", "a", "b"),
nrs = 1:6

)
lf$collect()

lf$group_by("letters")$tail(2)$sort("letters")$collect()

parquet_statistics Evaluate the query in streaming mode and write to a Parquet file

Description

[Experimental]
This allows streaming results that are larger than RAM to be written to disk.

• <lazyframe>$lazy_sink_*() don’t write directly to the output file(s) until $collect()
is called. This is useful if you want to save a query to review or run later.

• <lazyframe>$sink_*() write directly to the output file(s) (they are shortcuts for
<lazyframe>$lazy_sink_*()$collect()).

Usage

parquet_statistics(
...,
min = TRUE,
max = TRUE,
distinct_count = TRUE,
null_count = TRUE

)

lazyframe__sink_parquet(
path,
...,
compression = c("lz4", "uncompressed", "snappy", "gzip", "brotli", "zstd"),
compression_level = NULL,
statistics = TRUE,
row_group_size = NULL,
data_page_size = NULL,
maintain_order = TRUE,
storage_options = NULL,
retries = 2,
sync_on_close = c("none", "data", "all"),
mkdir = FALSE,
engine = c("auto", "in-memory", "streaming"),
optimizations = pl$QueryOptFlags(),

parquet_statistics 529

type_coercion = deprecated(),
predicate_pushdown = deprecated(),
projection_pushdown = deprecated(),
simplify_expression = deprecated(),
slice_pushdown = deprecated(),
collapse_joins = deprecated(),
no_optimization = deprecated()

)

lazyframe__lazy_sink_parquet(
path,
...,
compression = c("lz4", "uncompressed", "snappy", "gzip", "brotli", "zstd"),
compression_level = NULL,
statistics = TRUE,
row_group_size = NULL,
data_page_size = NULL,
maintain_order = TRUE,
storage_options = NULL,
retries = 2,
sync_on_close = c("none", "data", "all"),
mkdir = FALSE

)

Arguments

... These dots are for future extensions and must be empty.
min Include stats on the minimum values in the column.
max Include stats on the maximum values in the column.
distinct_count

Include stats on the number of distinct values in the column.
null_count Include stats on the number of null values in the column.
path A character. File path to which the file should be written.
compression The compression method. Must be one of:

• "lz4": fast compression/decompression.
• "uncompressed"
• "snappy": this guarantees that the parquet file will be compatible

with older parquet readers.
• "gzip"
• "brotli"
• "zstd": good compression performance.

compression_level
NULL or integer. The level of compression to use. Only used if method is
one of "gzip", "brotli", or "zstd". Higher compression means smaller
files on disk:
• "gzip": min-level: 0, max-level: 9, default: 6.

530 parquet_statistics

• "brotli": min-level: 0, max-level: 11, default: 1.
• "zstd": min-level: 1, max-level: 22, default: 3.

statistics Whether statistics should be written to the Parquet headers. Possible
values:
• TRUE: enable default set of statistics (default). Some statistics may

be disabled.
• FALSE: disable all statistics
• "full": calculate and write all available statistics
• A list created via parquet_statistics() to specify which statistics

to include.
row_group_size

Size of the row groups in number of rows. If NULL (default), the chunks of
the DataFrame are used. Writing in smaller chunks may reduce memory
pressure and improve writing speeds.

data_page_size
Size of the data page in bytes. If NULL (default), it is set to 1024^2 bytes.

maintain_order
Maintain the order in which data is processed. Setting this to FALSE will
be slightly faster.

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
sync_on_close Sync to disk when before closing a file. Must be one of:

• "none": does not sync;
• "data": syncs the file contents;
• "all": syncs the file contents and metadata.

mkdir Recursively create all the directories in the path.
engine The engine name to use for processing the query. One of the followings:

• "auto" (default): Select the engine automatically. The "in-memory"
engine will be selected for most cases.

• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

parquet_statistics 531

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

type_coercion [Deprecated] Use the type_coercion property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

predicate_pushdown
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

projection_pushdown
[Deprecated] Use the projection_pushdown property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

simplify_expression
[Deprecated] Use the simplify_expression property of a QueryOpt-
Flags object, then pass that to the optimizations argument instead.

slice_pushdown
[Deprecated] Use the slice_pushdown property of a QueryOptFlags ob-
ject, then pass that to the optimizations argument instead.

collapse_joins
[Deprecated] Use the predicate_pushdown property of a QueryOptFlags
object, then pass that to the optimizations argument instead.

no_optimization
[Deprecated] Use the optimizations argument with pl$QueryOptFlags()$no_optimizations()
instead.

Value
• <lazyframe>$sink_*() returns NULL invisibly.
• <lazyframe>$lazy_sink_*() returns a new LazyFrame.

Examples

Sink table 'mtcars' from mem to parquet
tmpf <- tempfile()
as_polars_lf(mtcars)$sink_parquet(tmpf)

Create a query that can be run in streaming end-to-end
tmpf2 <- tempfile()
lf <- pl$scan_parquet(tmpf)$select(pl$col("cyl") * 2)$lazy_sink_parquet(tmpf2)
lf$explain() |>

cat()

Execute the query and write to disk
lf$collect()

Load parquet directly into a DataFrame / memory
pl$read_parquet(tmpf2)

532 pl_api_register_series_namespace

pl Polars top-level function namespace

Description

pl is an environment class object that stores all the top-level functions of the R Polars API
which mimics the Python Polars API. It is intended to work the same way in Python as if
you had imported Python Polars with import polars as pl.

Usage

pl

Format

An object of class polars_object of length 101.

Examples

pl

How many members are in the `pl` environment?
length(pl)

Create a polars DataFrame
In Python:
```python
>>> import polars as pl
>>> df = pl.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
```
In R:
df <- pl$DataFrame(a = c(1, 2, 3), b = c(4, 5, 6))
df

pl_api_register_series_namespace
Registering custom functionality with a polars Series

Description

Registering custom functionality with a polars Series

Usage

pl_api_register_series_namespace(name, ns_fn)

pl__all 533

Arguments

name Name under which the functionality will be accessed.
ns_fn A function returns a new environment with the custom functionality. See

examples for details.

Value

NULL invisibly.

Examples
s: polars series
math_shortcuts <- function(s) {

Create a new environment to store the methods
self <- new.env(parent = emptyenv())

Store the series
self$`_s` <- s

Add methods
self$square <- function() self$`_s` * self$`_s`
self$cube <- function() self$`_s` * self$`_s` * self$`_s`

Set the class
class(self) <- c("polars_namespace_series", "polars_object")

Return the environment
self

}

plapiregister_series_namespace("math", math_shortcuts)

s <- as_polars_series(c(1.5, 31, 42, 64.5))
s$math$square()$rename("s^2")

s <- as_polars_series(1:5)
s$math$cube()$rename("s^3")

pl__all Either return an expression representing all columns, or evaluate
a bitwise AND operation

Description

If no arguments are passed, this function is syntactic sugar for col("*"). Otherwise, this
function is syntactic sugar for col(names)$all().

Usage

pl__all(..., ignore_nulls = TRUE)

534 pl__all_horizontal

Arguments

... Name(s) of the columns to use in the aggregation.
ignore_nulls If TRUE (default), ignore null values. If FALSE, Kleene logic is used to deal

with nulls: if the column contains any null values and no TRUE values, the
output is null.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(TRUE, FALSE, TRUE),
b = c(FALSE, FALSE, FALSE)

)

Selecting all columns
df$select(pl$all()$sum())

Evaluate bitwise AND for a column.
df$select(pl$all("a"))

pl__all_horizontal Apply the AND logical horizontally across columns

Description

Apply the AND logical horizontally across columns

Usage

pl__all_horizontal(...)

Arguments

... <dynamic-dots> Columns to aggregate horizontally. Accepts expres-
sions. Strings are parsed as column names, other non-expression inputs
are parsed as literals.

Details

Kleene logic is used to deal with nulls: if the column contains any null values and no FALSE
values, the output is null.

Value

A polars expression

https://en.wikipedia.org/wiki/Three-valued_logic
https://en.wikipedia.org/wiki/Three-valued_logic

pl__any 535

Examples

df <- pl$DataFrame(
a = c(FALSE, FALSE, TRUE, TRUE, FALSE, NA),
b = c(FALSE, TRUE, TRUE, NA, NA, NA),
c = c("u", "v", "w", "x", "y", "z")

)

df$with_columns(
all = pl$all_horizontal("a", "b")

)

pl__any Evaluate a bitwise OR operation

Description

This function is syntactic sugar for col(names)$any().

Usage

pl__any(..., ignore_nulls = TRUE)

Arguments

... Name(s) of the columns to use in the aggregation.

ignore_nulls If TRUE (default), ignore null values. If FALSE, Kleene logic is used to deal
with nulls: if the column contains any null values and no TRUE values, the
output is null.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(TRUE, FALSE, TRUE),
b = c(FALSE, FALSE, FALSE)

)

df$select(pl$any("a"))

https://en.wikipedia.org/wiki/Three-valued_logic

536 pl__arg_sort_by

pl__any_horizontal Apply the OR logical horizontally across columns

Description

Apply the OR logical horizontally across columns

Usage

pl__any_horizontal(...)

Arguments

... <dynamic-dots> Columns to aggregate horizontally. Accepts expres-
sions. Strings are parsed as column names, other non-expression inputs
are parsed as literals.

Details

Kleene logic is used to deal with nulls: if the column contains any null values and no FALSE
values, the output is null.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(FALSE, FALSE, TRUE, TRUE, FALSE, NA),
b = c(FALSE, TRUE, TRUE, NA, NA, NA),
c = c("u", "v", "w", "x", "y", "z")

)

df$with_columns(
any = pl$any_horizontal("a", "b")

)

pl__arg_sort_by Return the row indices that would sort the column(s)

Description

Return the row indices that would sort the column(s)

https://en.wikipedia.org/wiki/Three-valued_logic

pl__arg_sort_by 537

Usage

pl__arg_sort_by(
...,
descending = FALSE,
nulls_last = FALSE,
multithreaded = TRUE,
maintain_order = FALSE

)

Arguments

... <dynamic-dots> Column(s) to sort by. Can be character values indi-
cating column names or Expr(s).

descending Sort in descending order. When sorting by multiple columns, this can be
specified per column by passing a logical vector.

nulls_last Place null values last. When sorting by multiple columns, this can be
specified per column by passing a logical vector.

multithreaded Sort using multiple threads.
maintain_order

Whether the order should be maintained if elements are equal. If TRUE,
streaming is not possible and performance might be worse since this re-
quires a stable search.

Value

A polars expression

Examples

Pass a single column name to compute the arg sort by that column.
df <- pl$DataFrame(

a = c(0, 1, 1, 0),
b = c(3, 2, 3, 2),
c = c(1, 2, 3, 4)

)
df$select(pl$arg_sort_by("a"))

Compute the arg sort by multiple columns by either passing a list of
columns, or by specifying each column as a positional argument.
df$select(pl$arg_sort_by("a", "b", descending = TRUE))

Use gather to apply the arg sort to other columns.
df$select(pl$col("c")$gather(pl$arg_sort_by("a")))

538 pl__coalesce

pl__arg_where Return indices where condition evaluates to TRUE

Description

Return indices where condition evaluates to TRUE

Usage

pl__arg_where(condition)

Arguments

condition Boolean expression to evaluate.

Value

A polars expression

Examples
df <- pl$DataFrame(a = 1:5)
df$select(

pl$arg_where(pl$col("a") %% 2 == 0)
)

pl__coalesce Folds the columns from left to right, keeping the first non-null
value

Description

Folds the columns from left to right, keeping the first non-null value

Usage

pl__coalesce(...)

Arguments

... <dynamic-dots>Non-named objects can be referenced as columns. Each
object will be converted to expression by as_polars_expr(). Strings
are parsed as column names, other non-expression inputs are parsed as
literals.

Value

A polars expression

pl__col 539

Examples
df <- pl$DataFrame(

a = c(1, NA, NA, NA),
b = c(1, 2, NA, NA),
c = c(5, NA, 3, NA)

)

df$with_columns(d = pl$coalesce("a", "b", "c", 10))

df$with_columns(d = pl$coalesce(pl$col("a", "b", "c"), 10))

pl__col Create an expression representing column(s) in a DataFrame

Description

Create an expression representing column(s) in a DataFrame

Usage

pl__col(...)

Arguments

... <dynamic-dots> The name or data type of the column(s) to represent.
Unnamed objects one of the following:
• Single string(s) representing column names

– Regular expressions starting with ^ and ending with $ are allowed.
– Single wildcard "*" has a special meaning: check the examples.

• Polars DataType(s)

Value

A polars expression

Examples
a single column by a character
pl$col("foo")

multiple columns by characters
pl$col("foo", "bar")

multiple columns by polars data types
pl$col(pl$Float64, pl$String)

Single `"*"` is converted to a wildcard expression
pl$col("*")

540 pl__collect_all

Character vectors with length > 1 should be used with `!!!`
pl$col(!!!c("foo", "bar"), "baz")
pl$col("foo", !!!c("bar", "baz"))

there are some special notations for selecting columns
df <- pl$DataFrame(foo = 1:3, bar = 4:6, baz = 7:9)

select all columns with a wildcard `"*"`
df$select(pl$col("*"))

select multiple columns by a regular expression
starts with `^` and ends with `$`
df$select(pl$col("^ba.*$"))

pl__collect_all Collect multiple LazyFrames at the same time

Description

This can run all the computation graphs in parallel or combined. Common Subplan Elimi-
nation is applied on the combined plan, meaning that diverging queries will run only once.

Usage

pl__collect_all(
lazy_frames,
...,
engine = c("auto", "in-memory", "streaming"),
optimizations = pl$QueryOptFlags()

)

Arguments

lazy_frames A list of LazyFrames to collect.
... These dots are for future extensions and must be empty.
engine The engine name to use for processing the query. One of the followings:

• "auto" (default): Select the engine automatically. The "in-memory"
engine will be selected for most cases.

• "in-memory": Use the in-memory engine.
• "streaming": [Experimental] Use the (new) streaming engine.

optimizations [Experimental] A QueryOptFlags object to indicate optimization passes
done during query optimization.

Value

A list containing all the collected DataFrames, in the same order as the input LazyFrames.

pl__concat 541

Examples
lf <- as_polars_lf(mtcars)$with_columns(sqrt_mpg = pl$col("mpg")$sqrt())

cyl_4 <- lf$filter(pl$col("cyl") == 4)
cyl_6 <- lf$filter(pl$col("cyl") == 6)

We could do `cyl_4$collect()` and `cyl_6$collect()`, but this would be
wasteful because `sqrt_mpg` would be computed twice.
`pl$collect_all()` executes only once the parts of the query that are
identical across LazyFrames.
pl$collect_all(list(cyl_4, cyl_6))

pl__concat Combine multiple DataFrames, LazyFrames, or Series into a
single object

Description

Combine multiple DataFrames, LazyFrames, or Series into a single object

Usage

pl__concat(
...,
how = "vertical",
rechunk = FALSE,
parallel = TRUE,
strict = FALSE

)

Arguments

... <dynamic-dots> DataFrames, LazyFrames, Series. All elements must
have the same class.

how Strategy to concatenate items. Must be one of:
• "vertical": applies multiple vstack operations;
• "vertical_relaxed": same as "vertical", but additionally coerces

columns to their common supertype if they are mismatched (eg: Int32
to Int64);

• "diagonal": finds a union between the column schemas and fills
missing column values with null;

• "diagonal_relaxed": same as "diagonal", but additionally coerces
columns to their common supertype if they are mismatched (eg: Int32
to Int64);

• "horizontal": stacks Series from DataFrames horizontally and fills
with null if the lengths don’t match;

542 pl__concat

• "align", "align_full", "align_left", "align_right": Combines
frames horizontally, auto-determining the common key columns and
aligning rows using the same logic as align_frames (note that "align"
is an alias for "align_full"). The ”align” strategy determines the
type of join used to align the frames, equivalent to the ”how” pa-
rameter on align_frames. Note that the common join columns are
automatically coalesced, but other column collisions will raise an er-
ror (if you need more control over this you should use a suitable join
method directly).

Series only support the "vertical" strategy.
rechunk Make sure that the result data is in contiguous memory.
parallel Only relevant for LazyFrames. This determines if the concatenated lazy

computations may be executed in parallel.
strict When how = "horizontal", whether to require all DataFrames to be the

same height, raising an error if not.

Value

The same class (polars_data_frame, polars_lazy_frame or polars_series) as the input.

Examples

default is 'vertical' strategy
df1 <- pl$DataFrame(a = 1L, b = 3L)
df2 <- pl$DataFrame(a = 2L, b = 4L)
pl$concat(df1, df2)

'a' is coerced to float64
df1 <- pl$DataFrame(a = 1L, b = 3L)
df2 <- pl$DataFrame(a = 2, b = 4L)
pl$concat(df1, df2, how = "vertical_relaxed")

df_h1 <- pl$DataFrame(l1 = 1:2, l2 = 3:4)
df_h2 <- pl$DataFrame(r1 = 5:6, r2 = 7:8, r3 = 9:10)
pl$concat(df_h1, df_h2, how = "horizontal")

use 'diagonal' strategy to fill empty column values with nulls
df1 <- pl$DataFrame(a = 1L, b = 3L)
df2 <- pl$DataFrame(a = 2L, c = 4L)
pl$concat(df1, df2, how = "diagonal")

df_a1 <- pl$DataFrame(id = 1:2, x = 3:4)
df_a2 <- pl$DataFrame(id = 2:3, y = 5:6)
df_a3 <- pl$DataFrame(id = c(1L, 3L), z = 7:8)
pl$concat(df_a1, df_a2, df_a3, how = "align")
pl$concat(df_a1, df_a2, df_a3, how = "align_left")
pl$concat(df_a1, df_a2, df_a3, how = "align_right")

pl__concat_arr 543

pl__concat_arr Horizontally concatenate columns into a single array column

Description

[Experimental]

Usage

pl__concat_arr(...)

Arguments

... <dynamic-dots> Columns to concatenate into a single array column.
Accepts expression input. Strings are parsed as column names, other
non-expression inputs are parsed as literals.

Value

A polars expression

Examples

Concatenate two existing array columns.
df <- pl$DataFrame(a = list(1:2, 3:4, 5:6), b = list(4, 1, NA))$cast(

a = pl$Array(pl$Int64, 2),
b = pl$Array(pl$Int64, 1)

)

df$with_columns(concat_arr = pl$concat_arr("a", "b"))

Concatenate two existing non-array columns.
df <- pl$DataFrame(a = c(NA, 5, 6), b = c(6, 5, NA))
df$with_columns(concat_arr = pl$concat_arr("a", "b"))

Concatenate mixed array and non-array columns.
df <- pl$DataFrame(a = list(NA, 5L, 6L), b = c(6L, 5L, NA))$cast(

a = pl$Array(pl$Int32, 1)
)
df$with_columns(concat_arr = pl$concat_arr("a", "b"))

Unit-length columns are broadcasted:
df$with_columns(concat_arr = pl$concat_arr("a", pl$sum("b")))

544 pl__concat_list

pl__concat_list Horizontally concatenate columns into a single list column

Description

Horizontally concatenate columns into a single list column

Usage

pl__concat_list(...)

Arguments

... <dynamic-dots> Columns to concatenate into a single list column. Ac-
cepts expression input. Strings are parsed as column names, other non-
expression inputs are parsed as literals.

Value

A polars expression

Examples

df <- pl$DataFrame(a = list(1:2, 3, 4:5), b = list(4, integer(0), NULL))

Concatenate two existing list columns. Null values are propagated.
df$with_columns(concat_list = pl$concat_list("a", "b"))

Non-list columns are cast to a list before concatenation. The output data
type is the supertype of the concatenated columns.
df$select("a", concat_list = pl$concat_list("a", pl$lit("x")))

Create lagged columns and collect them into a list. This mimics a rolling
window.
df <- pl$DataFrame(A = c(1, 2, 9, 2, 13))
df <- df$select(

A_lag_1 = pl$col("A")$shift(1),
A_lag_2 = pl$col("A")$shift(2),
A_lag_3 = pl$col("A")$shift(3)

)
df$select(A_rolling = pl$concat_list("A_lag_1", "A_lag_2", "A_lag_3"))

pl__concat_str 545

pl__concat_str Horizontally concatenate columns into a single string column

Description

Operates in linear time.

Usage

pl__concat_str(..., separator = "", ignore_nulls = FALSE)

Arguments

... <dynamic-dots> Columns to concatenate into a single string column.
Accepts expression input. Strings are parsed as column names, other
non-expression inputs are parsed as literals. Non-String columns are
cast to String.

separator String that will be used to separate the values of each column.

ignore_nulls If FALSE (default), null values will be propagated, i.e. if the row contains
any null values, the output is null.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = 1:3,
b = c("dogs", "cats", NA),
c = c("play", "swim", "walk")

)
df$with_columns(

full_sentence = pl$concat_str(
pl$col("a") * 2L,
pl$col("b"),
pl$col("c"),
separator = " ",

)
)

546 pl__DataFrame

pl__cum_sum Cumulatively sum all values

Description

This function is syntactic sugar for col(names)$cum_sum().

Usage

pl__cum_sum(...)

Arguments

... Name(s) of the columns to use in the aggregation.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 8, 3),
b = c(4, 5, 2),
c = c("foo", "bar", "foo")

)

Get the cum_sum of a column
df$select(pl$cum_sum("a"))

Get the cum_sum of multiple columns
df$select(pl$cum_sum("a", "b"))

pl__DataFrame Polars DataFrame class (polars_data_frame)

Description

DataFrames are two-dimensional data structure representing data as a table with rows and
columns. Polars DataFrames are similar to R Data Frames. R Data Frame’s columns are
R vectors, while Polars DataFrame’s columns are Polars Series.

Usage

pl__DataFrame(..., .schema_overrides = NULL, .strict = TRUE)

pl__DataFrame 547

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
Series by the as_polars_series() function. Each Series will be used as
a column of the DataFrame. All values must be the same length or length
1. Each name will be used as the column name. If the name is empty,
the original name of the Series will be used.

.schema_overrides
[Experimental] A list of polars data types or NULL (default). Passed to
the $cast() method as dynamic-dots.

.strict [Experimental] A logical value. Passed to the $cast() method’s .strict
argument.

Details

The pl$DataFrame() function mimics the constructor of the DataFrame class of Python Po-
lars. This function is basically a shortcut for as_polars_df(list(...))$cast(!!!.schema_overrides,
.strict = .strict), so each argument in ... is converted to a Polars Series by as_polars_series()
and then passed to as_polars_df().

Value

A polars DataFrame

Active bindings

• columns: $columns returns a character vector with the names of the columns.
• dtypes: $dtypes returns a nameless list of the data type of each column.
• schema: $schema returns a named list with the column names as names and the data

types as values.
• shape: $shape returns a integer vector of length two with the number of rows and

columns of the DataFrame.
• height: $height returns a integer with the number of rows of the DataFrame.
• width: $width returns a integer with the number of columns of the DataFrame.
• flags: $flags returns a list with column names as names and a named logical vector

with the flags as values.

Flags

Flags are used internally to avoid doing unnecessary computations, such as sorting a variable
that we know is already sorted. The number of flags varies depending on the column
type: columns of type array and list have the flags SORTED_ASC, SORTED_DESC, and
FAST_EXPLODE, while other column types only have the former two.

• SORTED_ASC is set to TRUE when we sort a column in increasing order, so that we can
use this information later on to avoid re-sorting it.

• SORTED_DESC is similar but applies to sort in decreasing order.

548 pl__date

Examples
Constructing a DataFrame from vectors:
pl$DataFrame(a = 1:2, b = 3:4)

Constructing a DataFrame from Series:
pl$DataFrame(pl$Series("a", 1:2), pl$Series("b", 3:4))

Constructing a DataFrame from a list:
data <- list(a = 1:2, b = 3:4)

Using the as_polars_df function (recommended)
as_polars_df(data)

Using dynamic dots feature
pl$DataFrame(!!!data)

Active bindings:
df <- pl$DataFrame(a = 1:3, b = c("foo", "bar", "baz"))

df$columns
df$dtypes
df$schema
df$shape
df$height
df$width

pl__date Create a Polars literal expression of type Date

Description

Create a Polars literal expression of type Date

Usage

pl__date(year, month, day)

Arguments

year An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
year.

month An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
month. Range: 1-12.

day An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
day. Range: 1-31.

pl__datetime 549

Value

A polars expression

Examples

df <- pl$DataFrame(month = 1:3, day = 4:6)
df$with_columns(pl$date(2024, pl$col("month"), pl$col("day")))

We can also use `pl$date()` for filtering:
df <- pl$DataFrame(

start = rep(as.Date("2024-01-01"), 3),
end = as.Date(c("2024-05-01", "2024-07-01", "2024-09-01"))

)
df$filter(pl$col("end") > pl$date(2024, 6, 1))

pl__datetime Create a Polars literal expression of type Datetime

Description

Create a Polars literal expression of type Datetime

Usage

pl__datetime(
year,
month,
day,
hour = NULL,
minute = NULL,
second = NULL,
microsecond = NULL,
...,
time_unit = c("us", "ns", "ms"),
time_zone = NULL,
ambiguous = c("raise", "earliest", "latest", "null")

)

Arguments

year An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
year.

month An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
month. Range: 1-12.

550 pl__datetime

day An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
day. Range: 1-31.

hour An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
hour. Range: 0-23.

minute An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
minute. Range: 0-59.

second An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
second. Range: 0-59.

microsecond An polars expression or something can be coerced to an polars expression
by as_polars_expr(), which represents a column or literal number of
microsecond. Range: 0-999999.

... These dots are for future extensions and must be empty.
time_unit One of "us" (default, microseconds), "ns" (nanoseconds) or "ms"(milliseconds).

Representing the unit of time.
time_zone A string or NULL (default). Representing the timezone.
ambiguous Determine how to deal with ambiguous datetimes. Character vector or

expression containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a null value

Value

A polars expression

Examples
df <- pl$DataFrame(

month = c(1, 2, 3),
day = c(4, 5, 6),
hour = c(12, 13, 14),
minute = c(15, 30, 45)

)

df$with_columns(
pl$datetime(
2024,
pl$col("month"),
pl$col("day"),
pl$col("hour"),
pl$col("minute"),
time_zone = "Australia/Sydney"

pl__datetime_range 551

)
)

We can also use `pl$datetime()` for filtering:
df <- pl$select(

start = ISOdatetime(2024, 1, 1, 0, 0, 0),
end = c(
ISOdatetime(2024, 5, 1, 20, 15, 10),
ISOdatetime(2024, 7, 1, 21, 25, 20),
ISOdatetime(2024, 9, 1, 22, 35, 30)

)
)

df$filter(pl$col("end") > pl$datetime(2024, 6, 1))

pl__datetime_range Generate a datetime range

Description

Generate a datetime range

Usage

pl__datetime_range(
start,
end,
interval = "1d",
...,
closed = c("both", "left", "none", "right"),
time_unit = NULL,
time_zone = NULL

)

Arguments

start Lower bound of the date range. Something that can be coerced to a Date
or a Datetime expression. See examples for details.

end Upper bound of the date range. Something that can be coerced to a Date
or a Datetime expression. See examples for details.

interval Interval of the range periods, specified as a difftime object or using the Po-
lars duration string language. See the Polars duration string language
section for details. Must consist of full days.

... These dots are for future extensions and must be empty.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".
time_unit Time unit of the resulting the Datetime data type. One of "ns", "us",

"ms" or NULL
time_zone Time zone of the resulting Datetime data type.

552 pl__datetime_range

Value

A polars expression

Polars duration string language

Polars duration string language is a simple representation of durations. It is used in many
Polars functions that accept durations.
It has the following format:

• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.

See Also

pl$datetime_ranges() to create a simple Series of data type list(Datetime) based on
column values.

Examples
Using Polars duration string to specify the interval:
pl$select(

datetime = pl$datetime_range(as.Date("2022-01-01"), as.Date("2022-03-01"), "1mo")
)

Using `difftime` object to specify the interval:
pl$select(

datetime = pl$datetime_range(
as.Date("1985-01-01"),
as.Date("1985-01-10"),
as.difftime(1, units = "days") + as.difftime(12, units = "hours")

)
)

pl__datetime_ranges 553

Specifying a time zone:
pl$select(

datetime = pl$datetime_range(
as.Date("2022-01-01"),
as.Date("2022-03-01"),
"1mo",
time_zone = "America/New_York"

)
)

pl__datetime_ranges Generate a list containing a datetime range

Description

Generate a list containing a datetime range

Usage

pl__datetime_ranges(
start,
end,
interval = "1d",
...,
closed = c("both", "left", "none", "right"),
time_unit = NULL,
time_zone = NULL

)

Arguments

start Lower bound of the date range. Something that can be coerced to a Date
or a Datetime expression. See examples for details.

end Upper bound of the date range. Something that can be coerced to a Date
or a Datetime expression. See examples for details.

interval Interval of the range periods, specified as a difftime object or using the Po-
lars duration string language. See the Polars duration string language
section for details. Must consist of full days.

... These dots are for future extensions and must be empty.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".
time_unit Time unit of the resulting the Datetime data type. One of "ns", "us",

"ms" or NULL
time_zone Time zone of the resulting Datetime data type.

554 pl__datetime_ranges

Value

A polars expression

Polars duration string language

Polars duration string language is a simple representation of durations. It is used in many
Polars functions that accept durations.
It has the following format:

• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.

See Also

pl$datetime_range() to create a simple Series of data type Datetime.

Examples
df <- pl$DataFrame(

start = as.POSIXct(c("2022-01-01 10:00", "2022-01-01 11:00", NA)),
end = rep(as.POSIXct("2022-01-01 12:00"), 3)

)

df$with_columns(
dt_range = pl$datetime_ranges("start", "end", interval = "1h"),
dt_range_cr = pl$datetime_ranges("start", "end", closed = "right", interval = "1h")

)

provide a custom "end" value
df$with_columns(

dt_range_lit = pl$datetime_ranges(
"start", pl$lit(as.POSIXct("2022-01-01 11:00")),
interval = "1h"

)
)

pl__date_range 555

pl__date_range Generate a date range

Description

If both start and end are passed as the Date types (not Datetime), and the interval gran-
ularity is no finer than "1d", the returned range is also of type Date. All other permutations
return a Datetime.

Usage

pl__date_range(
start,
end,
interval = "1d",
...,
closed = c("both", "left", "none", "right")

)

Arguments

start Lower bound of the date range. Something that can be coerced to a Date
or a Datetime expression. See examples for details.

end Upper bound of the date range. Something that can be coerced to a Date
or a Datetime expression. See examples for details.

interval Interval of the range periods, specified as a difftime object or using the Po-
lars duration string language. See the Polars duration string language
section for details. Must consist of full days.

... These dots are for future extensions and must be empty.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".

Value

A polars expression

Polars duration string language

Polars duration string language is a simple representation of durations. It is used in many
Polars functions that accept durations.
It has the following format:

• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)

556 pl__date_ranges

• 1m (1 minute)

• 1h (1 hour)

• 1d (1 calendar day)

• 1w (1 calendar week)

• 1mo (1 calendar month)

• 1q (1 calendar quarter)

• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds

By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.

See Also

pl$date_ranges() to create a simple Series of data type list(Date) based on column values.

Examples

Using Polars duration string to specify the interval:
pl$select(

date = pl$date_range(as.Date("2022-01-01"), as.Date("2022-03-01"), "1mo")
)

Using `difftime` object to specify the interval:
pl$select(

date = pl$date_range(
as.Date("1985-01-01"),
as.Date("1985-01-10"),
as.difftime(2, units = "days")

)
)

pl__date_ranges Create a column of date ranges

Description

If both start and end are passed as Date types (not Datetime), and the interval granu-
larity is no finer than "1d", the returned range is also of type Date. All other permutations
return a Datetime.

pl__date_ranges 557

Usage

pl__date_ranges(
start,
end,
interval = "1d",
...,
closed = c("both", "left", "none", "right")

)

Arguments

start Lower bound of the date range. Something that can be coerced to a Date
or a Datetime expression. See examples for details.

end Upper bound of the date range. Something that can be coerced to a Date
or a Datetime expression. See examples for details.

interval Interval of the range periods, specified as a difftime object or using the Po-
lars duration string language. See the Polars duration string language
section for details. Must consist of full days.

... These dots are for future extensions and must be empty.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".

Value

A polars expression

Polars duration string language

Polars duration string language is a simple representation of durations. It is used in many
Polars functions that accept durations.
It has the following format:

• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

558 pl__dtype_of

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.

See Also

pl$date_range() to create a simple Series of data type Date.

Examples

df <- pl$DataFrame(
start = as.Date(c("2022-01-01", "2022-01-02", NA)),
end = rep(as.Date("2022-01-03"), 3)

)

df$with_columns(
date_range = pl$date_ranges("start", "end"),
date_range_cr = pl$date_ranges("start", "end", closed = "right")

)

provide a custom "end" value
df$with_columns(

date_range_lit = pl$date_ranges("start", pl$lit(as.Date("2022-01-02")))
)

pl__dtype_of Get a lazily evaluated DataType of a column or expression

Description

[Experimental] Get a lazily evaluated DataType of a column or expression

Usage

pl__dtype_of(col_or_expr)

Arguments

col_or_expr Either a string for the column_name or an expression.

Value

A polars datatype expression. This is not the same as a polars expression.

pl__duration 559

pl__duration Create polars Duration from distinct time components

Description

A Duration represents a fixed amount of time. For example, pl$duration(days = 1)
means ”exactly 24 hours”. By contrast, <expr>dtoffset_by("1d") means ”1 calen-
dar day”, which could sometimes be 23 hours or 25 hours depending on Daylight Savings
Time. For non-fixed durations such as ”calendar month” or ”calendar day”, please use
<expr>dtoffset_by() instead.

Usage

pl__duration(
...,
weeks = NULL,
days = NULL,
hours = NULL,
minutes = NULL,
seconds = NULL,
milliseconds = NULL,
microseconds = NULL,
nanoseconds = NULL,
time_unit = NULL

)

Arguments

... These dots are for future extensions and must be empty.
weeks Something can be coerced to an polars expression by as_polars_expr()

which represents a column or literal number of weeks, or NULL (default).
days Something can be coerced to an polars expression by as_polars_expr()

which represents a column or literal number of days, or NULL (default).
hours Something can be coerced to an polars expression by as_polars_expr()

which represents a column or literal number of hours, or NULL (default).
minutes Something can be coerced to an polars expression by as_polars_expr()

which represents a column or literal number of minutes, or NULL (default).
seconds Something can be coerced to an polars expression by as_polars_expr()

which represents a column or literal number of seconds, or NULL (default).
milliseconds Something can be coerced to an polars expression by as_polars_expr()

which represents a column or literal number of milliseconds, or NULL (de-
fault).

microseconds Something can be coerced to an polars expression by as_polars_expr()
which represents a column or literal number of microseconds, or NULL
(default).

560 pl__element

nanoseconds Something can be coerced to an polars expression by as_polars_expr()
which represents a column or literal number of nanoseconds, or NULL
(default).

time_unit One of NULL, "us" (microseconds), "ns" (nanoseconds) or "ms"(milliseconds).
Representing the unit of time. If NULL (default), the time unit will be in-
ferred from the other inputs: "ns" if nanoseconds was specified, "us"
otherwise.

Value

A polars expression

Examples

df <- pl$DataFrame(
dt = as.POSIXct(c("2022-01-01", "2022-01-02")),
add = c(1, 2)

)
df

df$select(
add_weeks = pl$col("dt") + pl$duration(weeks = pl$col("add")),
add_days = pl$col("dt") + pl$duration(days = pl$col("add")),
add_seconds = pl$col("dt") + pl$duration(seconds = pl$col("add")),
add_millis = pl$col("dt") + pl$duration(milliseconds = pl$col("add")),
add_hours = pl$col("dt") + pl$duration(hours = pl$col("add"))

)

pl__element Alias for an element being evaluated in an eval expression

Description

Alias for an element being evaluated in an eval expression

Usage

pl__element()

Value

A polars expression

pl__explain_all 561

Examples
A horizontal rank computation by taking the elements of a list:
df <- pl$DataFrame(

a = c(1, 8, 3),
b = c(4, 5, 2)

)
df$with_columns(

rank = pl$concat_list(c("a", "b"))$list$eval(pl$element()$rank())
)

A mathematical operation on array elements:
df <- pl$DataFrame(

a = c(1, 8, 3),
b = c(4, 5, 2)

)
df$with_columns(

a_b_doubled = pl$concat_list(c("a", "b"))$list$eval(pl$element() * 2)
)

pl__explain_all Explain multiple LazyFrames as if passed to pl$collect_all()

Description

Common Subplan Elimination is applied on the combined plan, meaning that diverging
queries will run only once.

Usage

pl__explain_all(lazy_frames, ..., optimizations = pl$QueryOptFlags())

Arguments

lazy_frames A list of LazyFrames to collect.
... These dots are for future extensions and must be empty.
optimizations [Experimental] A QueryOptFlags object to indicate optimization passes

done during query optimization.

Value

A character value containing the query plan.

Examples
lf <- as_polars_lf(mtcars)$with_columns(sqrt_mpg = pl$col("mpg")$sqrt())

cyl_4 <- lf$filter(pl$col("cyl") == 4)
cyl_6 <- lf$filter(pl$col("cyl") == 6)

562 pl__int_range

Note that `sqrt_mpg` is present in the plans for `cyl_4` and `cyl_6` but
only once in the plan produced by `pl$explain_all()`. This is because
`pl$explain_all()` eliminates parts of the queries that are shared across
multiple plans.
pl$explain_all(list(cyl_4, cyl_6)) |>

writeLines()

pl__first Get the first column of the context

Description

Get the first column of the context

Usage

pl__first()

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 8, 3),
b = c(4, 5, 2),
c = c("foo", "bar", "baz")

)

df$select(pl$first())

pl__int_range Generate a range of integers

Description

Generate a range of integers

Usage

pl__int_range(start = 0, end = NULL, step = 1, ..., dtype = pl$Int64)

pl__int_ranges 563

Arguments

start Start of the range (inclusive). Defaults to 0.
end End of the range (exclusive). If NULL (default), the value of start is used

and start is set to 0.
step Step size of the range.
... These dots are for future extensions and must be empty.
dtype Data type of the range.

Value

A polars expression

Examples
pl$select(int = pl$int_range(0, 3))

end can be omitted for a shorter syntax.
pl$select(int = pl$int_range(3))

Generate an index column by using int_range in conjunction with len().
df <- pl$DataFrame(a = c(1, 3, 5), b = c(2, 4, 6))
df$select(

index = pl$int_range(pl$len(), dtype = pl$UInt32),
pl$all()

)

pl__int_ranges Generate a range of integers for each row of the input columns

Description

Generate a range of integers for each row of the input columns

Usage

pl__int_ranges(start = 0, end = NULL, step = 1, ..., dtype = pl$Int64)

Arguments

start Start of the range (inclusive). Defaults to 0.
end End of the range (exclusive). If NULL (default), the value of start is used

and start is set to 0.
step Step size of the range.
... These dots are for future extensions and must be empty.
dtype Data type of the range.

564 pl__LazyFrame

Value

A polars expression

Examples
df <- pl$DataFrame(start = c(1, -1), end = c(3, 2))
df$with_columns(int_range = pl$int_ranges("start", "end"))

end can be omitted for a shorter syntax$
df$select("end", int_range = pl$int_ranges("end"))

pl__last Get the last column of the context

Description

Get the last column of the context

Usage

pl__last()

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(1, 8, 3),
b = c(4, 5, 2),
c = c("foo", "bar", "baz")

)

df$select(pl$last())

pl__LazyFrame Polars LazyFrame class (polars_lazy_frame)

Description

Representation of a Lazy computation graph/query against a DataFrame. This allows
for whole-query optimisation in addition to parallelism, and is the preferred (and highest-
performance) mode of operation for polars.

Usage

pl__LazyFrame(..., .schema_overrides = NULL, .strict = TRUE)

pl__len 565

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
Series by the as_polars_series() function. Each Series will be used as
a column of the DataFrame. All values must be the same length or length
1. Each name will be used as the column name. If the name is empty,
the original name of the Series will be used.

.schema_overrides
[Experimental] A list of polars data types or NULL (default). Passed to
the $cast() method as dynamic-dots.

.strict [Experimental] A logical value. Passed to the $cast() method’s .strict
argument.

Details

The pl$LazyFrame(...) function is a shortcut for pl$DataFrame(...)$lazy().

Value

A polars LazyFrame

See Also

• <LazyFrame>$collect(): Materialize a LazyFrame into a DataFrame.

Examples
Constructing a LazyFrame from vectors:
pl$LazyFrame(a = 1:2, b = 3:4)

Constructing a LazyFrame from Series:
pl$LazyFrame(pl$Series("a", 1:2), pl$Series("b", 3:4))

Constructing a LazyFrame from a list:
data <- list(a = 1:2, b = 3:4)

Using dynamic dots feature
pl$LazyFrame(!!!data)

pl__len Return the number of rows in the context$

Description

This is similar to COUNT(*) in SQL.

Usage

pl__len()

566 pl__linear_space

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(1, 2, NA),
b = c(3, NA, NA),
c = c("foo", "bar", "foo"),

)
df$select(pl$len())

Generate an index column by using len in conjunction with $int_range()
df$with_columns(

pl$int_range(pl$len(), dtype = pl$UInt32)$alias("index")
)

pl__linear_space Create sequence of evenly-spaced points

Description

[Experimental]

Usage

pl__linear_space(
start,
end,
num_samples,
...,
closed = c("both", "left", "none", "right")

)

Arguments

start Lower bound of the range.
end Upper bound of the range.
num_samples Number of samples in the output sequence.
... These dots are for future extensions and must be empty.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".

Details

linear_space works with numeric and temporal dtypes. When the start and end param-
eters are Date dtypes, the output sequence consists of equally-spaced Datetime elements
with millisecond precision.

pl__linear_spaces 567

Value

A polars expression

Examples
pl$select(

pl$linear_space(start = 0, end = 1, num_samples = 3)
)
pl$select(

pl$linear_space(start = 0, end = 1, num_samples = 3, closed = "left")
)
pl$select(

pl$linear_space(start = 0, end = 1, num_samples = 3, closed = "right")
)
pl$select(

pl$linear_space(start = 0, end = 1, num_samples = 3, closed = "none")
)

Date endpoints generate a sequence of Datetime values:
pl$select(

pl$linear_space(
start = as.Date("2025-01-01"),
end = as.Date("2025-02-01"),
num_samples = 3,
closed = "right"

)
)

You can generate a sequence using the length of the dataframe:
df <- pl$DataFrame(a = c(1, 2, 3, 4, 5))
df$with_columns(ls = pl$linear_space(0, 1, pl$len()))

pl__linear_spaces Create sequence of evenly-spaced points for each row between
start and end

Description

[Experimental] The number of values in each sequence is determined by num_samples.

Usage

pl__linear_spaces(
start,
end,
num_samples,
...,
closed = c("both", "left", "none", "right"),
as_array = FALSE

)

568 pl__lit

Arguments

start Lower bound of the range.
end Upper bound of the range.
num_samples Number of samples in the output sequence.
... These dots are for future extensions and must be empty.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".
as_array Return result as a fixed-length Array. num_samples must be a constant.

Details

linear_space works with numeric and temporal dtypes. When the start and end param-
eters are Date dtypes, the output sequence consists of equally-spaced Datetime elements
with millisecond precision.

Value

A polars expression

Examples
df <- pl$DataFrame(start = c(1, -1), end = c(3, 2), num_samples = c(4, 5))
df$with_columns(ls = pl$linear_spaces("start", "end", "num_samples"))

df$with_columns(ls = pl$linear_spaces("start", "end", 3, as_array = TRUE))

pl__lit Return an expression representing a literal value

Description

This function is a shorthand for as_polars_expr(x, as_lit = TRUE) and in most cases,
the actual conversion is done by as_polars_series().

Usage

pl__lit(value, dtype = NULL)

Arguments

value An R object. Passed as the x param of as_polars_expr().
dtype A polars data type or NULL (default). If not NULL, casted to the specified

data type.

Value

A polars expression

pl__max 569

See Also

• as_polars_series(): R -> Polars type mapping is mostly defined by this function.
• as_polars_expr(): Internal implementation of pl$lit().

Examples
Literal scalar values
pl$lit(1L)
pl$lit(5.5)
pl$lit(NULL)
pl$lit("foo_bar")

Generally, for a vector (an R object) becomes a Series with length 1,
it is converted to a Series and then get the first value to become a scalar literal.
pl$lit(as.Date("2021-01-20"))
pl$lit(as.POSIXct("2023-03-31 10:30:45"))
pl$lit(data.frame(a = 1, b = "foo"))

Literal Series data
pl$lit(1:3)
pl$lit(pl$Series("x", 1:3))

pl__max Get the maximum value

Description

This function is syntactic sugar for col(names)$max().

Usage

pl__max(...)

Arguments

... Name(s) of the columns to use in the aggregation.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(1, 8, 3),
b = c(4, 5, 2),
c = c("foo", "bar", "foo")

)

570 pl__max_horizontal

Get the maximum value of a column
df$select(pl$max("a"))

Get the maximum value of multiple columns
df$select(pl$max("a", "b"))

pl__max_horizontal Get the maximum value horizontally across columns

Description

Get the maximum value horizontally across columns

Usage

pl__max_horizontal(...)

Arguments

... <dynamic-dots> Columns to aggregate horizontally. Accepts expres-
sions. Strings are parsed as column names, other non-expression inputs
are parsed as literals.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 8, 3),
b = c(4, 5, NA),
c = c("x", "y", "z")

)
df$with_columns(

max = pl$max_horizontal("a", "b")
)

pl__mean_horizontal 571

pl__mean_horizontal Compute the mean horizontally across columns

Description

Compute the mean horizontally across columns

Usage

pl__mean_horizontal(..., ignore_nulls = TRUE)

Arguments

... <dynamic-dots> Columns to aggregate horizontally. Accepts expres-
sions. Strings are parsed as column names, other non-expression inputs
are parsed as literals.

ignore_nulls A logical. If TRUE, ignore null values (default). If FALSE, any null value
in the input will lead to a null output.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 8, 3),
b = c(4, 5, NA),
c = c("x", "y", "z")

)

df$with_columns(
mean = pl$mean_horizontal("a", "b")

)

pl__min Get the minimum value

Description

This function is syntactic sugar for col(names)$min().

Usage

pl__min(...)

572 pl__min_horizontal

Arguments

... Name(s) of the columns to use in the aggregation.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 8, 3),
b = c(4, 5, 2),
c = c("foo", "bar", "foo")

)

Get the minimum value of a column
df$select(pl$min("a"))

Get the minimum value of multiple columns
df$select(pl$min("a", "b"))

pl__min_horizontal Get the minimum value horizontally across columns

Description

Get the minimum value horizontally across columns

Usage

pl__min_horizontal(...)

Arguments

... <dynamic-dots> Columns to aggregate horizontally. Accepts expres-
sions. Strings are parsed as column names, other non-expression inputs
are parsed as literals.

Value

A polars expression

pl__nth 573

Examples

df <- pl$DataFrame(
a = c(1, 8, 3),
b = c(4, 5, NA),
c = c("x", "y", "z")

)
df$with_columns(

min = pl$min_horizontal("a", "b")
)

pl__nth Get the nth column(s) of the context

Description

Get the nth column(s) of the context

Usage

pl__nth(indices, strict = TRUE)

Arguments

indices One or more indices representing the columns to retrieve.

strict [Experimental] Passed to cs$by_index()’s require_all argument.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 8, 3),
b = c(4, 5, 2),
c = c("foo", "bar", "baz")

)

df$select(pl$nth(1))
df$select(pl$nth(c(2, 0)))

574 pl__PartitionBy

pl__PartitionBy Partitioning scheme to write files

Description

[Experimental]
Partitioning schemes are used to write multiple files with sink_* and write_* methods.

• pl$PartitionBy(): Configuration for writing to multiple output files. Supports par-
titioning by key expressions, file size limits, or both.

The following functions are deprecated and will be removed in a future release:

• [Deprecated] pl$PartitionByKey(): Use pl$PartitionBy(key = ...) instead.
• [Deprecated] pl$PartitionMaxSize(): Use pl$PartitionBy(max_rows_per_file =

...) instead.
• [Deprecated] pl$PartitionParted(): Use pl$PartitionBy(key = ...) with pre-

sorted data instead.

Usage

pl__PartitionBy(
base_path,
...,
key = NULL,
include_key = NULL,
max_rows_per_file = NULL,
approximate_bytes_per_file = NULL

)

pl__PartitionByKey(
base_path,
...,
by,
include_key = TRUE,
per_partition_sort_by = NULL

)

pl__PartitionMaxSize(base_path, ..., max_size, per_partition_sort_by = NULL)

pl__PartitionParted(
base_path,
...,
by,
include_key = TRUE,
per_partition_sort_by = NULL

)

pl__PartitionBy 575

Arguments

base_path The base path for the output files. Use the mkdir option of the sink_*
methods to ensure directories in the path are created.

... These dots are for future extensions and must be empty.
key Something can be coerced to a list of expressions, or NULL (default). Used

to partition by.
include_key A bool indicating whether to include the key columns in the output files.

Can only be used if key is specified, otherwise should be NULL.
max_rows_per_file

An integer-ish value indicating the maximum size in rows of each of the
generated files.

approximate_bytes_per_file
An integer-ish value indicating approximate number of bytes to write to
each file, or NULL. This is measured as the estimated size of the DataFrame
in memory. Defaults to approximately 4GB when key is specified without
max_rows_per_file; otherwise unlimited.

by [Deprecated] Something that can be coerced to a list of expressions. Used
to partition by. Use the key property of pl$PartitionBy instead.

per_partition_sort_by
[Deprecated] Something that can be coerced to a list of expressions,
or NULL (default). Used to sort over within each partition. Use the
per_partition_sort_by property of pl$PartitionBy instead.

max_size [Deprecated] An integer-ish value indicating the maximum size in rows
of each of the generated files. Use the max_rows_per_file property of
pl$PartitionBy instead.

Examples

Partitioning by columns
temp_dir_1 <- withr::local_tempdir()
as_polars_lf(mtcars)$sink_parquet(

pl$PartitionBy(
temp_dir_1,
key = c("cyl", "am"),
include_key = FALSE

),
mkdir = TRUE

)
list.files(temp_dir_1, recursive = TRUE)

Partitioning by max row size
temp_dir_2 <- withr::local_tempdir()
as_polars_lf(mtcars)$sink_csv(

pl$PartitionBy(
temp_dir_2,
max_rows_per_file = 10

),

576 pl__read_csv

mkdir = TRUE
)

files <- list.files(temp_dir_2, full.names = TRUE)
files
lapply(files, \(x) nrow(read.csv(x)))

Partitioning by both key and size
temp_dir_3 <- withr::local_tempdir()
as_polars_lf(mtcars)$sink_parquet(

pl$PartitionBy(
temp_dir_3,
key = "cyl",
max_rows_per_file = 5,
approximate_bytes_per_file = 1000000

),
mkdir = TRUE

)
list.files(temp_dir_3, recursive = TRUE)

pl__read_csv New DataFrame from CSV

Description

New DataFrame from CSV

Usage

pl__read_csv(
source,
...,
has_header = TRUE,
separator = ",",
comment_prefix = NULL,
quote_char = "\"",
skip_rows = 0,
schema = NULL,
schema_overrides = NULL,
null_values = NULL,
missing_utf8_is_empty_string = FALSE,
ignore_errors = FALSE,
cache = FALSE,
infer_schema = TRUE,
infer_schema_length = 100,
n_rows = NULL,
encoding = c("utf8", "utf8-lossy"),
low_memory = FALSE,

pl__read_csv 577

rechunk = FALSE,
skip_rows_after_header = 0,
row_index_name = NULL,
row_index_offset = 0,
try_parse_dates = FALSE,
eol_char = "\n",
raise_if_empty = TRUE,
truncate_ragged_lines = FALSE,
decimal_comma = FALSE,
glob = TRUE,
storage_options = NULL,
retries = 2,
file_cache_ttl = NULL,
include_file_paths = NULL

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning
cloud locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.
has_header Indicate if the first row of dataset is a header or not.If FALSE, column

names will be autogenerated in the following format: "column_x" with x
being an enumeration over every column in the dataset starting at 1.

separator Single byte character to use as separator in the file.
comment_prefix

A string, which can be up to 5 symbols in length, used to indicate the
start of a comment line. For instance, it can be set to # or //.

quote_char Single byte character used for quoting. Set to NULL to turn off special
handling and escaping of quotes.

skip_rows Start reading after a particular number of rows. The header will be parsed
at this offset.

schema Provide the schema. This means that polars doesn’t do schema inference.
This argument expects the complete schema, whereas schema_overrides
can be used to partially overwrite a schema. This must be a list. Names
of list elements are used to match to inferred columns.

schema_overrides
Overwrite dtypes during inference. This must be a list. Names of list
elements are used to match to inferred columns.

null_values Character vector specifying the values to interpret as NA values. It can be
named, in which case names specify the columns in which this replacement
must be made (e.g. c(col1 = "a")).

missing_utf8_is_empty_string
By default, a missing value is considered to be NA. Setting this parameter
to TRUE will consider missing UTF8 values as an empty character.

578 pl__read_csv

ignore_errors Keep reading the file even if some lines yield errors. You can also use
infer_schema = FALSE to read all columns as UTF8 to check which values
might cause an issue.

cache Cache the result after reading.
infer_schema If TRUE (default), the schema is inferred from the data using the first

infer_schema_length rows. When FALSE, the schema is not inferred
and will be pl$String if not specified in schema or schema_overrides.

infer_schema_length
The maximum number of rows to scan for schema inference. If NULL, the
full data may be scanned (this is slow). Set infer_schema = FALSE to
read all columns as pl$String.

n_rows Stop reading from the source after reading n_rows.
encoding Either "utf8" or "utf8-lossy". Lossy means that invalid UTF8 values

are replaced with ”?” characters.
low_memory Reduce memory pressure at the expense of performance.
rechunk Reallocate to contiguous memory when all chunks/files are parsed.
skip_rows_after_header

Skip this number of rows when the header is parsed.
row_index_name

If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by
row_index_name).

try_parse_dates
Try to automatically parse dates. Most ISO8601-like formats can be in-
ferred, as well as a handful of others. If this does not succeed, the column
remains of data type pl$String.

eol_char Single byte end of line character (default: "\n"). When encountering
a file with Windows line endings ("\r\n"), one can go with the default
"\n". The extra "\r" will be removed when processed.

raise_if_empty
If FALSE, parsing an empty file returns an empty DataFrame or LazyFrame.

truncate_ragged_lines
Truncate lines that are longer than the schema.

decimal_comma Parse floats using a comma as the decimal separator instead of a period.
glob Expand path given via globbing rules.
storage_options

Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

pl__read_ipc 579

• Hugging Face (hf://): Accepts an API key under the token parame-
ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
file_cache_ttl

Amount of time to keep downloaded cloud files since their last access
time, in seconds. Uses the POLARS_FILE_CACHE_TTL environment variable
(which defaults to 1 hour) if not given.

include_file_paths
Include the path of the source file(s) as a column with this name.

Value

A polars DataFrame

Examples
my_file <- tempfile()
write.csv(iris, my_file)
pl$read_csv(my_file)
unlink(my_file)

pl__read_ipc Read into a DataFrame from Arrow IPC (Feather v2) file

Description

Read into a DataFrame from Arrow IPC (Feather v2) file

Usage

pl__read_ipc(
source,
...,
n_rows = NULL,
cache = TRUE,
rechunk = FALSE,
row_index_name = NULL,
row_index_offset = 0L,
storage_options = NULL,
retries = 2,
file_cache_ttl = NULL,
hive_partitioning = NULL,
hive_schema = NULL,
try_parse_hive_dates = TRUE,
include_file_paths = NULL

)

580 pl__read_ipc

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning
cloud locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.
n_rows Stop reading from the source after reading n_rows.
cache Cache the result after reading.
rechunk Reallocate to contiguous memory when all chunks/files are parsed.
row_index_name

If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by
row_index_name).

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
file_cache_ttl

Amount of time to keep downloaded cloud files since their last access
time, in seconds. Uses the POLARS_FILE_CACHE_TTL environment variable
(which defaults to 1 hour) if not given.

hive_partitioning
Infer statistics and schema from Hive partitioned sources and use them to
prune reads. If NULL (default), it is automatically enabled when a single
directory is passed, and otherwise disabled.

hive_schema [Experimental] A list containing the column names and data types of the
columns by which the data is partitioned, e.g. list(a = pl$String, b
= pl$Float32). If NULL (default), the schema of the Hive partitions is
inferred.

try_parse_hive_dates
Whether to try parsing hive values as date / datetime types.

include_file_paths
Include the path of the source file(s) as a column with this name.

Value

A polars DataFrame

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

pl__read_ipc_stream 581

Examples

temp_dir <- tempfile()
Write a hive-style partitioned arrow file dataset
arrow::write_dataset(

mtcars,
temp_dir,
partitioning = c("cyl", "gear"),
format = "arrow",
hive_style = TRUE

)
list.files(temp_dir, recursive = TRUE)

If the path is a folder, Polars automatically tries to detect partitions
and includes them in the output
pl$read_ipc(temp_dir)

We can also impose a schema to the partition
pl$read_ipc(temp_dir, hive_schema = list(cyl = pl$String, gear = pl$Int32))

pl__read_ipc_stream Read into a DataFrame from Arrow IPC stream format

Description

Read into a DataFrame from Arrow IPC stream format

Usage

pl__read_ipc_stream(
source,
...,
columns = NULL,
n_rows = NULL,
row_index_name = NULL,
row_index_offset = 0L,
rechunk = TRUE

)

Arguments

source A character of the path to an Arrow IPC stream file.
... These dots are for future extensions and must be empty.
columns A character vector of column names to read.
n_rows Stop reading from the source after reading n_rows.
row_index_name

If not NULL, this will insert a row index column with the given name.

582 pl__read_ndjson

row_index_offset
Offset to start the row index column (only used if the name is set by
row_index_name).

rechunk A logical value to indicate whether to make sure that all data is contigu-
ous.

Value

A polars DataFrame

Examples

temp_file <- tempfile(fileext = ".arrows")

mtcars |>
nanoarrow::write_nanoarrow(temp_file)

pl$read_ipc_stream(temp_file, columns = c("cyl", "am"))

pl__read_ndjson Read into a DataFrame from NDJSON file

Description

Read into a DataFrame from NDJSON file

Usage

pl__read_ndjson(
source,
...,
schema = NULL,
schema_overrides = NULL,
infer_schema_length = 100,
batch_size = 1024,
n_rows = NULL,
low_memory = FALSE,
rechunk = FALSE,
row_index_name = NULL,
row_index_offset = 0L,
ignore_errors = FALSE,
storage_options = NULL,
retries = 2,
file_cache_ttl = NULL,
include_file_paths = NULL

)

pl__read_ndjson 583

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning
cloud locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.
schema Provide the schema. This means that polars doesn’t do schema inference.

This argument expects the complete schema, whereas schema_overrides
can be used to partially overwrite a schema. This must be a list. Names
of list elements are used to match to inferred columns.

schema_overrides
Overwrite dtypes during inference. This must be a list. Names of list
elements are used to match to inferred columns.

infer_schema_length
The maximum number of rows to scan for schema inference. If NULL, the
full data may be scanned (this is slow). Set infer_schema = FALSE to
read all columns as pl$String.

batch_size Number of rows to read in each batch.
n_rows Stop reading from the source after reading n_rows.
low_memory Reduce memory pressure at the expense of performance.
rechunk Reallocate to contiguous memory when all chunks/files are parsed.
row_index_name

If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by
row_index_name).

ignore_errors Keep reading the file even if some lines yield errors. You can also use
infer_schema = FALSE to read all columns as UTF8 to check which values
might cause an issue.

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
file_cache_ttl

Amount of time to keep downloaded cloud files since their last access
time, in seconds. Uses the POLARS_FILE_CACHE_TTL environment variable
(which defaults to 1 hour) if not given.

include_file_paths
Include the path of the source file(s) as a column with this name.

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

584 pl__read_parquet

Value

A polars DataFrame

Examples

ndjson_filename <- tempfile()
jsonlite::stream_out(iris, file(ndjson_filename), verbose = FALSE)
pl$read_ndjson(ndjson_filename)

pl__read_parquet Read into a DataFrame from Parquet file

Description

Read into a DataFrame from Parquet file

Usage

pl__read_parquet(
source,
...,
n_rows = NULL,
row_index_name = NULL,
row_index_offset = 0L,
parallel = c("auto", "columns", "row_groups", "prefiltered", "none"),
use_statistics = TRUE,
hive_partitioning = NULL,
glob = TRUE,
schema = NULL,
hive_schema = NULL,
try_parse_hive_dates = TRUE,
rechunk = FALSE,
low_memory = FALSE,
cache = TRUE,
storage_options = NULL,
retries = 2,
include_file_paths = NULL,
missing_columns = c("insert", "raise"),
allow_missing_columns = deprecated()

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning
cloud locations, see the storage_options parameter.

pl__read_parquet 585

... These dots are for future extensions and must be empty.
n_rows Stop reading from the source after reading n_rows.
row_index_name

If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by
row_index_name).

parallel This determines the direction and strategy of parallelism.
• "auto" (default): Will try to determine the optimal direction.
• "prefiltered": [Experimental] Strategy first evaluates the pushed-

down predicates in parallel and determines a mask of which rows
to read. Then, it parallelizes over both the columns and the row
groups while filtering out rows that do not need to be read. This can
provide significant speedups for large files (i.e. many row-groups)
with a predicate that filters clustered rows or filters heavily. In other
cases, prefiltered may slow down the scan compared other strategies.
Falls back to "auto" if no predicate is given.

• "columns", "row_groups": Use the specified direction.
• "none": No parallelism.

use_statistics
Use statistics in the parquet to determine if pages can be skipped from
reading.

hive_partitioning
Infer statistics and schema from Hive partitioned sources and use them to
prune reads. If NULL (default), it is automatically enabled when a single
directory is passed, and otherwise disabled.

glob Expand path given via globbing rules.
schema [Experimental] Named list of datatypes of the columns. The datatypes

must match the datatypes in the file(s). If there are extra columns that
are not in the file(s), consider also enabling allow_missing_columns.

hive_schema [Experimental] A list containing the column names and data types of the
columns by which the data is partitioned, e.g. list(a = pl$String, b
= pl$Float32). If NULL (default), the schema of the Hive partitions is
inferred.

try_parse_hive_dates
Whether to try parsing hive values as date / datetime types.

rechunk Reallocate to contiguous memory when all chunks/files are parsed.
low_memory Reduce memory pressure at the expense of performance
cache Cache the result after reading.
storage_options

Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html

586 pl__read_parquet

• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
include_file_paths

Include the path of the source file(s) as a column with this name.
missing_columns

Configuration for behavior when columns defined in the schema are miss-
ing from the data:

• "raise" (default): Raises an error.
• "insert": Inserts the missing columns using NULLs as the row val-

ues.
allow_missing_columns

[Deprecated] Deprecated in favor of missing_columns. When reading a
list of parquet files, if a column existing in the first file cannot be found
in subsequent files, the default behavior is to raise an error. However, if
allow_missing_columns is set to TRUE, a full-NULL column is returned
instead of erroring for the files that do not contain the column.

Value

A polars DataFrame

Examples

Write a Parquet file than we can then import as DataFrame
temp_file <- withr::local_tempfile(fileext = ".parquet")
as_polars_df(mtcars)$write_parquet(temp_file)
pl$read_parquet(temp_file)

Write a hive-style partitioned parquet dataset
temp_dir <- withr::local_tempdir()
as_polars_df(mtcars)$write_parquet(temp_dir, partition_by = c("cyl", "gear"))
list.files(temp_dir, recursive = TRUE)

If the path is a folder, Polars automatically tries to detect partitions
and includes them in the output
pl$read_parquet(temp_dir)

https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

pl__repeat_ 587

pl__repeat_ Construct a column of length n“ filled with the given value

Description

Construct a column of length n“ filled with the given value

Usage

pl__repeat_(value, n, ..., dtype = NULL)

Arguments

value Value to repeat.

n Length of the resulting column

... These dots are for future extensions and must be empty.

dtype Data type of the resulting column. If NULL (default), data type is inferred
from the given value. Defaults to Int32 for integer values, unless Int64 is
required to fit the given value. Defaults to Float64 for float values.

Details

If you want to construct a column in lazy mode and do not need a pre-determined length,
use pl$lit() instead.

Value

A polars expression

Examples

Construct a column with a repeated value in a lazy context.
pl$select(pl$repeat_("z", n = 3))

Specify an output dtype
pl$select(pl$repeat_(3, n = 3, dtype = pl$Int8))

588 pl__scan_csv

pl__scan_csv Lazily read from a CSV file or multiple files via glob patterns

Description

This allows the query optimizer to push down predicates and projections to the scan level,
thereby potentially reducing memory overhead.

Usage

pl__scan_csv(
source,
...,
has_header = TRUE,
separator = ",",
comment_prefix = NULL,
quote_char = "\"",
skip_rows = 0,
schema = NULL,
schema_overrides = NULL,
null_values = NULL,
missing_utf8_is_empty_string = FALSE,
ignore_errors = FALSE,
cache = FALSE,
infer_schema = TRUE,
infer_schema_length = 100,
n_rows = NULL,
encoding = c("utf8", "utf8-lossy"),
low_memory = FALSE,
rechunk = FALSE,
skip_rows_after_header = 0,
row_index_name = NULL,
row_index_offset = 0,
try_parse_dates = FALSE,
eol_char = "\n",
raise_if_empty = TRUE,
truncate_ragged_lines = FALSE,
decimal_comma = FALSE,
glob = TRUE,
storage_options = NULL,
retries = 2,
file_cache_ttl = NULL,
include_file_paths = NULL

)

pl__scan_csv 589

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning
cloud locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.
has_header Indicate if the first row of dataset is a header or not.If FALSE, column

names will be autogenerated in the following format: "column_x" with x
being an enumeration over every column in the dataset starting at 1.

separator Single byte character to use as separator in the file.
comment_prefix

A string, which can be up to 5 symbols in length, used to indicate the
start of a comment line. For instance, it can be set to # or //.

quote_char Single byte character used for quoting. Set to NULL to turn off special
handling and escaping of quotes.

skip_rows Start reading after a particular number of rows. The header will be parsed
at this offset.

schema Provide the schema. This means that polars doesn’t do schema inference.
This argument expects the complete schema, whereas schema_overrides
can be used to partially overwrite a schema. This must be a list. Names
of list elements are used to match to inferred columns.

schema_overrides
Overwrite dtypes during inference. This must be a list. Names of list
elements are used to match to inferred columns.

null_values Character vector specifying the values to interpret as NA values. It can be
named, in which case names specify the columns in which this replacement
must be made (e.g. c(col1 = "a")).

missing_utf8_is_empty_string
By default, a missing value is considered to be NA. Setting this parameter
to TRUE will consider missing UTF8 values as an empty character.

ignore_errors Keep reading the file even if some lines yield errors. You can also use
infer_schema = FALSE to read all columns as UTF8 to check which values
might cause an issue.

cache Cache the result after reading.
infer_schema If TRUE (default), the schema is inferred from the data using the first

infer_schema_length rows. When FALSE, the schema is not inferred
and will be pl$String if not specified in schema or schema_overrides.

infer_schema_length
The maximum number of rows to scan for schema inference. If NULL, the
full data may be scanned (this is slow). Set infer_schema = FALSE to
read all columns as pl$String.

n_rows Stop reading from the source after reading n_rows.
encoding Either "utf8" or "utf8-lossy". Lossy means that invalid UTF8 values

are replaced with ”?” characters.
low_memory Reduce memory pressure at the expense of performance.

590 pl__scan_csv

rechunk Reallocate to contiguous memory when all chunks/files are parsed.
skip_rows_after_header

Skip this number of rows when the header is parsed.
row_index_name

If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by
row_index_name).

try_parse_dates
Try to automatically parse dates. Most ISO8601-like formats can be in-
ferred, as well as a handful of others. If this does not succeed, the column
remains of data type pl$String.

eol_char Single byte end of line character (default: "\n"). When encountering
a file with Windows line endings ("\r\n"), one can go with the default
"\n". The extra "\r" will be removed when processed.

raise_if_empty
If FALSE, parsing an empty file returns an empty DataFrame or LazyFrame.

truncate_ragged_lines
Truncate lines that are longer than the schema.

decimal_comma Parse floats using a comma as the decimal separator instead of a period.
glob Expand path given via globbing rules.
storage_options

Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
file_cache_ttl

Amount of time to keep downloaded cloud files since their last access
time, in seconds. Uses the POLARS_FILE_CACHE_TTL environment variable
(which defaults to 1 hour) if not given.

include_file_paths
Include the path of the source file(s) as a column with this name.

Value

A polars LazyFrame

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

pl__scan_ipc 591

Examples
my_file <- tempfile()
write.csv(iris, my_file)
lazy_frame <- pl$scan_csv(my_file)
lazy_frame$collect()
unlink(my_file)

pl__scan_ipc Lazily read from an Arrow IPC (Feather v2) file or multiple files
via glob patterns

Description

This allows the query optimizer to push down predicates and projections to the scan level,
thereby potentially reducing memory overhead.

Usage

pl__scan_ipc(
source,
...,
n_rows = NULL,
cache = TRUE,
rechunk = FALSE,
row_index_name = NULL,
row_index_offset = 0L,
storage_options = NULL,
retries = 2,
file_cache_ttl = NULL,
hive_partitioning = NULL,
hive_schema = NULL,
try_parse_hive_dates = TRUE,
include_file_paths = NULL

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning
cloud locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.
n_rows Stop reading from the source after reading n_rows.
cache Cache the result after reading.
rechunk Reallocate to contiguous memory when all chunks/files are parsed.
row_index_name

If not NULL, this will insert a row index column with the given name.

592 pl__scan_ipc

row_index_offset
Offset to start the row index column (only used if the name is set by
row_index_name).

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
file_cache_ttl

Amount of time to keep downloaded cloud files since their last access
time, in seconds. Uses the POLARS_FILE_CACHE_TTL environment variable
(which defaults to 1 hour) if not given.

hive_partitioning
Infer statistics and schema from Hive partitioned sources and use them to
prune reads. If NULL (default), it is automatically enabled when a single
directory is passed, and otherwise disabled.

hive_schema [Experimental] A list containing the column names and data types of the
columns by which the data is partitioned, e.g. list(a = pl$String, b
= pl$Float32). If NULL (default), the schema of the Hive partitions is
inferred.

try_parse_hive_dates
Whether to try parsing hive values as date / datetime types.

include_file_paths
Include the path of the source file(s) as a column with this name.

Value

A polars LazyFrame

Examples

temp_dir <- tempfile()
Write a hive-style partitioned arrow file dataset
arrow::write_dataset(

mtcars,
temp_dir,
partitioning = c("cyl", "gear"),
format = "arrow",
hive_style = TRUE

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

pl__scan_ndjson 593

)
list.files(temp_dir, recursive = TRUE)

If the path is a folder, Polars automatically tries to detect partitions
and includes them in the output
pl$scan_ipc(temp_dir)$collect()

We can also impose a schema to the partition
pl$scan_ipc(temp_dir, hive_schema = list(cyl = pl$String, gear = pl$Int32))$collect()

pl__scan_ndjson Lazily read from a local or cloud-hosted NDJSON file(s)

Description

This allows the query optimizer to push down predicates and projections to the scan level,
thereby potentially reducing memory overhead.

Usage

pl__scan_ndjson(
source,
...,
schema = NULL,
schema_overrides = NULL,
infer_schema_length = 100,
batch_size = 1024,
n_rows = NULL,
low_memory = FALSE,
rechunk = FALSE,
row_index_name = NULL,
row_index_offset = 0L,
ignore_errors = FALSE,
storage_options = NULL,
retries = 2,
file_cache_ttl = NULL,
include_file_paths = NULL

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning
cloud locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.
schema Provide the schema. This means that polars doesn’t do schema inference.

This argument expects the complete schema, whereas schema_overrides
can be used to partially overwrite a schema. This must be a list. Names
of list elements are used to match to inferred columns.

594 pl__scan_ndjson

schema_overrides
Overwrite dtypes during inference. This must be a list. Names of list
elements are used to match to inferred columns.

infer_schema_length
The maximum number of rows to scan for schema inference. If NULL, the
full data may be scanned (this is slow). Set infer_schema = FALSE to
read all columns as pl$String.

batch_size Number of rows to read in each batch.

n_rows Stop reading from the source after reading n_rows.

low_memory Reduce memory pressure at the expense of performance.

rechunk Reallocate to contiguous memory when all chunks/files are parsed.
row_index_name

If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by
row_index_name).

ignore_errors Keep reading the file even if some lines yield errors. You can also use
infer_schema = FALSE to read all columns as UTF8 to check which values
might cause an issue.

storage_options
Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:

• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parame-

ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
file_cache_ttl

Amount of time to keep downloaded cloud files since their last access
time, in seconds. Uses the POLARS_FILE_CACHE_TTL environment variable
(which defaults to 1 hour) if not given.

include_file_paths
Include the path of the source file(s) as a column with this name.

Value

A polars LazyFrame

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

pl__scan_parquet 595

Examples

ndjson_filename <- tempfile()
jsonlite::stream_out(iris, file(ndjson_filename), verbose = FALSE)
pl$scan_ndjson(ndjson_filename)$collect()

pl__scan_parquet Lazily read from a local or cloud-hosted parquet file (or files)

Description

This allows the query optimizer to push down predicates and projections to the scan level,
thereby potentially reducing memory overhead.

Usage

pl__scan_parquet(
source,
...,
n_rows = NULL,
row_index_name = NULL,
row_index_offset = 0L,
parallel = c("auto", "columns", "row_groups", "prefiltered", "none"),
use_statistics = TRUE,
hive_partitioning = NULL,
glob = TRUE,
schema = NULL,
hive_schema = NULL,
try_parse_hive_dates = TRUE,
rechunk = FALSE,
low_memory = FALSE,
cache = TRUE,
storage_options = NULL,
retries = 2,
include_file_paths = NULL,
missing_columns = c("insert", "raise"),
allow_missing_columns = deprecated()

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning
cloud locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.
n_rows Stop reading from the source after reading n_rows.

596 pl__scan_parquet

row_index_name
If not NULL, this will insert a row index column with the given name.

row_index_offset
Offset to start the row index column (only used if the name is set by
row_index_name).

parallel This determines the direction and strategy of parallelism.
• "auto" (default): Will try to determine the optimal direction.
• "prefiltered": [Experimental] Strategy first evaluates the pushed-

down predicates in parallel and determines a mask of which rows
to read. Then, it parallelizes over both the columns and the row
groups while filtering out rows that do not need to be read. This can
provide significant speedups for large files (i.e. many row-groups)
with a predicate that filters clustered rows or filters heavily. In other
cases, prefiltered may slow down the scan compared other strategies.
Falls back to "auto" if no predicate is given.

• "columns", "row_groups": Use the specified direction.
• "none": No parallelism.

use_statistics
Use statistics in the parquet to determine if pages can be skipped from
reading.

hive_partitioning
Infer statistics and schema from Hive partitioned sources and use them to
prune reads. If NULL (default), it is automatically enabled when a single
directory is passed, and otherwise disabled.

glob Expand path given via globbing rules.
schema [Experimental] Named list of datatypes of the columns. The datatypes

must match the datatypes in the file(s). If there are extra columns that
are not in the file(s), consider also enabling allow_missing_columns.

hive_schema [Experimental] A list containing the column names and data types of the
columns by which the data is partitioned, e.g. list(a = pl$String, b
= pl$Float32). If NULL (default), the schema of the Hive partitions is
inferred.

try_parse_hive_dates
Whether to try parsing hive values as date / datetime types.

rechunk Reallocate to contiguous memory when all chunks/files are parsed.
low_memory Reduce memory pressure at the expense of performance
cache Cache the result after reading.
storage_options

Named vector containing options that indicate how to connect to a cloud
provider. The cloud providers currently supported are AWS, GCP, and
Azure. See supported keys here:
• aws
• gcp
• azure

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

pl__scan_parquet 597

• Hugging Face (hf://): Accepts an API key under the token parame-
ter c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment
variable.

If storage_options is not provided, Polars will try to infer the informa-
tion from environment variables.

retries Number of retries if accessing a cloud instance fails.
include_file_paths

Include the path of the source file(s) as a column with this name.
missing_columns

Configuration for behavior when columns defined in the schema are miss-
ing from the data:

• "raise" (default): Raises an error.
• "insert": Inserts the missing columns using NULLs as the row val-

ues.
allow_missing_columns

[Deprecated] Deprecated in favor of missing_columns. When reading a
list of parquet files, if a column existing in the first file cannot be found
in subsequent files, the default behavior is to raise an error. However, if
allow_missing_columns is set to TRUE, a full-NULL column is returned
instead of erroring for the files that do not contain the column.

Value

A polars LazyFrame

Examples

Write a Parquet file than we can then import as DataFrame
temp_file <- withr::local_tempfile(fileext = ".parquet")
as_polars_df(mtcars)$write_parquet(temp_file)
pl$scan_parquet(temp_file)$collect()

Write a hive-style partitioned parquet dataset
temp_dir <- withr::local_tempdir()
as_polars_df(mtcars)$write_parquet(temp_dir, partition_by = c("cyl", "gear"))
list.files(temp_dir, recursive = TRUE)

If the path is a folder, Polars automatically tries to detect partitions
and includes them in the output
pl$scan_parquet(temp_dir)$collect()

598 pl__Series

pl__Series Polars Series class (polars_series)

Description

Series are a 1-dimensional data structure, which are similar to R vectors. Within a series
all elements have the same Data Type.

Usage

pl__Series(name = NULL, values = NULL)

Arguments

name A single string or NULL. Name of the Series. Will be used as a column
name when used in a polars DataFrame. When not specified, name is set
to an empty string.

values An R object. Passed as the x param of as_polars_series().

Details

The pl$Series() function mimics the constructor of the Series class of Python Polars.
This function calls as_polars_series() internally to convert the input object to a Polars
Series.

Active bindings

• dtype: $dtype returns the data type of the Series.
• name: $name returns the name of the Series.
• shape: $shape returns a integer vector of length two with the number of length of the

Series and width of the Series (always 1).

See Also

• as_polars_series()

Examples
Constructing a Series by specifying name and values positionally:
s <- pl$Series("a", 1:3)
s

Active bindings:
s$dtype
s$name
s$shape

pl__show_versions 599

pl__show_versions Print out the version of Polars and its optional dependencies

Description

[Experimental] Print out the version of Polars and its optional dependencies.

Usage

pl__show_versions()

Details

cli enhances the terminal output, especially error messages.
These packages may be used for exporting Series to R. See <Series>$to_r_vector() for
details.

• bit64
• blob
• clock
• data.table
• hms
• tibble
• vctrs

Value

NULL invisibly.

Examples
pl$show_versions()

pl__SQLContext Initialize a new SQLContext

Description

[Experimental]

Usage

pl__SQLContext(...)

600 pl__struct

Arguments

... <dynamic-dots> Elements that are known in the current SQLContext. It
accepts any R object that can be converted to a LazyFrame via as_polars_lf().
All elements must be named.

Value

An object of class "polars_sql_context"

Examples
pl$SQLContext(mtcars = mtcars)

pl$SQLContext(mtcars = mtcars, a = data.frame(x = 1))

pl__struct Collect columns into a struct column

Description

Collect columns into a struct column

Usage

pl__struct(..., .schema = NULL)

Arguments

... <dynamic-dots> Name-value pairs of objects to be converted to polars
expressions by the as_polars_expr() function. Characters are parsed as
column names, other non-expression inputs are parsed as literals. Each
name will be used as the expression name.

.schema Optional schema that explicitly defines the struct field dtypes. If no
columns or expressions are provided, .schema keys are used to define
columns.

Value

A polars expression

Examples
Collect all columns of a dataframe into a struct by passing pl$all().
df <- pl$DataFrame(

int = 1:2,
str = c("a", "b"),
bool = c(TRUE, NA),
list = list(1:2, 3L),

pl__sum 601

)
df$select(pl$struct(pl$all())$alias("my_struct"))

Collect selected columns into a struct by either passing a list of
columns, or by specifying each column as a positional argument.
df$select(pl$struct("int", FALSE)$alias("my_struct"))

Name each struct field.
df$select(pl$struct(p = "int", q = "bool")$alias("my_struct"))$schema

Pass a schema to specify the datatype of each field in the struct:
struct_schema <- list(int = pl$UInt32, list = pl$List(pl$Float32))
df$select(

new_struct = pl$struct(pl$col("int", "list"), .schema = struct_schema)
)$unnest("new_struct")

pl__sum Sum all values

Description

This function is syntactic sugar for col(names)$sum().

Usage

pl__sum(...)

Arguments

... Name(s) of the columns to use in the aggregation.

Value

A polars expression

Examples
df <- pl$DataFrame(

a = c(1, 8, 3),
b = c(4, 5, 2),
c = c("foo", "bar", "foo")

)

Get the sum of a column
df$select(pl$sum("a"))

Get the sum of multiple columns
df$select(pl$sum("a", "b"))

602 pl__thread_pool_size

pl__sum_horizontal Compute the sum horizontally across columns

Description

Compute the sum horizontally across columns

Usage

pl__sum_horizontal(..., ignore_nulls = TRUE)

Arguments

... <dynamic-dots> Columns to aggregate horizontally. Accepts expres-
sions. Strings are parsed as column names, other non-expression inputs
are parsed as literals.

ignore_nulls A logical. If TRUE, ignore null values (default). If FALSE, any null value
in the input will lead to a null output.

Value

A polars expression

Examples

df <- pl$DataFrame(
a = c(1, 8, 3),
b = c(4, 5, NA),
c = c("x", "y", "z")

)
df$with_columns(

sum = pl$sum_horizontal("a", "b")
)

pl__thread_pool_size Return the number of threads in the Polars thread pool

Description

Return the number of threads in the Polars thread pool

Usage

pl__thread_pool_size()

pl__time_range 603

Details

The threadpool size can be overridden by setting the POLARS_MAX_THREADS environment
variable before process start. It cannot be modified once the package is loaded. It is strongly
recommended not to override this value as it will be set automatically by the engine.

Value

The integer of threads used by polars engine.

See Also

• polars_info() shows the thread pool size and other information.

Examples
pl$thread_pool_size()

pl__time_range Generate a time range

Description

Generate a time range

Usage

pl__time_range(
start = NULL,
end = NULL,
interval = "1h",
...,
closed = c("both", "left", "none", "right")

)

Arguments

start Lower bound of the time range. If omitted, defaults to 00:00:00.000.
end Upper bound of the time range. If omitted, defaults to 23:59:59.999
interval Interval of the range periods, specified as a difftime or using the Polars

duration string language (see details).
... These dots are for future extensions and must be empty.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".

Value

A polars expression

604 pl__time_ranges

Polars duration string language

Polars duration string language is a simple representation of durations. It is used in many
Polars functions that accept durations.

It has the following format:

• 1ns (1 nanosecond)

• 1us (1 microsecond)

• 1ms (1 millisecond)

• 1s (1 second)

• 1m (1 minute)

• 1h (1 hour)

• 1d (1 calendar day)

• 1w (1 calendar week)

• 1mo (1 calendar month)

• 1q (1 calendar quarter)

• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds

By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.

Examples

pl$select(
time = pl$time_range(
start = hms::parse_hms("14:00:00"),
interval = as.difftime("3:15:00")

)
)

pl__time_ranges Create a column of time ranges

Description

Create a column of time ranges

pl__time_ranges 605

Usage

pl__time_ranges(
start = NULL,
end = NULL,
interval = "1h",
...,
closed = c("both", "left", "none", "right")

)

Arguments

start Lower bound of the time range. If omitted, defaults to 00:00:00.000.
end Upper bound of the time range. If omitted, defaults to 23:59:59.999
interval Interval of the range periods, specified as a difftime or using the Polars

duration string language (see details).
... These dots are for future extensions and must be empty.
closed Define which sides of the range are closed (inclusive). One of the following:

"both" (default), "left", "right", "none".

Value

A polars expression

Polars duration string language

Polars duration string language is a simple representation of durations. It is used in many
Polars functions that accept durations.
It has the following format:

• 1ns (1 nanosecond)
• 1us (1 microsecond)
• 1ms (1 millisecond)
• 1s (1 second)
• 1m (1 minute)
• 1h (1 hour)
• 1d (1 calendar day)
• 1w (1 calendar week)
• 1mo (1 calendar month)
• 1q (1 calendar quarter)
• 1y (1 calendar year)

Or combine them: "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
By ”calendar day”, we mean the corresponding time on the next day (which may not be 24
hours, due to daylight savings). Similarly for ”calendar week”, ”calendar month”, ”calendar
quarter”, and ”calendar year”.

606 pl__when

Examples

df <- pl$DataFrame(
start = hms::parse_hms(c("09:00:00", "10:00:00")),
end = hms::parse_hms(c("11:00:00", "11:00:00"))

)
df$with_columns(time_range = pl$time_ranges("start", "end"))

pl__when Start a when-then-otherwise expression

Description

Always initiated with a pl$when()$then() and optionally followed by chaining one or more
$when()$then() statements.

An optional $otherwise() can be appended at the end. If not declared, a default of
$otherwise(NA) is used.

Similar to pl$coalesce, the value from the first condition that evaluates to TRUE will be
picked. If all conditions are FALSE, the otherwise value is picked.

Usage

pl__when(...)

Arguments

... <dynamic-dots> Condition(s) that must be met in order to apply the
subsequent statement. Accepts one or more boolean expressions, which
are implicitly combined with &.

Details

Polars computes all expressions passed to when-then-otherwise in parallel and filters after-
wards. This means each expression must be valid on its own, regardless of the conditions
in the when-then-otherwise chain.

String inputs e.g. when("string"), then("string") or otherwise("string") are parsed
as column names. pl$lit() can be used to create string values.

Value

A polars expression

pl__when 607

Examples

Below we add a column with the value 1, where column "foo" > 2 and the
value 1 + column "bar" where it isn’t.
df <- pl$DataFrame(foo = c(1, 3, 4), bar = c(3, 4, 0))
df$with_columns(

val = pl$when(pl$col("foo") > 2)$then(1)$otherwise(1 + pl$col("bar"))
)

Note that when-then always executes all expressions.
The results are folded left to right, picking the then value from the first
when condition that is true.
If no when condition is true the otherwise value is picked.
df$with_columns(

when = pl$col("foo") > 2,
then = 1,
otherwise = 1 + pl$col("bar")

)$with_columns(
val = pl$when("when")$then("then")$otherwise("otherwise")

)

Strings are parsed as column names
df$with_columns(

val = pl$when(pl$col("foo") > 2)$then("foo")$otherwise("bar")
)

Use pl$lit() to create literal values
df$with_columns(

val = pl$when(pl$col("foo") > 2)$then(pl$lit("foo"))$otherwise(pl$lit("bar"))
)

Multiple when-then statements can be chained.
df$with_columns(

val = pl$when(pl$col("foo") > 2)$
then(1)$
when(pl$col("bar") > 2)$
then(4)$
otherwise(-1)

)

The otherwise statement is optional and defaults to $otherwise(NA) if not given.
This idiom is commonly used to null out values.
df$with_columns(pl$when(pl$col("foo") == 3)$then("bar"))

Multiple predicates passed to when are combined with &
df$with_columns(

val = pl$when(pl$col("foo") > 2, pl$col("bar") < 3)$
then(pl$lit("Yes"))$
otherwise(pl$lit("No"))

)

Structs can be used as a way to return multiple values.
Here we swap the "foo" and "bar" values when "foo" is greater than 2.

608 polars_dtype

df$with_columns(
pl$when(pl$col("foo") > 2)$
then(pl$struct(foo = "bar", bar = "foo"))$
otherwise(pl$struct("foo", "bar"))$
struct$
unnest()

)

The output name of a when-then expression comes from the first then branch.
Here we try to set all columns to 0 if any column contains a value less than 2.
tryCatch(

df$with_columns(
pl$when(pl$any_horizontal(pl$all() < 2))$then(0)$otherwise(pl$all())

),
error = function(e) e

)

name$keep() could be used to give preference to the column expression.
df$with_columns(

pl$when(pl$any_horizontal(pl$all() < 2))$then(0)$otherwise(pl$all())$name$keep()
)

The logic could also be changed to move the column expression inside then.
df$with_columns(

pl$when(pl$any_horizontal(pl$all() < 2)$not())$then(pl$all())$otherwise(0)
)

polars_dtype Polars DataType class (polars_dtype)

Description

Polars supports a variety of data types that fall broadly under the following categories:

• Numeric data types: signed integers, unsigned integers, floating point numbers, and
decimals.

• Nested data types: lists, structs, and arrays.
• Temporal: dates, datetimes, times, and time deltas.
• Miscellaneous: strings, binary data, Booleans, categoricals, and enums.

All types support missing values represented by the special value null. This is not to be
conflated with the special value NaN in floating number data types; see the section about
floating point numbers for more information.

Usage

pl__Decimal(precision = 38L, scale = 0L)

pl__Datetime(time_unit = c("us", "ns", "ms"), time_zone = NULL)

polars_dtype 609

pl__Duration(time_unit = c("us", "ns", "ms"))

pl__Categorical(ordering = deprecated())

pl__Enum(categories)

pl__Array(inner, shape)

pl__List(inner)

pl__Struct(...)

Arguments

precision Single integer should be in the range 1 to 38. The maximum number of
digits in each number.

scale Single integer. Number of digits to the right of the decimal point in each
number. The default is 0.

time_unit One of "us" (default, microseconds), "ns" (nanoseconds) or "ms"(milliseconds).
Representing the unit of time.

time_zone A string or NULL (default). Representing the timezone.
ordering [Deprecated] One of "lexical" or "physical". This argument is depre-

cated and ignored. Always behaves as if "lexical" was passed.
categories A character vector. Should not contain NA values and all values should

be unique.
inner A polars data type object.
shape A integer-ish vector, representing the shape of the Array.
... <dynamic-dots> Name-value pairs of polars data type. Each pair rep-

resents a field of the Struct.

Details

Full data types table:

Type(s) Details
Boolean Boolean type that is bit packed efficiently.
Int8, Int16, Int32, Int64 Varying-precision signed integer types.
UInt8, UInt16, UInt32, UInt64 Varying-precision unsigned integer types.
Float16, Float32, Float64 Varying-precision signed floating point numbers.
Decimal [Experimental] Decimal 128-bit type with optional precision and non-negative scale.
String Variable length UTF-8 encoded string data, typically Human-readable.
Binary Stores arbitrary, varying length raw binary data.
Date Represents a calendar date.
Time Represents a time of day.
Datetime Represents a calendar date and time of day.

610 polars_envvars

Duration Represents a time duration.
Array Arrays with a known, fixed shape per series; akin to numpy arrays.
List Homogeneous 1D container with variable length.
Categorical Efficient encoding of string data where the categories are inferred at runtime.
Enum [Experimental] Efficient ordered encoding of a set of predetermined string categories.
Struct Composite product type that can store multiple fields.
Null Represents null values.

Examples

pl$Int8
pl$Int16
pl$Int32
pl$Int64
pl$UInt8
pl$UInt16
pl$UInt32
pl$UInt64
pl$Float32
pl$Float64
pl$Decimal(scale = 2)
pl$String
pl$Binary
pl$Date
pl$Time
pl$Datetime()
pl$Duration()
pl$Array(pl$Int32, c(2, 3))
pl$List(pl$Int32)
pl$Categorical()
pl$Enum(c("a", "b", "c"))
pl$Struct(a = pl$Int32, b = pl$String)
pl$Null
pl$Unknown

polars_envvars Get polars environment variables

Description

[Experimental] Get polars environment variables

Usage

polars_envvars()

polars_envvars 611

Details

The following envvars are available (in alphabetical order, with the default value in paren-
thesis):

• POLARS_FMT_MAX_COLS (5): Set the number of columns that are visible when displaying
tables. If negative, all columns are displayed.

• POLARS_FMT_MAX_ROWS (8): Set the number of rows that are visible when displaying
tables. If negative, all rows are displayed. This applies to both DataFrame and Series.

• POLARS_FMT_STR_LEN (32): Maximum number of characters to display;
• POLARS_FMT_TABLE_CELL_ALIGNMENT ("LEFT"): set the table cell alignment. Can be

"LEFT", "CENTER", "RIGHT";
• POLARS_FMT_TABLE_CELL_LIST_LEN (3): Maximum number of elements of list vari-

ables to display;
• POLARS_FMT_TABLE_CELL_NUMERIC_ALIGNMENT ("LEFT"): Set the table cell alignment

for numeric columns. Can be "LEFT", "CENTER", "RIGHT";
• POLARS_FMT_TABLE_DATAFRAME_SHAPE_BELOW ("0"): print the DataFrame shape in-

formation below the data when displaying tables. Can be "0" or "1".
• POLARS_FMT_TABLE_FORMATTING ("UTF8_FULL_CONDENSED"): Set table formatting style.

Possible values:
– "ASCII_FULL": ASCII, with all borders and lines, including row dividers.
– "ASCII_FULL_CONDENSED": Same as ASCII_FULL, but with dense row spacing.
– "ASCII_NO_BORDERS": ASCII, no borders.
– "ASCII_BORDERS_ONLY": ASCII, borders only.
– "ASCII_BORDERS_ONLY_CONDENSED": ASCII, borders only, dense row spacing.
– "ASCII_HORIZONTAL_ONLY": ASCII, horizontal lines only.
– "ASCII_MARKDOWN": ASCII, Markdown compatible.
– "UTF8_FULL": UTF8, with all borders and lines, including row dividers.
– "UTF8_FULL_CONDENSED": Same as UTF8_FULL, but with dense row spacing.
– "UTF8_NO_BORDERS": UTF8, no borders.
– "UTF8_BORDERS_ONLY": UTF8, borders only.
– "UTF8_HORIZONTAL_ONLY": UTF8, horizontal lines only.
– "NOTHING": No borders or other lines.

• POLARS_FMT_TABLE_HIDE_COLUMN_DATA_TYPES ("0"): Hide table column data types
(i64, f64, str etc.). Can be "0" or "1".

• POLARS_FMT_TABLE_HIDE_COLUMN_NAMES ("0"): Hide table column names. Can be
"0" or "1".

• POLARS_FMT_TABLE_HIDE_COLUMN_SEPARATOR ("0"): Hide the "---" separator be-
tween the column names and column types. Can be "0" or "1".

• POLARS_FMT_TABLE_HIDE_DATAFRAME_SHAPE_INFORMATION ("0"): Hide the DataFrame
shape information when displaying tables. Can be "0" or "1".

• POLARS_FMT_TABLE_INLINE_COLUMN_DATA_TYPE ("0"): Moves the data type inline
with the column name (to the right, in parentheses). Can be "0" or "1".

612 polars_expr

• POLARS_FMT_TABLE_ROUNDED_CORNERS ("0"): Apply rounded corners to UTF8-styled
tables (only applies to UTF8 formats).

• POLARS_MAX_THREADS (<variable>): Maximum number of threads used to initialize
the thread pool. The thread pool is locked once polars is loaded, so this envvar must
be set before loading the package.

• POLARS_STREAMING_CHUNK_SIZE (<variable>): Chunk size used in the streaming en-
gine. Integer larger than 1. By default, the chunk size is determined by the schema and
size of the thread pool. For some datasets (esp. when you have large string elements)
this can be too optimistic and lead to Out of Memory errors.

• POLARS_TABLE_WIDTH (<variable>): Set the maximum width of a table in characters.
• POLARS_VERBOSE ("0"): Enable additional verbose/debug logging.
• POLARS_WARN_UNSTABLE ("0"): Issue a warning when unstable functionality is used.

Enabling this setting may help avoid functionality that is still evolving, potentially
reducing maintenance burden from API changes and bugs. Can be "0" or "1".

The following configuration options are present in the Python API but currently cannot
be changed in R: decimal separator, thousands separator, float precision, float formatting,
trimming decimal zeros.

Value

polars_envvars() returns a named list where the names are the names of environment
variables and values are their values.

Examples
polars_envvars()

By default, long string values are truncated.
df <- pl$DataFrame(x = "This is a very very very long sentence.")
df

We can temporarily allow for wider columns with `withr::with_envvar()`:
withr::with_envvar(

list(POLARS_FMT_STR_LEN = "50"),
print(df)

)

Or we could set it permanently with `Sys.setenv(POLARS_FMT_STR_LEN = "50")`.

polars_expr Polars expression class (polars_expr)

Description

An expression is a tree of operations that describe how to construct one or more Series.
As the outputs are Series, it is straightforward to apply a sequence of expressions each of
which transforms the output from the previous step. See examples for details.

polars_info 613

See Also

• pl$lit(): Create a literal expression.

• pl$col(): Create an expression representing column(s) in a DataFrame.

Examples

An expression:
1. Select column `foo`,
2. Then sort the column (not in reversed order)
3. Then take the first two values of the sorted output
pl$col("foo")$sort()$head(2)

Expressions will be evaluated inside a context, such as `<DataFrame>$select()`
df <- pl$DataFrame(

foo = c(1, 2, 1, 2, 3),
bar = c(5, 4, 3, 2, 1),

)

df$select(
pl$col("foo")$sort()$head(3), # Return 3 values
pl$col("bar")$filter(pl$col("foo") == 1)$sum(), # Return a single value

)

polars_info Report information of the package

Description

[Experimental] This function reports the following information:

• Package versions (the Polars R package version and the dependent Rust Polars crate
version)

• Compatibility information of Polars.

• Number of threads used by Polars

• Rust feature flags (See vignette("install", "polars") for details)

Usage

polars_info()

Value

A list with information of the package

614 polars_options

Examples

polars_info()

polars_info()$versions

polars_info()$features$nightly

polars_options Get and reset polars options

Description

[Experimental] polars_options() returns a list of options for polars. Options can be
set with options(). Note that options must be prefixed with ”polars.”, e.g to modify
the option to_r_vector.int64 you need to pass options(polars.to_r_vector.int64
=). See below for a description of all options.

polars_options_reset() brings all polars options back to their default value.

Usage

polars_options()

polars_options_reset()

Details

The following options are available (in alphabetical order, with the default value in paren-
thesis):

• compat_level will affect as_nanoarrow_array_stream(<series>)’s polars_compat_level
argument and <lazyframe>$sink_ipc()’s compat_level argument. See the docu-
mentation of those functions for details.

• for all to_r_vector.* options, see arguments of to_r_vector().

• df_knitr_print (TODO: possible values??)

Value

polars_options() returns a named list where the names are option names and values are
option values.

polars_options_reset() doesn’t return anything.

QueryOptFlags 615

Examples

library(hms)
polars_options()
withr::with_options(

list(polars.to_r_vector.int64 = "character"),
polars_options()

)

QueryOptFlags The set of the optimizations considered during query optimization

Description

[Experimental]

Usage

pl__QueryOptFlags(
...,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
comm_subplan_elim = TRUE,
comm_subexpr_elim = TRUE,
cluster_with_columns = TRUE,
check_order_observe = TRUE,
fast_projection = TRUE

)

Arguments

... These dots are for future extensions and must be empty.
predicate_pushdown

A logical, indicates predicate pushdown optimization.
projection_pushdown

A logical, indicates projection pushdown optimization.
simplify_expression

A logical, indicates simplify expression optimization.
slice_pushdown

A logical, indicates slice pushdown optimization.
comm_subplan_elim

A logical, indicates trying to cache branching subplans that occur on
self-joins or unions.

616 s3-arithmetic

comm_subexpr_elim
A logical, indicates trying to cache common subexpressions.

cluster_with_columns
A logical, indicates to combine sequential independent calls to with_columns.

check_order_observe
A logical, indicates not to maintain order if the order would not be ob-
served.

fast_projection
A logical, indicates to replace simple projections with a faster inlined
projection that skips the expression engine.

Value

A QueryOptFlags object.

Examples
opt_flags <- pl$QueryOptFlags()
opt_flags

s3-arithmetic Arithmetic operators for Polars objects

Description

Arithmetic operators for Polars objects

Usage

S3 method for class 'polars_expr'
e1 + e2

S3 method for class 'polars_expr'
e1 - e2

S3 method for class 'polars_expr'
e1 * e2

S3 method for class 'polars_expr'
e1 / e2

S3 method for class 'polars_expr'
e1 %% e2

S3 method for class 'polars_expr'
e1 %/% e2

S3 method for class 'polars_expr'

s3-arithmetic 617

e1 ^ e2

S3 method for class 'polars_expr'
e1 < e2

Arguments

e1, e2 Polars objects of numeric type or objects that can be coerced to a polars
object of numeric type. Only + can work with two string inputs.

Value

A Polars object the same type as the input.

See Also

• <Expr>$add()
• <Expr>$sub()
• <Expr>$mul()
• <Expr>$true_div()
• <Expr>$pow()
• <Expr>$mod()
• <Expr>$floor_div()

Examples

pl$lit(5) + 10
5 + pl$lit(10)
pl$lit(5) + pl$lit(10)
+pl$lit(1)

This will not raise an error as it is not actually evaluated.
expr = pl$lit(5) + "10"
expr

Will raise an error as it is evaluated.
tryCatch(

pl$select(expr),
error = function(e) e

)

`+` accepts two string inputs
pl$select(pl$lit("a") + "b")

as_polars_series(5) + 10
+as_polars_series(5)
-as_polars_series(5)

618 series_list_to_struct

series_list_to_struct
Convert the series of type List to a series of type Struct

Description

Convert the series of type List to a series of type Struct

Usage

series_list_to_struct(
n_field_strategy = c("first_non_null", "max_width"),
fields = NULL

)

Arguments
n_field_strategy

One of "first_non_null" or "max_width". Strategy to determine the
number of fields of the struct.
• "first_non_null" (default): Set number of fields equal to the length

of the first non zero-length sublist.
• "max_width": Set number of fields as max length of all sublists.

If the field argument is character, this argument will be ignored.
fields [Experimental] NULL (default) or character vector of field names, or a

function that takes an integer index and returns character. If the name
and number of the desired fields is known in advance, character vector of
field names can be given, which will be assigned by index. Otherwise, to
dynamically assign field names, a custom function can be used; if neither
are set, fields will be field_0, field_1... See the examples for details.

Value

A polars Series

See Also

• <expr>$list$to_struct()

Examples
Convert list to struct with default field name assignment:
s1 <- as_polars_series(list(0:2, 0:1))
s2 <- s1$list$to_struct()
s2
s2$struct$fields

Convert list to struct with field name assignment by

series_struct_unnest 619

function/index:
s3 <- s1$list$to_struct(fields = \(idx) sprintf("n%02d", idx))
s3$struct$fields

Convert list to struct with field name assignment by
index from a list of names:
s1$list$to_struct(fields = c("one", "two", "three"))$struct$unnest()

series_struct_unnest Convert this struct Series to a DataFrame with a separate column
for each field

Description

Convert this struct Series to a DataFrame with a separate column for each field

Usage

series_struct_unnest()

Value

A polars DataFrame

See Also

• as_polars_df()

Examples

s <- as_polars_series(data.frame(a = c(1, 3), b = c(2, 4)))
s$struct$unnest()

series_str_json_decode
Parse string values as JSON

Description

Throws an error if invalid JSON strings are encountered.

Usage

series_str_json_decode(dtype = NULL, ..., infer_schema_length = 100L)

620 series_str_strptime

Arguments

dtype The dtype to cast the extracted value to, or NULL (default). If NULL, the
dtype will be inferred from the JSON value.

... These dots are for future extensions and must be empty.
infer_schema_length

The maximum number of rows to scan for schema inference. If set to
NULL, the full data may be scanned (this is slow). Only used if the dtype
argument is NULL.

Value

A polars Series

See Also

• <expr>strjson_decode()

Examples
s1 <- as_polars_series(c('{"a":1, "b": true}', NA, '{"a":2, "b": false}'))

s2 <- s1strjson_decode()
s2
s2$dtype

s3 <- s1strjson_decode(pl$Struct(a = pl$UInt8, b = pl$Boolean))
s3
s3$dtype

series_str_strptime Convert a String Series into a Date/Datetime/Time Series

Description

Similar to the strptime() function.

Usage

series_str_strptime(
dtype,
format = NULL,
...,
strict = TRUE,
exact = TRUE,
cache = TRUE,
ambiguous = c("raise", "earliest", "latest", "null")

)

series_str_strptime 621

Arguments

dtype The data type to convert into. Can be either pl$Date, pl$Datetime, or
pl$Time.

format Format to use for conversion. Refer to the chrono crate documentation for
the full specification. Example: "%Y-%m-%d %H:%M:%S". If NULL (default),
the format is inferred from the data. Notice that time zone %Z is not
supported and will just ignore timezones. Numeric time zones like %z or
%:z are supported.

... These dots are for future extensions and must be empty.
strict If TRUE (default), raise an error if a single string cannot be parsed. If

FALSE, produce a polars null.
exact If TRUE (default), require an exact format match. If FALSE, allow the

format to match anywhere in the target string. Note that using exact =
FALSE introduces a performance penalty - cleaning your data beforehand
will almost certainly be more performant.

cache Use a cache of unique, converted dates to apply the datetime conversion.
ambiguous Determine how to deal with ambiguous datetimes. Character vector or

Series containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a null value

Details

When parsing a Datetime the column precision will be inferred from the format string, if
given, e.g.: "%F %T%.3f" => pl$Datetime("ms"). If no fractional second component is
found then the default is "us" (microsecond).

Value

A polars Series

See Also

• <expr>strstrptime()
• <series>strto_datetime()

Examples
s1 <- as_polars_series(c("2020-01-01 01:00Z", "2020-01-01 02:00Z"))

s1strstrptime(pl$Datetime(), "%Y-%m-%d %H:%M%#z")

Auto infer format
s1strstrptime(pl$Datetime())

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

622 series_str_to_datetime

Datetime with timezone is interpreted as UTC timezone
s2 <- as_polars_series(c("2020-01-01T01:00:00+09:00"))
s2strstrptime(pl$Datetime())

Dealing with different formats.
s3 <- as_polars_series(

c(
"2021-04-22",
"2022-01-04 00:00:00",
"01/31/22",
"Sun Jul 8 00:34:60 2001"

)
)

pl$select(pl$coalesce(
s3strstrptime(pl$Date, "%F", strict = FALSE),
s3strstrptime(pl$Date, "%F %T", strict = FALSE),
s3strstrptime(pl$Date, "%D", strict = FALSE),
s3strstrptime(pl$Date, "%c", strict = FALSE),

))$to_series()

series_str_to_datetime
Convert a String Series into a Datetime Series

Description

Convert a String Series into a Datetime Series

Usage

series_str_to_datetime(
format = NULL,
...,
time_unit = NULL,
time_zone = NULL,
strict = TRUE,
exact = TRUE,
cache = TRUE,
ambiguous = c("raise", "earliest", "latest", "null")

)

Arguments

format Format to use for conversion. Refer to the chrono crate documentation for
the full specification. Example: "%Y-%m-%d %H:%M:%S". If NULL (default),
the format is inferred from the data. Notice that time zone %Z is not
supported and will just ignore timezones. Numeric time zones like %z or
%:z are supported.

https://docs.rs/chrono/latest/chrono/format/strftime/index.html

series_str_to_decimal 623

... These dots are for future extensions and must be empty.
time_unit Unit of time for the resulting Datetime column. If NULL (default), the

time unit is inferred from the format string if given, e.g.: "%F %T%.3f"
=> pl$Datetime("ms"). If no fractional second component is found, the
default is "us" (microsecond).

time_zone for the resulting Datetime column.
strict If TRUE (default), raise an error if a single string cannot be parsed. If

FALSE, produce a polars null.
exact If TRUE (default), require an exact format match. If FALSE, allow the

format to match anywhere in the target string. Note that using exact =
FALSE introduces a performance penalty - cleaning your data beforehand
will almost certainly be more performant.

cache Use a cache of unique, converted dates to apply the datetime conversion.
ambiguous Determine how to deal with ambiguous datetimes. Character vector or

Series containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a null value

Value

A polars Series

See Also

• <expr>strto_datetime()

Examples
s <- as_polars_series(c("2020-01-01 01:00Z", "2020-01-01 02:00Z"))
sstrto_datetime("%Y-%m-%d %H:%M%#z")
sstrto_datetime(time_unit = "ms")

series_str_to_decimal
Convert a String Series into a Decimal Series

Description

[Experimental]

Usage

series_str_to_decimal(..., scale = NULL, inference_length = 100L)

624 series__alias

Arguments

... These dots are for future extensions and must be empty.
scale Number of digits after the comma to use for the decimals, or NULL (de-

fault). If NULL, the method will infer the scale from the data.
inference_length

Number of elements to parse to determine the precision and scale of
the decimal data type.

Value

A polars Series

See Also

• <expr>strto_decimal()

Examples

s <- as_polars_series(c(
"40.12",
"3420.13",
"120134.19",
"3212.98",
"12.90",
"143.09",
"143.9"

))

sstrto_decimal()
sstrto_decimal(scale = 4)

series__alias Rename the Series

Description

<Series>$rename() is an alias for <Series>$alias().

Usage

series__alias(name)

series__rename(name)

Arguments

name The new name.

series__chunk_lengths 625

Value

A polars Series

Examples

series <- pl$Series("a", 1:3)

series$alias("b")
series$rename("b")

series__chunk_lengths
Get the length of each individual chunk

Description

Get the length of each individual chunk

Usage

series__chunk_lengths()

Value

A numeric vector

Examples

s <- pl$Series("a", c(1, 2, 3))
s$chunk_lengths()

s2 <- pl$Series("a", c(4, 5, 6))

Concatenate Series with rechunk = TRUE
pl$concat(s, s2, rechunk = TRUE)$chunk_lengths()

Concatenate Series with rechunk = FALSE
pl$concat(s, s2, rechunk = FALSE)$chunk_lengths()

626 series__n_chunks

series__is_empty Check if the Series is empty

Description

Check if the Series is empty

Usage

series__is_empty()

Value

TRUE or FALSE

Examples
s <- pl$Series("a", integer())
s$is_empty()

series__n_chunks Get the number of chunks that this Series contains

Description

Get the number of chunks that this Series contains

Usage

series__n_chunks()

Value

An integer value

Examples
s <- pl$Series("a", c(1, 2, 3))
s$n_chunks()

s2 <- pl$Series("a", c(4, 5, 6))

Concatenate Series with rechunk = TRUE
pl$concat(s, s2, rechunk = TRUE)$n_chunks()

Concatenate Series with rechunk = FALSE
pl$concat(s, s2, rechunk = FALSE)$n_chunks()

series__rechunk 627

series__rechunk Create a single chunk of memory for this Series

Description

Create a single chunk of memory for this Series

Usage

series__rechunk(..., in_place = FALSE)

Arguments

... These dots are for future extensions and must be empty.
in_place Bool to indicate if the operation should be done in place.

Value

A polars Series

Examples
s <- pl$Series("a", c(1, 2, 3))
s$n_chunks()

s2 <- pl$Series("a", c(4, 5, 6))
s <- pl$concat(s, s2, rechunk = FALSE)
s$n_chunks()

s$rechunk()$n_chunks()

series__serialize Serialize and deserialize a Series

Description

Serialize and deserialize a Series

Usage

series__serialize()

pl__deserialize_series(data)

Arguments

data A raw vector of serialized Series.

628 series__shrink_dtype

Details

Similar to polars.Series.__getstate__() and polars.Series.__setstate__() in Python
Polars.

Value
• <Series>$serialize() returns a raw vector of serialized Series.

• pl$deserialize_series() returns a deserialized Series.

Examples

serialized <- as_polars_series(1:3)$serialize()
serialized

pl$deserialize_series(serialized)

series__shrink_dtype Shrink numeric values to the minimal required datatype

Description

Shrink numeric values to the minimal required datatype

Usage

series__shrink_dtype()

Value

A polars Series

Examples

s <- as_polars_series(1:6)
s

s$shrink_dtype()

series__to_frame 629

series__to_frame Cast this Series to a DataFrame

Description

Cast this Series to a DataFrame

Usage

series__to_frame(name = NULL)

Arguments

name A character or NULL. If not NULL, name/rename the Series column in the
new DataFrame. If NULL, the column name is taken from the Series name.

Value

A polars DataFrame

See Also

• as_polars_df()

Examples

s <- pl$Series("a", c(123, 456))
df <- s$to_frame()
df

df <- s$to_frame("xyz")
df

series__to_r_vector Export the Series as an R vector

Description

Export the Series as an R vector.

630 series__to_r_vector

Usage

series__to_r_vector(
...,
uint8 = c("integer", "raw"),
int64 = c("double", "character", "integer", "integer64"),
date = c("Date", "IDate"),
time = c("hms", "ITime"),
struct = c("dataframe", "tibble"),
decimal = c("double", "character"),
as_clock_class = FALSE,
ambiguous = c("raise", "earliest", "latest", "null"),
non_existent = c("raise", "null")

)

Arguments

... These dots are for future extensions and must be empty.
uint8 [Experimental] Determine how to convert Polars’ UInt8 type values to R

type. One of the followings:
• "integer" (default): Convert to the R’s integer type.
• "raw": Convert to the R’s raw type. If the value is null, export as

00.
int64 [Experimental] Determine how to convert Polars’ Int64, UInt32, or UInt64

type values to R type. One of the followings:
• "double" (default): Convert to the R’s double type. Accuracy may

be degraded.
• "character": Convert to the R’s character type.
• "integer": Convert to the R’s integer type. If the value is out of the

range of R’s integer type, export as NA_integer_.
• "integer64": Convert to the bit64::integer64 class. The bit64 pack-

age must be installed. If the value is out of the range of bit64::integer64,
export as bit64::NA_integer64_.

date [Experimental] Determine how to convert Polars’ Date type values to R
class. One of the followings:
• "Date" (default): Convert to the R’s Date class.
• "IDate": Convert to the data.table::IDate class.

time [Experimental] Determine how to convert Polars’ Time type values to R
class. One of the followings:
• "hms" (default): Convert to the hms::hms class. If the hms package

is not installed, a warning will be shown.
• "ITime": Convert to the data.table::ITime class. The data.table

package must be installed.
struct [Experimental] Determine how to convert Polars’ Struct type values to R

class. One of the followings:

series__to_r_vector 631

• "dataframe" (default): Convert to the R’s data.frame class.
• "tibble": Convert to the tibble class. If the tibble package is not

installed, a warning will be shown.
decimal [Experimental] Determine how to convert Polars’ Decimal type values to

R type. One of the followings:
• "double" (default): Convert to the R’s double type.
• "character": Convert to the R’s character type.

as_clock_class
[Experimental] A logical value indicating whether to export datetimes
and duration as the clock package’s classes.
• FALSE (default): Duration values are exported as difftime and date-

time values are exported as POSIXct. Accuracy may be degraded.
• TRUE: Duration values are exported as clock_duration, datetime with-

out timezone values are exported as clock_naive_time, and datetime
with timezone values are exported as clock_zoned_time. For this
case, the clock package must be installed. Accuracy will be main-
tained.

ambiguous [Experimental] Determine how to deal with ambiguous datetimes. Only
applicable when as_clock_class is set to FALSE and datetime without
timezone values are exported as POSIXct. Character vector or expression
containing the followings:
• "raise" (default): Throw an error
• "earliest": Use the earliest datetime
• "latest": Use the latest datetime
• "null": Return a NA value

non_existent [Experimental] Determine how to deal with non-existent datetimes. Only
applicable when as_clock_class is set to FALSE and datetime without
timezone values are exported as POSIXct. One of the followings:
• "raise" (default): Throw an error
• "null": Return a NA value

Details

The class/type of the exported object depends on the DataType of the Series as follows:

• Boolean: logical.
• UInt8: integer or raw, depending on the uint8 argument.
• UInt16, Int8, Int16, Int32: integer.
• Int64, UInt32, UInt64: double, character, integer, or bit64::integer64, depending on

the int64 argument.
• Float32, Float64: double.
• Decimal: double.
• String: character.
• Categorical: factor.

632 series__to_r_vector

• Date: Date or data.table::IDate, depending on the date argument.
• Time: hms::hms or data.table::ITime, depending on the time argument.
• Datetime (without timezone): POSIXct or clock_naive_time, depending on the as_clock_class

argument.
• Datetime (with timezone): POSIXct or clock_zoned_time, depending on the as_clock_class

argument.
• Duration: difftime or clock_duration, depending on the as_clock_class argument.
• Binary: blob::blob.
• Null: vctrs::unspecified.
• List, Array: vctrs::list_of.
• Struct: data.frame or tibble, depending on the struct argument.

Value

A vector

Examples
Struct values handling
series_struct <- as_polars_series(

data.frame(
a = 1:2,
b = I(list(data.frame(c = "foo"), data.frame(c = "bar")))

)
)
series_struct

Export Struct as normal R data frame
series_struct$to_r_vector()

Export Struct as tibble data frame
series_struct$to_r_vector(struct = "tibble")

UInt8 values handling
series_uint8 <- as_polars_series(c(NA, 0, 255))$cast(pl$UInt8)
series_uint8

Export UInt8 as integer
series_uint8$to_r_vector(uint8 = "integer")

Export UInt8 as raw (`null` is exported as `00`)
series_uint8$to_r_vector(uint8 = "raw")

Other Integer values handlings
series_uint64 <- as_polars_series(

c(NA, "0", "4294967295", "18446744073709551615")
)$cast(pl$UInt64)
series_uint64

sql_context__execute 633

Export UInt64 as double
series_uint64$to_r_vector(int64 = "double")

Export UInt64 as character
series_uint64$to_r_vector(int64 = "character")

Export UInt64 as integer (overflow occurs)
series_uint64$to_r_vector(int64 = "integer")

Export UInt64 as bit64::integer64 (overflow occurs)
if (requireNamespace("bit64", quietly = TRUE)) {

series_uint64$to_r_vector(int64 = "integer64")
}

Duration values handling
series_duration <- as_polars_series(

c(NA, -1000000000, -10, -1, 1000000000)
)$cast(pl$Duration("ns"))
series_duration

Export Duration as difftime
series_duration$to_r_vector(as_clock_class = FALSE)

Export Duration as clock_duration
if (requireNamespace("clock", quietly = TRUE)) {

series_duration$to_r_vector(as_clock_class = TRUE)
}

Datetime values handling
series_datetime <- as_polars_series(

as.POSIXct(
c(NA, "1920-01-01 00:00:00", "1970-01-01 00:00:00", "2020-01-01 00:00:00"),
tz = "UTC"

)
)$cast(pl$Datetime("ns", "UTC"))
series_datetime

Export zoned datetime as POSIXct
series_datetime$to_r_vector(as_clock_class = FALSE)

Export zoned datetime as clock_zoned_time
if (requireNamespace("clock", quietly = TRUE)) {

series_datetime$to_r_vector(as_clock_class = TRUE)
}

sql_context__execute Parse the given SQL query and execute it against the registered
frame data

Description

[Experimental]

634 sql_context__execute

Usage

sql_context__execute(query)

Arguments

query A valid string SQL query.

Value

A polars LazyFrame

Examples

Declare frame data and register with a SQLContext:
df <- pl$DataFrame(

title = c(
"The Godfather",
"The Dark Knight",
"Schindler's List",
"Pulp Fiction",
"The Shawshank Redemption"

),
release_year = c(1972, 2008, 1993, 1994, 1994),
budget = c(6 * 1e6, 185 * 1e6, 22 * 1e6, 8 * 1e6, 25 * 1e6),
gross = c(134821952, 533316061, 96067179, 107930000, 28341469),
imdb_score = c(9.2, 9, 8.9, 8.9, 9.3)

)

ctx <- pl$SQLContext(films = df)
ctx$execute(

"
SELECT title, release_year, imdb_score
FROM films
WHERE release_year > 1990
ORDER BY imdb_score DESC
"

)$collect()

Execute a GROUP BY query:
ctx$execute(

"
SELECT

MAX(release_year / 10) * 10 AS decade,
SUM(gross) AS total_gross,
COUNT(title) AS n_films,

FROM films
GROUP BY (release_year / 10) -- decade
ORDER BY total_gross DESC
"

)$collect()

sql_context__register 635

sql_context__register
Register a single frame as a table, using the given name

Description

[Experimental]

Usage

sql_context__register(name, frame = NULL)

Arguments

name Name of the table.
frame Object to associate with this table name.

Value

An object of class "polars_sql_context"

Examples

df <- pl$DataFrame(x = 1)
ctx <- pl$SQLContext()
ctx$register("frame_data", df)$execute("SELECT * FROM frame_data")$collect()

sql_context__register_many
Register multiple eager/lazy frames as tables, using the associated
names

Description

[Experimental]

Usage

sql_context__register_many(...)

Arguments

... <dynamic-dots> Elements that are known in the current SQLContext. It
accepts any R object that can be converted to a LazyFrame via as_polars_lf().
All elements must be named.

636 sql_context__tables

Value

An object of class "polars_sql_context"

Examples

df <- pl$DataFrame(x = 1)
df2 <- pl$DataFrame(x = 2)
df3 <- pl$DataFrame(x = 3)

ctx <- pl$SQLContext()
ctx$register_many(tab1 = df, tab2 = df2, tab3 = df3)

sql_context__tables Return a list of the registered table names

Description

[Experimental]

Usage

sql_context__tables()

Details

This method will return the same values as the ”SHOW TABLES” SQL statement, but as
a vector instead of a frame.

Value

A character vector

Examples

Executing as SQL:
frame_data <- pl$DataFrame(x = 1)
ctx <- pl$SQLContext(hello_world=frame_data, foo = data.frame(x = 2))
ctx$execute("SHOW TABLES")$collect()

Calling the method:
ctx$tables()

sql_context__unregister 637

sql_context__unregister
Unregister one or more frames by name

Description

[Experimental]

Usage

sql_context__unregister(names)

Arguments

names Names of the tables to unregister.

Value

An object of class "polars_sql_context"

Examples
df <- pl$DataFrame(ints = 9:5)
lf1 <- pl$LazyFrame(text = letters[1:3])
lf2 <- pl$LazyFrame(misc = "testing1234")

Register with a SQLContext object:
ctx <- pl$SQLContext(test1 = df, test2 = lf1, test3 = lf2)
ctx$tables()

Unregister one or more of the tables:
ctx$unregister(c("test1", "test3"))$tables()
ctx$unregister("test2")$tables()

Index

∗ datasets
cs, 43
pl, 532

*.polars_expr (s3-arithmetic), 616
+.polars_expr (s3-arithmetic), 616
-.polars_expr (s3-arithmetic), 616
/.polars_expr (s3-arithmetic), 616
<.polars_expr (s3-arithmetic), 616
<DataFrame>$get_columns(), 21
<DataFrame>$group_by_dynamic(), 117
<DataFrame>$partition_by(), 89
<DataFrame>$rolling(), 92
<DataFrame>$to_struct(), 34
<Expr>$add(), 617
<Expr>$floor_div(), 361, 434, 617
<Expr>$mod(), 334, 617
<Expr>$mul(), 617
<Expr>$pow(), 617
<Expr>strcontains(), 252
<Expr>strreplace(), 270
<Expr>strreplace_all(), 269
<Expr>strstrptime(), 283, 288
<Expr>$sub(), 617
<Expr>$true_div(), 334, 617
<LazyFrame>$collect(), 26, 565
<LazyFrame>$group_by_dynamic(), 490
<LazyFrame>$head(), 511
<LazyFrame>$rolling(), 469
<Series>$alias(), 624
<Series>$rename(), 624
<Series>$struct$unnest(), 25, 26
<Series>$to_frame(), 26
<Series>$to_r_vector(), 21, 34, 599
<dataframe>$with_columns(), 104
<expr>arrto_struct(), 232
<expr>dtoffset_by(), 559
<expr>dtoffset_by(1d), 559
<expr>$list$to_struct(), 618
<expr>strjson_decode(), 620

<expr>strstrptime(), 285, 621
<expr>strto_date(), 281
<expr>strto_datetime(), 281, 623
<expr>strto_decimal(), 624
<expr>strto_time(), 281
<lazyframe>$sink_ipc(), 614
<series>$list$to_struct(), 231, 232
<series>$shrink_dtype, 421
<series>strjson_decode(), 264
<series>strto_datetime(), 281, 285,

621
<series>strto_decimal(), 285
arreval(), 150
$cast(), 376, 547, 565
$collect(), 486, 498, 502, 528
$drop_nans(), 320
$drop_nulls(), 319
dtbase_utc_offset(), 179
dtconvert_time_zone(), 191
dtdst_offset(), 174
dtto_string(), 194
$eq(), 321
$eq_missing(), 321
$explode(), 333
$get(), 351
$head(), 354
$list$eval(), 206
$list$gather(), 216
$list$get(), 214
$ne_missing(), 364
$prefix(), 245
$profile(), 454
$replace(), 379
$replace_strict(), 378
$rolling(), 384, 386, 387, 389, 391, 392,

394, 396, 397, 399, 401, 403,
405–407, 409, 410, 412, 414, 415,
490

$set_difference(), 225

638

INDEX 639

$set_symmetric_difference(), 223
$sink_ipc(), 454, 486
$sink_parquet(), 454, 486
$sort(), 306, 307, 431
strcontains(), 261
strends_with(), 251, 261
strfind(), 251
strstart_with(), 251, 261
$strip_chars_end(), 279
$strip_chars_start(), 279
$suffix(), 243
$to_frame(), 26
$value_counts(), 434, 435
%/%.polars_expr (s3-arithmetic), 616
%%.polars_expr (s3-arithmetic), 616
^.polars_expr (s3-arithmetic), 616

abort(), 42
abs(n), 94, 126
Arithmetic operators, 291, 334, 361,

362, 371, 428, 434
Array, 169
array, 67
as.data.frame(<polars_data_frame>),

27
as.data.frame(<polars_object>), 39
as.data.frame.polars_data_frame, 17
as.data.frame.polars_lazy_frame

(as.data.frame.polars_data_frame),
17

as.list(<polars_data_frame>), 27, 87
as.list.polars_data_frame, 19
as.list.polars_lazy_frame

(as.list.polars_data_frame),
19

as_nanoarrow_array_stream(<series>),
614

as_nanoarrow_array_stream.polars_data_frame,
22

as_nanoarrow_array_stream.polars_lazy_frame
(as_nanoarrow_array_stream.polars_data_frame),
22

as_nanoarrow_array_stream.polars_series
(as_nanoarrow_array_stream.polars_data_frame),
22

as_polars_df, 24
as_polars_df(), 17, 20, 24, 30, 34, 37,

547, 619, 629
as_polars_df(x, ...), 30

as_polars_expr, 27
as_polars_expr(), 27, 119, 120, 135, 137,

387, 390, 393, 397, 400, 404, 408,
411, 415, 491, 492, 517, 519, 538,
548–550, 559, 560, 568, 569, 600

as_polars_lf, 30
as_polars_lf(), 30
as_polars_series, 31, 104
as_polars_series(), 24, 26, 28, 29, 31,

33, 130, 147, 357, 447, 547, 565,
568, 569, 598

as_polars_series(<nanoarrow_array_stream>),
23

as_tibble.polars_data_frame, 36
as_tibble.polars_lazy_frame

(as_tibble.polars_data_frame),
36

base::OlsonNames(), 177, 191
Binary, 28, 147
bit64, 18, 20, 38, 599, 630
bit64::integer64, 18, 20, 38, 630, 631
bit64::NA_integer64_, 18, 20, 38, 630
blob, 599
blob::blob, 632

character, 18, 20, 21, 28, 38, 147, 630,
631

check_list_of_polars_dtype
(check_polars), 39

check_list_of_polars_lf
(check_polars), 39

check_polars, 39, 447
check_polars_df (check_polars), 39
check_polars_dtype (check_polars), 39
check_polars_dtype_expr

(check_polars), 39
check_polars_expr (check_polars), 39
check_polars_lf (check_polars), 39
check_polars_partitioning_scheme

(check_polars), 39
check_polars_selector (check_polars),

39
check_polars_series (check_polars),

39
cli, 599
clock, 18, 21, 38, 599, 631
clock_duration, 18, 21, 34, 38, 631, 632
clock_naive_time, 18, 21, 38, 631, 632

640 INDEX

clock_zoned_time, 18, 21, 38, 631, 632
cs, 43, 44–74
cs$all(), 80, 81, 128, 131, 458, 459, 514
cs$array(), 65, 67, 71
cs$by_dtype(), 47, 60, 65, 67, 71
cs$by_index(), 573
cs$categorical(), 60
cs$empty(), 133, 516
cs$list(), 47, 67, 71
cs$nested(), 47, 65, 71
cs$struct(), 67
cs__all, 44
cs__alpha, 45
cs__alphanumeric, 46
cs__array, 47
cs__binary, 48
cs__boolean, 49
cs__by_dtype, 49
cs__by_index, 50
cs__by_name, 51
cs__categorical, 52
cs__contains, 53
cs__date, 54
cs__datetime, 54
cs__decimal, 56
cs__digit, 56
cs__duration, 57
cs__empty, 58
cs__ends_with, 59
cs__enum, 60
cs__exclude, 61
cs__first, 62
cs__float, 63
cs__integer, 63
cs__last, 64
cs__list, 65
cs__matches, 66
cs__nested, 67
cs__numeric, 68
cs__signed_integer, 68
cs__starts_with, 69
cs__string, 70
cs__struct, 71
cs__temporal, 72
cs__time, 73
cs__unsigned_integer, 73

data type, 33, 195, 202, 539
data types, 47, 65

data.frame, 21, 26, 33, 34, 631, 632
data.table, 18, 20, 38, 599, 630
data.table::IDate, 18, 20, 38, 630, 632
data.table::ITime, 18, 20, 38, 630, 632
DataFrame, 25–27, 30, 36, 75–81, 83–86,

94, 98, 100, 103–110, 112–116,
118–128, 130, 132, 134–138, 367,
438–445, 454, 456, 482, 495, 547,
564, 565, 579, 580, 582, 584, 586,
611, 613, 619, 629

DataFrame (pl__DataFrame), 546
DataFrame$filter(), 332
dataframe__bottom_k, 74
dataframe__cast, 75
dataframe__clear, 76
dataframe__clone, 77
dataframe__count, 78
dataframe__describe, 78
dataframe__drop, 79
dataframe__drop_nans, 80
dataframe__drop_nulls, 81
dataframe__equals, 82
dataframe__explode, 82
dataframe__fill_nan, 83
dataframe__fill_null, 84
dataframe__filter, 85
dataframe__gather_every, 85
dataframe__get_column, 86
dataframe__get_column_index, 87
dataframe__get_columns, 87
dataframe__glimpse, 88
dataframe__group_by, 89
dataframe__group_by_dynamic, 90
dataframe__hash_rows, 93
dataframe__head, 94
dataframe__is_duplicated, 95
dataframe__is_empty, 95
dataframe__is_unique, 96
dataframe__join, 96
dataframe__join_asof, 99
dataframe__join_where, 102
dataframe__lazy, 104
dataframe__map_columns, 104
dataframe__max, 105
dataframe__max_horizontal, 106
dataframe__mean, 106
dataframe__mean_horizontal, 107
dataframe__median, 107

INDEX 641

dataframe__merge_sorted, 108
dataframe__min, 108
dataframe__min_horizontal, 109
dataframe__n_chunks, 109
dataframe__partition_by, 110
dataframe__pivot, 111
dataframe__quantile, 113
dataframe__rechunk, 113
dataframe__remove, 114
dataframe__rename, 115
dataframe__reverse, 116
dataframe__rolling, 116
dataframe__sample, 118
dataframe__select, 119
dataframe__select_seq, 119
dataframe__serialize, 120
dataframe__set_sorted, 121
dataframe__shift, 122
dataframe__slice, 123
dataframe__sort, 123
dataframe__std, 124
dataframe__sum, 125
dataframe__sum_horizontal, 125
dataframe__tail, 126
dataframe__to_dummies, 128
dataframe__to_series, 129
dataframe__to_struct, 129
dataframe__top_k, 127
dataframe__transpose, 130
dataframe__unique, 131
dataframe__unnest, 132
dataframe__unpivot, 133
dataframe__unstack, 134
dataframe__var, 135
dataframe__with_columns, 135
dataframe__with_columns_seq, 136
dataframe__with_row_index, 137
dataframe__write_csv, 138
dataframe__write_ipc, 140
dataframe__write_ipc_stream, 142
dataframe__write_json, 143
dataframe__write_ndjson, 143
dataframe__write_parquet, 144
DataFrames, 541
DataType, 34, 239, 241, 446, 631
DataType (polars_dtype), 608
datatype__to_dtype_expr, 150
datatype_expr__default_value, 146

datatype_expr__display, 148
datatype_expr__inner_dtype, 148
datatype_expr__matches, 149
datatypes, 585, 596
Date, 18, 20, 34, 38, 173, 630, 632
Date/Time/Datetime, 195, 202
Datetime, 284, 551, 553, 555, 557, 623
decimal data type, 624
difftime, 18, 21, 34, 38, 551, 553, 555,

557, 603, 605, 631, 632
double, 18, 20, 21, 38, 630, 631
dtype, 34, 286, 620
Duration, 195, 202, 559

environment, 533
environment class, 43, 532
Expr, 28, 104, 147, 251, 253, 260, 269,

270, 446
Expr (polars_expr), 612
Expr$struct$field(*), 249
expr__abs, 290
expr__add, 290
expr__agg_groups, 291
expr__alias, 292
expr__all, 292
expr__and, 293
expr__any, 294
expr__append, 295
expr__approx_n_unique, 295
expr__arccos, 296
expr__arccosh, 296
expr__arcsin, 297
expr__arcsinh, 297
expr__arctan, 298
expr__arctanh, 298
expr__arg_max, 299
expr__arg_min, 299
expr__arg_sort, 300
expr__arg_true, 300
expr__arg_unique, 301
expr__backward_fill, 301
expr__bitwise_and, 302
expr__bitwise_count_ones, 302
expr__bitwise_count_zeros, 303
expr__bitwise_leading_ones, 303
expr__bitwise_leading_zeros, 304
expr__bitwise_or, 304
expr__bitwise_trailing_ones, 305
expr__bitwise_trailing_zeros, 305

642 INDEX

expr__bitwise_xor, 306
expr__bottom_k, 306
expr__bottom_k_by, 307
expr__cast, 308
expr__cbrt, 309
expr__ceil, 309
expr__clip, 310
expr__cos, 311
expr__cosh, 311
expr__cot, 312
expr__count, 312
expr__cum_count, 313
expr__cum_max, 314
expr__cum_min, 315
expr__cum_prod, 315
expr__cum_sum, 316
expr__cumulative_eval, 313
expr__cut, 317
expr__degrees, 318
expr__diff, 318
expr__dot, 319
expr__drop_nans, 319
expr__drop_nulls, 320
expr__entropy, 320
expr__eq, 321, 322
expr__eq_missing, 321, 321
expr__ewm_mean, 322
expr__ewm_mean_by, 323
expr__ewm_std, 325
expr__ewm_var, 326
expr__exclude, 328
expr__exp, 328
expr__explode, 329
expr__extend_constant, 330
expr__fill_nan, 330
expr__fill_null, 331
expr__filter, 332
expr__first, 332
expr__flatten, 333
expr__floor, 333
expr__floor_div, 334
expr__floordiv (expr__floor_div), 334
expr__forward_fill, 334
expr__gather, 335
expr__gather_every, 336
expr__ge, 336
expr__get, 337
expr__gt, 338

expr__has_nulls, 339
expr__hash, 338
expr__head, 339
expr__hist, 340
expr__implode, 341
expr__index_of, 341
expr__interpolate, 342
expr__interpolate_by, 342
expr__is_between, 343
expr__is_close, 344
expr__is_duplicated, 345
expr__is_finite, 345
expr__is_first_distinct, 346
expr__is_in, 346
expr__is_infinite, 347
expr__is_last_distinct, 347
expr__is_nan, 348
expr__is_not_nan, 348
expr__is_not_null, 349
expr__is_null, 349
expr__is_unique, 350
expr__item, 350
expr__kurtosis, 351
expr__last, 352
expr__le, 353
expr__len, 353
expr__limit, 354
expr__log, 354
expr__log10, 355
expr__log1p, 355
expr__lower_bound, 356
expr__lt, 356
expr__map_batches, 357
expr__max, 358
expr__max_by, 358
expr__mean, 359
expr__median, 359
expr__min, 360
expr__min_by, 360
expr__mod, 361
expr__mode, 361
expr__mul, 362
expr__n_unique, 366
expr__nan_max, 363
expr__nan_min, 363
expr__ne, 364, 365
expr__ne_missing, 364, 364
expr__not, 365

INDEX 643

expr__null_count, 366
expr__or, 367
expr__over, 367
expr__pct_change, 369
expr__peak_max, 370
expr__peak_min, 370
expr__pow, 371
expr__product, 371
expr__qcut, 372
expr__quantile, 373
expr__radians, 374
expr__rank, 374
expr__rechunk, 376
expr__reinterpret, 376
expr__repeat_by, 377
expr__replace, 378
expr__replace_strict, 379
expr__reshape, 380
expr__reverse, 381
expr__rle, 382
expr__rle_id, 382
expr__rolling, 383
expr__rolling_kurtosis, 384
expr__rolling_max, 385
expr__rolling_max_by, 386
expr__rolling_mean, 388
expr__rolling_mean_by, 390
expr__rolling_median, 392
expr__rolling_median_by, 393
expr__rolling_min, 395
expr__rolling_min_by, 396
expr__rolling_quantile, 398
expr__rolling_quantile_by, 400
expr__rolling_rank, 402
expr__rolling_rank_by, 403
expr__rolling_skew, 405
expr__rolling_std, 406
expr__rolling_std_by, 408
expr__rolling_sum, 410
expr__rolling_sum_by, 411
expr__rolling_var, 413
expr__rolling_var_by, 414
expr__round, 416
expr__round_sig_figs, 417
expr__sample, 418
expr__search_sorted, 419
expr__set_sorted, 420
expr__shift, 420

expr__shrink_dtype, 421
expr__shuffle, 421
expr__sign, 422
expr__sin, 422
expr__sinh, 423
expr__skew, 423
expr__slice, 424
expr__sort, 425
expr__sort_by, 426
expr__sqrt, 427
expr__std, 428
expr__sub, 428
expr__sum, 429
expr__tail, 429
expr__tan, 430
expr__tanh, 430
expr__to_physical, 432
expr__top_k, 431
expr__top_k_by, 431
expr__true_div, 433
expr__truediv (expr__true_div), 433
expr__unique, 434
expr__unique_counts, 435
expr__upper_bound, 435
expr__value_counts, 436
expr__var, 437
expr__xor, 437
expr_arr_agg, 150
expr_arr_all, 151
expr_arr_any, 152
expr_arr_arg_max, 152
expr_arr_arg_min, 153
expr_arr_contains, 153
expr_arr_count_matches, 154
expr_arr_eval, 155
expr_arr_explode, 156
expr_arr_first, 156
expr_arr_get, 157
expr_arr_join, 157
expr_arr_last, 158
expr_arr_len, 159
expr_arr_max, 159
expr_arr_median, 160
expr_arr_min, 160
expr_arr_n_unique, 161
expr_arr_reverse, 161
expr_arr_shift, 162
expr_arr_sort, 162

644 INDEX

expr_arr_std, 163
expr_arr_sum, 163
expr_arr_to_list, 164
expr_arr_to_struct, 164
expr_arr_unique, 165
expr_arr_var, 166
expr_bin_contains, 166
expr_bin_decode, 167
expr_bin_encode, 168
expr_bin_ends_with, 169
expr_bin_reinterpret, 169
expr_bin_size, 170
expr_bin_starts_with, 171
expr_cat_get_categories, 172
expr_dt_add_business_days, 172
expr_dt_base_utc_offset, 174
expr_dt_cast_time_unit, 174
expr_dt_century, 175
expr_dt_combine, 176
expr_dt_convert_time_zone, 177
expr_dt_date, 177
expr_dt_day, 178
expr_dt_days_in_month, 179
expr_dt_dst_offset, 179
expr_dt_epoch, 180
expr_dt_hour, 180
expr_dt_is_leap_year, 182
expr_dt_iso_year, 181
expr_dt_microsecond, 182
expr_dt_millennium, 183
expr_dt_millisecond, 183
expr_dt_minute, 184
expr_dt_month, 185
expr_dt_month_end, 185
expr_dt_month_start, 186
expr_dt_nanosecond, 186
expr_dt_offset_by, 187
expr_dt_ordinal_day, 188
expr_dt_quarter, 189
expr_dt_replace, 190
expr_dt_replace_time_zone, 191
expr_dt_round, 192
expr_dt_second, 194
expr_dt_strftime, 194
expr_dt_time, 195
expr_dt_timestamp, 196
expr_dt_to_string, 202
expr_dt_total_days, 197

expr_dt_total_hours, 197
expr_dt_total_microseconds, 198
expr_dt_total_milliseconds, 199
expr_dt_total_minutes, 200
expr_dt_total_nanoseconds, 200
expr_dt_total_seconds, 201
expr_dt_truncate, 203
expr_dt_week, 204
expr_dt_weekday, 205
expr_dt_year, 206
expr_list_agg, 206
expr_list_all, 207
expr_list_any, 207
expr_list_arg_max, 208
expr_list_arg_min, 208
expr_list_concat, 209
expr_list_contains, 209
expr_list_count_matches, 210
expr_list_diff, 211
expr_list_drop_nulls, 211
expr_list_eval, 212
expr_list_explode, 213
expr_list_first, 213
expr_list_gather, 214
expr_list_gather_every, 215
expr_list_get, 216
expr_list_head, 217
expr_list_join, 217
expr_list_last, 218
expr_list_len, 219
expr_list_max, 219
expr_list_mean, 220
expr_list_median, 220
expr_list_min, 221
expr_list_n_unique, 221
expr_list_reverse, 222
expr_list_sample, 222
expr_list_set_difference, 223
expr_list_set_intersection, 224
expr_list_set_symmetric_difference,

225
expr_list_set_union, 226
expr_list_shift, 226
expr_list_slice, 227
expr_list_sort, 228
expr_list_std, 229
expr_list_sum, 229
expr_list_tail, 230

INDEX 645

expr_list_to_array, 230
expr_list_to_struct, 231
expr_list_unique, 232
expr_list_var, 233
expr_meta_eq, 234
expr_meta_has_multiple_outputs, 234
expr_meta_is_column, 235
expr_meta_is_column_selection, 235
expr_meta_is_literal, 236
expr_meta_is_regex_projection, 237
expr_meta_ne, 237
expr_meta_output_name, 238
expr_meta_pop, 239
expr_meta_root_names, 239
expr_meta_serialize, 240
expr_meta_tree_format, 241
expr_meta_undo_aliases, 242
expr_name_keep, 242
expr_name_prefix, 243
expr_name_prefix_fields, 243
expr_name_replace, 244
expr_name_suffix, 245
expr_name_suffix_fields, 245
expr_name_to_lowercase, 246
expr_name_to_uppercase, 246
expr_str_contains, 251
expr_str_contains_any, 252
expr_str_count_matches, 253
expr_str_decode, 253
expr_str_encode, 254
expr_str_ends_with, 255
expr_str_escape_regex, 256
expr_str_extract, 256
expr_str_extract_all, 257
expr_str_extract_groups, 258
expr_str_extract_many, 259
expr_str_find, 260
expr_str_find_many, 261
expr_str_head, 262
expr_str_join, 263
expr_str_json_decode, 264
expr_str_json_path_match, 265
expr_str_len_bytes, 265
expr_str_len_chars, 266
expr_str_normalize, 267
expr_str_pad_end, 267
expr_str_pad_start, 268
expr_str_replace, 268

expr_str_replace_all, 270
expr_str_replace_many, 271
expr_str_reverse, 272
expr_str_slice, 273
expr_str_split, 274
expr_str_split_exact, 275
expr_str_splitn, 274
expr_str_starts_with, 276
expr_str_strip_chars, 276
expr_str_strip_chars_end, 277
expr_str_strip_chars_start, 278
expr_str_strip_prefix, 278
expr_str_strip_suffix, 279
expr_str_strptime, 280
expr_str_tail, 282
expr_str_to_date, 283
expr_str_to_datetime, 284
expr_str_to_decimal, 285
expr_str_to_integer, 286
expr_str_to_lowercase, 287
expr_str_to_time, 287
expr_str_to_titlecase, 288
expr_str_to_uppercase, 289
expr_str_zfill, 289
expr_struct_field, 247
expr_struct_json_encode, 248
expr_struct_rename_fields, 248
expr_struct_unnest, 249
expr_struct_with_fields, 250
expression, 18, 21, 27, 29, 39, 112, 147,

148, 150–186, 188–191, 193–202,
204–234, 236–240, 242–260,
262–270, 272–324, 326–368,
370–379, 381–386, 388, 389, 391,
392, 394, 396, 397, 399, 401, 403,
405–407, 409, 410, 412, 414, 415,
417–437, 483, 534–539, 543–546,
549, 550, 552, 554, 555, 557, 560,
562–564, 566–573, 587, 600–603,
605, 606, 631

expression (polars_expr), 612
expressions, 27, 119, 120, 135, 137, 491,

492, 517, 519, 575, 600

factor, 631

groupby__agg, 438
groupby__having, 439
groupby__head, 439

646 INDEX

groupby__len, 440
groupby__max, 441
groupby__mean, 441
groupby__median, 442
groupby__min, 442
groupby__n_unique, 443
groupby__quantile, 444
groupby__sum, 444
groupby__tail, 445

hms, 18, 20, 34, 38, 599, 630
hms::hms, 18, 20, 38, 630, 632

infer_polars_dtype, 446
infer_polars_dtype(), 26, 33, 34, 42,

446
integer, 17, 18, 20, 38, 630, 631
is_convertible_to_polars_expr

(infer_polars_dtype), 446
is_convertible_to_polars_expr(), 446
is_convertible_to_polars_series

(infer_polars_dtype), 446
is_convertible_to_polars_series(),

446
is_list_of_polars_dtype

(check_polars), 39
is_list_of_polars_expr

(check_polars), 39
is_list_of_polars_lf (check_polars),

39
is_polars (check_polars), 39
is_polars_df (check_polars), 39
is_polars_dtype (check_polars), 39
is_polars_dtype_expr (check_polars),

39
is_polars_expr (check_polars), 39
is_polars_lf (check_polars), 39
is_polars_partitioning_scheme

(check_polars), 39
is_polars_selector (check_polars), 39
is_polars_series (check_polars), 39

knit_asis, 449
knit_print.polars_data_frame, 448
knit_print.polars_series

(knit_print.polars_data_frame),
448

LazyFrame, 30, 104, 133, 450–452, 455,
457–459, 462–465, 470, 471, 473,

475, 478–481, 483, 487–489,
491–494, 496, 501, 504, 506–512,
514–520, 522–527, 531, 565, 590,
592, 594, 597, 634

LazyFrame (pl__LazyFrame), 564
LazyFrame$filter(), 332
lazyframe__bottom_k, 449
lazyframe__cast, 450
lazyframe__clear, 451
lazyframe__clone, 452
lazyframe__collect, 453
lazyframe__collect_schema, 455
lazyframe__count, 455
lazyframe__describe, 456
lazyframe__drop, 457
lazyframe__drop_nans, 458
lazyframe__drop_nulls, 459
lazyframe__explain, 459
lazyframe__explode, 461
lazyframe__fill_nan, 462
lazyframe__fill_null, 463
lazyframe__filter, 464
lazyframe__first, 465
lazyframe__gather_every, 465
lazyframe__group_by, 466
lazyframe__group_by_dynamic, 467
lazyframe__head, 470
lazyframe__interpolate, 471
lazyframe__join, 471
lazyframe__join_asof, 474
lazyframe__join_where, 477
lazyframe__last, 478
lazyframe__lazy_sink_batches

(lazyframe__sink_batches),
495

lazyframe__lazy_sink_csv
(lazyframe__sink_csv), 498

lazyframe__lazy_sink_ipc
(lazyframe__sink_ipc), 502

lazyframe__lazy_sink_ndjson
(lazyframe__sink_ndjson), 504

lazyframe__lazy_sink_parquet
(parquet_statistics), 528

lazyframe__limit (lazyframe__head),
470

lazyframe__max, 479
lazyframe__mean, 479
lazyframe__median, 480

INDEX 647

lazyframe__merge_sorted, 480
lazyframe__min, 481
lazyframe__null_count, 481
lazyframe__pivot, 482
lazyframe__profile, 484
lazyframe__quantile, 486
lazyframe__remove, 487
lazyframe__rename, 488
lazyframe__reverse, 489
lazyframe__rolling, 489
lazyframe__select, 491
lazyframe__select_seq, 492
lazyframe__serialize, 493
lazyframe__set_sorted, 494
lazyframe__shift, 494
lazyframe__sink_batches, 495
lazyframe__sink_csv, 498
lazyframe__sink_ipc, 502
lazyframe__sink_ndjson, 504
lazyframe__sink_parquet

(parquet_statistics), 528
lazyframe__slice, 507
lazyframe__sort, 507
lazyframe__sql, 509
lazyframe__std, 510
lazyframe__sum, 510
lazyframe__tail, 511
lazyframe__to_dot, 512
lazyframe__top_k, 511
lazyframe__unique, 514
lazyframe__unnest, 515
lazyframe__unpivot, 516
lazyframe__var, 517
lazyframe__with_columns, 517
lazyframe__with_columns_seq, 518
lazyframe__with_row_index, 519
LazyFrames, 541, 542
lazygroupby__agg, 520
lazygroupby__having, 521
lazygroupby__head, 522
lazygroupby__len, 522
lazygroupby__max, 523
lazygroupby__mean, 523
lazygroupby__median, 524
lazygroupby__min, 525
lazygroupby__n_unique, 525
lazygroupby__quantile, 526
lazygroupby__sum, 527

lazygroupby__tail, 527
list, 21, 26, 33, 67, 447
literals, 119, 120, 135, 137, 491, 492,

517, 519, 600
logical, 631

NA_integer_, 18, 20, 38, 630
nanoarrow array stream, 23
nanoarrow schema object, 23
nanoarrow::infer_nanoarrow_schema(),

446

OlsonNames(), 55
options(), 614

parquet_statistics, 528
parquet_statistics(), 145, 530
PartitionBy (pl__PartitionBy), 574
PartitionByKey (pl__PartitionBy), 574
PartitionMaxSize (pl__PartitionBy),

574
PartitionParted (pl__PartitionBy),

574
pl, 532
pl$all(), 292
pl$arg_sort_by(), 300
pl$coalesce, 606
pl$col(), 28, 147, 613
pl$Date, 280, 621
pl$date_range(), 558
pl$date_ranges(), 556
pl$Datetime, 280, 621
pl$Datetime(), 55
pl$Datetime(ms), 281, 284, 621, 623
pl$datetime_range(), 554
pl$datetime_ranges(), 552
pl$lit(), 27, 28, 606, 613
pl$PartitionBy(), 574
pl$PartitionByKey(), 574
pl$PartitionMaxSize(), 574
pl$PartitionParted(), 574
pl$QueryOptFlags()$no_optimizations(),

26, 454, 486, 501, 504, 506, 531
pl$struct(), 28
pl$Time, 280, 621
pl__all, 533
pl__all_horizontal, 534
pl__any, 535
pl__any_horizontal, 536

648 INDEX

pl__arg_sort_by, 536
pl__arg_where, 538
pl__Array (polars_dtype), 608
pl__Categorical (polars_dtype), 608
pl__coalesce, 538
pl__col, 539
pl__collect_all, 540
pl__concat, 541
pl__concat_arr, 543
pl__concat_list, 544
pl__concat_str, 545
pl__cum_sum, 546
pl__DataFrame, 546
pl__date, 548
pl__date_range, 555
pl__date_ranges, 556
pl__Datetime (polars_dtype), 608
pl__datetime, 549
pl__datetime_range, 551
pl__datetime_ranges, 553
pl__Decimal (polars_dtype), 608
pl__deserialize_df

(dataframe__serialize), 120
pl__deserialize_lf

(lazyframe__serialize), 493
pl__deserialize_series

(series__serialize), 627
pl__dtype_of, 558
pl__Duration (polars_dtype), 608
pl__duration, 559
pl__element, 560
pl__Enum (polars_dtype), 608
pl__explain_all, 561
pl__first, 562
pl__int_range, 562
pl__int_ranges, 563
pl__last, 564
pl__LazyFrame, 564
pl__len, 565
pl__linear_space, 566
pl__linear_spaces, 567
pl__List (polars_dtype), 608
pl__lit, 568
pl__max, 569
pl__max_horizontal, 570
pl__mean_horizontal, 571
pl__min, 571
pl__min_horizontal, 572

pl__nth, 573
pl__PartitionBy, 574
pl__PartitionByKey (pl__PartitionBy),

574
pl__PartitionMaxSize

(pl__PartitionBy), 574
pl__PartitionParted

(pl__PartitionBy), 574
pl__QueryOptFlags (QueryOptFlags),

615
pl__read_csv, 576
pl__read_ipc, 579
pl__read_ipc_stream, 581
pl__read_ndjson, 582
pl__read_parquet, 584
pl__repeat_, 587
pl__scan_csv, 588
pl__scan_ipc, 591
pl__scan_ndjson, 593
pl__scan_parquet, 595
pl__Series, 598
pl__show_versions, 599
pl__SQLContext, 599
pl__Struct (polars_dtype), 608
pl__struct, 600
pl__sum, 601
pl__sum_horizontal, 602
pl__thread_pool_size, 602
pl__time_range, 603
pl__time_ranges, 604
pl__when, 606
pl_api_register_series_namespace, 532
polars data frames, 39
polars data types, 40
Polars DataFrame, 24
polars DataFrame, 24, 33, 598
polars DataType, 447
Polars DataType(s), 539
polars expression, 149, 150, 173, 231,

548–550, 558–560
polars expressions, 40
polars lazy frames, 40
polars partitioning schemes, 40
polars selectors, 40
Polars Series, 546
polars Series, 31, 34, 86, 94–96, 106,

107, 109, 126, 618, 620, 621,
623–625, 627, 628

INDEX 649

polars series, 40
polars_data_frame, 34
polars_data_frame (pl__DataFrame),

546
polars_dtype, 608
polars_envvars, 610
polars_expr, 612
polars_info, 613
polars_info(), 288, 603
polars_lazy_frame, 26, 34
polars_lazy_frame (pl__LazyFrame),

564
polars_options, 614
polars_options_reset

(polars_options), 614
polars_partitioning_scheme

(pl__PartitionBy), 574
polars_selector (cs), 43
polars_series, 26
polars_series (pl__Series), 598
polars_sql_context (pl__SQLContext),

599
POSIXct, 18, 19, 21, 34, 38, 39, 631, 632
POSIXlt, 34
purrr::map_at, 104

QueryOptFlags, 25, 26, 453, 454, 460,
461, 485, 486, 496, 501, 504, 506,
513, 531, 540, 561, 615

R data frame, 19
R Data Frames, 546
R vector, 20
R vectors, 546, 598
raw, 18, 20, 28, 38, 147, 630, 631
rlang, 42
rlang::abort(), 42
rlang::as_function(), 38
rlang::set_names(), 19

s3-arithmetic, 616
Selector (cs), 43
selector, 44–74, 149
selector__as_expr (cs), 43
selectors, 79–82, 110, 128, 131, 132,

457–459, 462, 514, 515
Series, 20, 23–26, 28, 33, 34, 42, 87, 104,

129, 147, 446, 541, 542, 547, 565,

599, 611, 612, 621, 623, 627–629,
631

Series (pl__Series), 598
series__alias, 624
series__chunk_lengths, 625
series__is_empty, 626
series__n_chunks, 626
series__rechunk, 627
series__rename (series__alias), 624
series__serialize, 627
series__shrink_dtype, 628
series__to_frame, 629
series__to_r_vector, 629
series_list_to_struct, 618
series_str_json_decode, 619
series_str_strptime, 620
series_str_to_datetime, 622
series_str_to_decimal, 623
series_struct_unnest, 619
sql_context__execute, 633
sql_context__register, 635
sql_context__register_many, 635
sql_context__tables, 636
sql_context__unregister, 637
SQLContext, 509
SQLContext (pl__SQLContext), 599
strptime(), 280, 620
struct, 67
struct dtype, 26
struct type, 24

the vctrs package, 447
tibble, 21, 39, 599, 631, 632
to_r_vector(), 614

UInt64, 93
UInt8, 28

vctrs, 599
vctrs::list_of, 632
vctrs::list_of(), 33
vctrs::unspecified, 632
vctrs::vec_as_names(), 38
vctrs_rcrd, 33
vector, 629, 632
vectors, 20

	as.data.frame.polars_data_frame
	as.list.polars_data_frame
	as_nanoarrow_array_stream.polars_data_frame
	as_polars_df
	as_polars_expr
	as_polars_lf
	as_polars_series
	as_tibble.polars_data_frame
	check_polars
	cs
	cs__all
	cs__alpha
	cs__alphanumeric
	cs__array
	cs__binary
	cs__boolean
	cs__by_dtype
	cs__by_index
	cs__by_name
	cs__categorical
	cs__contains
	cs__date
	cs__datetime
	cs__decimal
	cs__digit
	cs__duration
	cs__empty
	cs__ends_with
	cs__enum
	cs__exclude
	cs__first
	cs__float
	cs__integer
	cs__last
	cs__list
	cs__matches
	cs__nested
	cs__numeric
	cs__signed_integer
	cs__starts_with
	cs__string
	cs__struct
	cs__temporal
	cs__time
	cs__unsigned_integer
	dataframe__bottom_k
	dataframe__cast
	dataframe__clear
	dataframe__clone
	dataframe__count
	dataframe__describe
	dataframe__drop
	dataframe__drop_nans
	dataframe__drop_nulls
	dataframe__equals
	dataframe__explode
	dataframe__fill_nan
	dataframe__fill_null
	dataframe__filter
	dataframe__gather_every
	dataframe__get_column
	dataframe__get_columns
	dataframe__get_column_index
	dataframe__glimpse
	dataframe__group_by
	dataframe__group_by_dynamic
	dataframe__hash_rows
	dataframe__head
	dataframe__is_duplicated
	dataframe__is_empty
	dataframe__is_unique
	dataframe__join
	dataframe__join_asof
	dataframe__join_where
	dataframe__lazy
	dataframe__map_columns
	dataframe__max
	dataframe__max_horizontal
	dataframe__mean
	dataframe__mean_horizontal
	dataframe__median
	dataframe__merge_sorted
	dataframe__min
	dataframe__min_horizontal
	dataframe__n_chunks
	dataframe__partition_by
	dataframe__pivot
	dataframe__quantile
	dataframe__rechunk
	dataframe__remove
	dataframe__rename
	dataframe__reverse
	dataframe__rolling
	dataframe__sample
	dataframe__select
	dataframe__select_seq
	dataframe__serialize
	dataframe__set_sorted
	dataframe__shift
	dataframe__slice
	dataframe__sort
	dataframe__std
	dataframe__sum
	dataframe__sum_horizontal
	dataframe__tail
	dataframe__top_k
	dataframe__to_dummies
	dataframe__to_series
	dataframe__to_struct
	dataframe__transpose
	dataframe__unique
	dataframe__unnest
	dataframe__unpivot
	dataframe__unstack
	dataframe__var
	dataframe__with_columns
	dataframe__with_columns_seq
	dataframe__with_row_index
	dataframe__write_csv
	dataframe__write_ipc
	dataframe__write_ipc_stream
	dataframe__write_json
	dataframe__write_ndjson
	dataframe__write_parquet
	datatype_expr__default_value
	datatype_expr__display
	datatype_expr__inner_dtype
	datatype_expr__matches
	datatype__to_dtype_expr
	expr_arr_agg
	expr_arr_all
	expr_arr_any
	expr_arr_arg_max
	expr_arr_arg_min
	expr_arr_contains
	expr_arr_count_matches
	expr_arr_eval
	expr_arr_explode
	expr_arr_first
	expr_arr_get
	expr_arr_join
	expr_arr_last
	expr_arr_len
	expr_arr_max
	expr_arr_median
	expr_arr_min
	expr_arr_n_unique
	expr_arr_reverse
	expr_arr_shift
	expr_arr_sort
	expr_arr_std
	expr_arr_sum
	expr_arr_to_list
	expr_arr_to_struct
	expr_arr_unique
	expr_arr_var
	expr_bin_contains
	expr_bin_decode
	expr_bin_encode
	expr_bin_ends_with
	expr_bin_reinterpret
	expr_bin_size
	expr_bin_starts_with
	expr_cat_get_categories
	expr_dt_add_business_days
	expr_dt_base_utc_offset
	expr_dt_cast_time_unit
	expr_dt_century
	expr_dt_combine
	expr_dt_convert_time_zone
	expr_dt_date
	expr_dt_day
	expr_dt_days_in_month
	expr_dt_dst_offset
	expr_dt_epoch
	expr_dt_hour
	expr_dt_iso_year
	expr_dt_is_leap_year
	expr_dt_microsecond
	expr_dt_millennium
	expr_dt_millisecond
	expr_dt_minute
	expr_dt_month
	expr_dt_month_end
	expr_dt_month_start
	expr_dt_nanosecond
	expr_dt_offset_by
	expr_dt_ordinal_day
	expr_dt_quarter
	expr_dt_replace
	expr_dt_replace_time_zone
	expr_dt_round
	expr_dt_second
	expr_dt_strftime
	expr_dt_time
	expr_dt_timestamp
	expr_dt_total_days
	expr_dt_total_hours
	expr_dt_total_microseconds
	expr_dt_total_milliseconds
	expr_dt_total_minutes
	expr_dt_total_nanoseconds
	expr_dt_total_seconds
	expr_dt_to_string
	expr_dt_truncate
	expr_dt_week
	expr_dt_weekday
	expr_dt_year
	expr_list_agg
	expr_list_all
	expr_list_any
	expr_list_arg_max
	expr_list_arg_min
	expr_list_concat
	expr_list_contains
	expr_list_count_matches
	expr_list_diff
	expr_list_drop_nulls
	expr_list_eval
	expr_list_explode
	expr_list_first
	expr_list_gather
	expr_list_gather_every
	expr_list_get
	expr_list_head
	expr_list_join
	expr_list_last
	expr_list_len
	expr_list_max
	expr_list_mean
	expr_list_median
	expr_list_min
	expr_list_n_unique
	expr_list_reverse
	expr_list_sample
	expr_list_set_difference
	expr_list_set_intersection
	expr_list_set_symmetric_difference
	expr_list_set_union
	expr_list_shift
	expr_list_slice
	expr_list_sort
	expr_list_std
	expr_list_sum
	expr_list_tail
	expr_list_to_array
	expr_list_to_struct
	expr_list_unique
	expr_list_var
	expr_meta_eq
	expr_meta_has_multiple_outputs
	expr_meta_is_column
	expr_meta_is_column_selection
	expr_meta_is_literal
	expr_meta_is_regex_projection
	expr_meta_ne
	expr_meta_output_name
	expr_meta_pop
	expr_meta_root_names
	expr_meta_serialize
	expr_meta_tree_format
	expr_meta_undo_aliases
	expr_name_keep
	expr_name_prefix
	expr_name_prefix_fields
	expr_name_replace
	expr_name_suffix
	expr_name_suffix_fields
	expr_name_to_lowercase
	expr_name_to_uppercase
	expr_struct_field
	expr_struct_json_encode
	expr_struct_rename_fields
	expr_struct_unnest
	expr_struct_with_fields
	expr_str_contains
	expr_str_contains_any
	expr_str_count_matches
	expr_str_decode
	expr_str_encode
	expr_str_ends_with
	expr_str_escape_regex
	expr_str_extract
	expr_str_extract_all
	expr_str_extract_groups
	expr_str_extract_many
	expr_str_find
	expr_str_find_many
	expr_str_head
	expr_str_join
	expr_str_json_decode
	expr_str_json_path_match
	expr_str_len_bytes
	expr_str_len_chars
	expr_str_normalize
	expr_str_pad_end
	expr_str_pad_start
	expr_str_replace
	expr_str_replace_all
	expr_str_replace_many
	expr_str_reverse
	expr_str_slice
	expr_str_split
	expr_str_splitn
	expr_str_split_exact
	expr_str_starts_with
	expr_str_strip_chars
	expr_str_strip_chars_end
	expr_str_strip_chars_start
	expr_str_strip_prefix
	expr_str_strip_suffix
	expr_str_strptime
	expr_str_tail
	expr_str_to_date
	expr_str_to_datetime
	expr_str_to_decimal
	expr_str_to_integer
	expr_str_to_lowercase
	expr_str_to_time
	expr_str_to_titlecase
	expr_str_to_uppercase
	expr_str_zfill
	expr__abs
	expr__add
	expr__agg_groups
	expr__alias
	expr__all
	expr__and
	expr__any
	expr__append
	expr__approx_n_unique
	expr__arccos
	expr__arccosh
	expr__arcsin
	expr__arcsinh
	expr__arctan
	expr__arctanh
	expr__arg_max
	expr__arg_min
	expr__arg_sort
	expr__arg_true
	expr__arg_unique
	expr__backward_fill
	expr__bitwise_and
	expr__bitwise_count_ones
	expr__bitwise_count_zeros
	expr__bitwise_leading_ones
	expr__bitwise_leading_zeros
	expr__bitwise_or
	expr__bitwise_trailing_ones
	expr__bitwise_trailing_zeros
	expr__bitwise_xor
	expr__bottom_k
	expr__bottom_k_by
	expr__cast
	expr__cbrt
	expr__ceil
	expr__clip
	expr__cos
	expr__cosh
	expr__cot
	expr__count
	expr__cumulative_eval
	expr__cum_count
	expr__cum_max
	expr__cum_min
	expr__cum_prod
	expr__cum_sum
	expr__cut
	expr__degrees
	expr__diff
	expr__dot
	expr__drop_nans
	expr__drop_nulls
	expr__entropy
	expr__eq
	expr__eq_missing
	expr__ewm_mean
	expr__ewm_mean_by
	expr__ewm_std
	expr__ewm_var
	expr__exclude
	expr__exp
	expr__explode
	expr__extend_constant
	expr__fill_nan
	expr__fill_null
	expr__filter
	expr__first
	expr__flatten
	expr__floor
	expr__floor_div
	expr__forward_fill
	expr__gather
	expr__gather_every
	expr__ge
	expr__get
	expr__gt
	expr__hash
	expr__has_nulls
	expr__head
	expr__hist
	expr__implode
	expr__index_of
	expr__interpolate
	expr__interpolate_by
	expr__is_between
	expr__is_close
	expr__is_duplicated
	expr__is_finite
	expr__is_first_distinct
	expr__is_in
	expr__is_infinite
	expr__is_last_distinct
	expr__is_nan
	expr__is_not_nan
	expr__is_not_null
	expr__is_null
	expr__is_unique
	expr__item
	expr__kurtosis
	expr__last
	expr__le
	expr__len
	expr__limit
	expr__log
	expr__log10
	expr__log1p
	expr__lower_bound
	expr__lt
	expr__map_batches
	expr__max
	expr__max_by
	expr__mean
	expr__median
	expr__min
	expr__min_by
	expr__mod
	expr__mode
	expr__mul
	expr__nan_max
	expr__nan_min
	expr__ne
	expr__ne_missing
	expr__not
	expr__null_count
	expr__n_unique
	expr__or
	expr__over
	expr__pct_change
	expr__peak_max
	expr__peak_min
	expr__pow
	expr__product
	expr__qcut
	expr__quantile
	expr__radians
	expr__rank
	expr__rechunk
	expr__reinterpret
	expr__repeat_by
	expr__replace
	expr__replace_strict
	expr__reshape
	expr__reverse
	expr__rle
	expr__rle_id
	expr__rolling
	expr__rolling_kurtosis
	expr__rolling_max
	expr__rolling_max_by
	expr__rolling_mean
	expr__rolling_mean_by
	expr__rolling_median
	expr__rolling_median_by
	expr__rolling_min
	expr__rolling_min_by
	expr__rolling_quantile
	expr__rolling_quantile_by
	expr__rolling_rank
	expr__rolling_rank_by
	expr__rolling_skew
	expr__rolling_std
	expr__rolling_std_by
	expr__rolling_sum
	expr__rolling_sum_by
	expr__rolling_var
	expr__rolling_var_by
	expr__round
	expr__round_sig_figs
	expr__sample
	expr__search_sorted
	expr__set_sorted
	expr__shift
	expr__shrink_dtype
	expr__shuffle
	expr__sign
	expr__sin
	expr__sinh
	expr__skew
	expr__slice
	expr__sort
	expr__sort_by
	expr__sqrt
	expr__std
	expr__sub
	expr__sum
	expr__tail
	expr__tan
	expr__tanh
	expr__top_k
	expr__top_k_by
	expr__to_physical
	expr__true_div
	expr__unique
	expr__unique_counts
	expr__upper_bound
	expr__value_counts
	expr__var
	expr__xor
	groupby__agg
	groupby__having
	groupby__head
	groupby__len
	groupby__max
	groupby__mean
	groupby__median
	groupby__min
	groupby__n_unique
	groupby__quantile
	groupby__sum
	groupby__tail
	infer_polars_dtype
	knit_print.polars_data_frame
	lazyframe__bottom_k
	lazyframe__cast
	lazyframe__clear
	lazyframe__clone
	lazyframe__collect
	lazyframe__collect_schema
	lazyframe__count
	lazyframe__describe
	lazyframe__drop
	lazyframe__drop_nans
	lazyframe__drop_nulls
	lazyframe__explain
	lazyframe__explode
	lazyframe__fill_nan
	lazyframe__fill_null
	lazyframe__filter
	lazyframe__first
	lazyframe__gather_every
	lazyframe__group_by
	lazyframe__group_by_dynamic
	lazyframe__head
	lazyframe__interpolate
	lazyframe__join
	lazyframe__join_asof
	lazyframe__join_where
	lazyframe__last
	lazyframe__max
	lazyframe__mean
	lazyframe__median
	lazyframe__merge_sorted
	lazyframe__min
	lazyframe__null_count
	lazyframe__pivot
	lazyframe__profile
	lazyframe__quantile
	lazyframe__remove
	lazyframe__rename
	lazyframe__reverse
	lazyframe__rolling
	lazyframe__select
	lazyframe__select_seq
	lazyframe__serialize
	lazyframe__set_sorted
	lazyframe__shift
	lazyframe__sink_batches
	lazyframe__sink_csv
	lazyframe__sink_ipc
	lazyframe__sink_ndjson
	lazyframe__slice
	lazyframe__sort
	lazyframe__sql
	lazyframe__std
	lazyframe__sum
	lazyframe__tail
	lazyframe__top_k
	lazyframe__to_dot
	lazyframe__unique
	lazyframe__unnest
	lazyframe__unpivot
	lazyframe__var
	lazyframe__with_columns
	lazyframe__with_columns_seq
	lazyframe__with_row_index
	lazygroupby__agg
	lazygroupby__having
	lazygroupby__head
	lazygroupby__len
	lazygroupby__max
	lazygroupby__mean
	lazygroupby__median
	lazygroupby__min
	lazygroupby__n_unique
	lazygroupby__quantile
	lazygroupby__sum
	lazygroupby__tail
	parquet_statistics
	pl
	pl_api_register_series_namespace
	pl__all
	pl__all_horizontal
	pl__any
	pl__any_horizontal
	pl__arg_sort_by
	pl__arg_where
	pl__coalesce
	pl__col
	pl__collect_all
	pl__concat
	pl__concat_arr
	pl__concat_list
	pl__concat_str
	pl__cum_sum
	pl__DataFrame
	pl__date
	pl__datetime
	pl__datetime_range
	pl__datetime_ranges
	pl__date_range
	pl__date_ranges
	pl__dtype_of
	pl__duration
	pl__element
	pl__explain_all
	pl__first
	pl__int_range
	pl__int_ranges
	pl__last
	pl__LazyFrame
	pl__len
	pl__linear_space
	pl__linear_spaces
	pl__lit
	pl__max
	pl__max_horizontal
	pl__mean_horizontal
	pl__min
	pl__min_horizontal
	pl__nth
	pl__PartitionBy
	pl__read_csv
	pl__read_ipc
	pl__read_ipc_stream
	pl__read_ndjson
	pl__read_parquet
	pl__repeat_
	pl__scan_csv
	pl__scan_ipc
	pl__scan_ndjson
	pl__scan_parquet
	pl__Series
	pl__show_versions
	pl__SQLContext
	pl__struct
	pl__sum
	pl__sum_horizontal
	pl__thread_pool_size
	pl__time_range
	pl__time_ranges
	pl__when
	polars_dtype
	polars_envvars
	polars_expr
	polars_info
	polars_options
	QueryOptFlags
	s3-arithmetic
	series_list_to_struct
	series_struct_unnest
	series_str_json_decode
	series_str_strptime
	series_str_to_datetime
	series_str_to_decimal
	series__alias
	series__chunk_lengths
	series__is_empty
	series__n_chunks
	series__rechunk
	series__serialize
	series__shrink_dtype
	series__to_frame
	series__to_r_vector
	sql_context__execute
	sql_context__register
	sql_context__register_many
	sql_context__tables
	sql_context__unregister
	Index

