Package: stantargets (via r-universe)

February 7, 2026
Title Targets for Stan Workflows

Description Bayesian data analysis usually incurs long runtimes and
cumbersome custom code. A pipeline toolkit tailored to Bayesian
statisticians, the 'stantargets' R package leverages 'targets’
and 'cmdstant’ to ease these burdens. 'stantargets' makes it
super easy to set up scalable Stan pipelines that automatically
parallelize the computation and skip expensive steps when the
results are already up to date. Minimal custom code is
required, and there is no need to manually configure branching,
so usage is much easier than 'targets' alone. 'stantargets' can
access all of 'cmdstanr"s major algorithms (MCMC, variational
Bayes, and optimization) and it supports both single-fit
workflows and multi-rep simulation studies. For the statistical
methodology, please refer to 'Stan' documentation (Stan
Development Team 2020) <https://mc-stan.org/>.

Version 0.1.2
License MIT + file LICENSE

URL https://docs.ropensci.org/stantargets/,
https://github.com/ropensci/stantargets,
https://r-multiverse.org/topics/bayesian.html

BugReports https://github.com/ropensci/stantargets/issues

Depends R (>=3.5.0)

Imports cmdstanr (>= 0.5.0), fs (>= 1.5.0), fst (>= 0.9.2), posterior
(>=1.0.1), purrr (>=0.3.4), gs >=0.23.2), rlang (>=
0.4.10), secretbase (>= 0.4.0), stats, targets (>= 1.6.0),
tarchetypes (>= 0.8.0), tibble (>= 3.0.1), tidyselect, withr
>=2.1.2)

Suggests dplyr (>= 1.0.2), ggplot2 (>= 3.0.0), knitr (>= 1.30),
R.utils (>= 2.10.1), rmarkdown (>= 2.3), SBC (>= 0.2.0),
testthat (>= 3.0.0), tidyr (>= 1.0.0), visNetwork (>=2.0.9)

Remotes hyunjimoon/SBC, stan-dev/cmdstant,

SystemRequirements CmdStan >=2.25.0

https://mc-stan.org/
https://docs.ropensci.org/stantargets/
https://github.com/ropensci/stantargets
https://r-multiverse.org/topics/bayesian.html
https://github.com/ropensci/stantargets/issues

2 Contents

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

VignetteBuilder knitr

Config/testthat/edition 3

Config/pak/sysreqs libglpk-dev make libxml2-dev libzstd-dev

Repository https://test.r-universe.dev

Date/Publication 2024-12-03 12:22:22 UTC

RemoteUrl https://github.com/ropensci/stantargets

RemoteRef 0.1.2

RemoteSha 638326106594be70c5f851¢767349e4192740771

Contents
stantargets-package 3
tar_stan_compile L e 3
tar_stan_example_data 7
tar_stan_example_file L 8
L G 2o U o 9
tar_stan_gq_rep_drawso 16
tar_stan_gq_rep_SUMMATY ¢ . v v v v v v e e e e e e e e e e e e e 23
tar_Stan_MCIMC v v v e e e e e e e e e e e e e e e e 31
tar_stan_mcmec_rep_diagnosticsol 41
tar_stan_meme_rep_draws oL e 51
tar_stan_mCmC_Tep_SUMMATY« « v v v v v e e e e e e e e e e e e 61
tar_stan_mle e e e e 71
tar_stan_mle_rep_draws L L 79
tar_stan_mle_rep_summary oL e e e 87
tar_Stan_SUMIMATY v v v v v v e e e e e e e e e e e e e e e 95
tar_stan_vb e e 99
tar_stan_vb_rep_draws L. 107
tar_stan_vb_rep_SUummary i i e e e e e e 115

Index 124

stantargets-package 3

stantargets-package targets: Targets Archetypes for Stan

Description

Bayesian data analysis usually incurs long runtimes and cumbersome custom code. A pipeline
toolkit tailored to Bayesian statisticians, the stantargets R package leverages targets and cmdstanr
to ease these burdens. stantargets makes it super easy to set up scalable Stan pipelines that au-
tomatically parallelize the computation and skip expensive steps when the results are already up to
date. Minimal custom code is required, and there is no need to manually configure branching, so
usage is much easier than targets alone. stantargets can access all of cmdstanr’s major algo-
rithms (MCMC, variational Bayes, and optimization) and it supports both single-fit workflows and
multi-rep simulation studies.

See Also

https://docs.ropensci.org/stantargets/, tar_stan_mecmc()

tar_stan_compile Local Stan model compilation

Description

tar_stan_compile() creates a target to compile a Stan model on the local file system and return
the original Stan model file. Does not compile the model if the compilation is already up to date.

Usage

tar_stan_compile(
name,
stan_file,
quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,
pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory”),
garbage_collection = targets::tar_option_get("garbage_collection”),
deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),

https://docs.ropensci.org/stantargets/

resources =

tar_stan_compile

targets::tar_option_get("resources"”),

storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description =

Arguments

name

stan_file

quiet

stdout

stderr

dir

pedantic

include_paths

cpp_options

targets::tar_option_get("description”)

Symbol, name of the target. A target name must be a valid name for a symbol in
R, and it must not start with a dot. Subsequent targets can refer to this name sym-
bolically to induce a dependency relationship: e.g. tar_target(downstream_target,
f(upstream_target)) is a target named downstream_target which depends
on a target upstream_target and a function f(). In addition, a target’s name
determines its random number generator seed. In this way, each target runs with
a reproducible seed so someone else running the same pipeline should get the
same results, and no two targets in the same pipeline share the same seed. (Even
dynamic branches have different names and thus different seeds.) You can re-
cover the seed of a completed target with tar_meta(your_target, seed) and
run tar_seed_set() on the result to locally recreate the target’s initial RNG
state.

(string) The path to a . stan file containing a Stan program. The helper function
write_stan_file() is provided for cases when it is more convenient to specify
the Stan program as a string. If stan_f'ile is not specified then exe_file must
be specified.

(logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

(string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

(logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

(character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

(list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html

tar_stan_compile 5

make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop”: the whole pipeline stops and throws an error.
* "continue”: the whole pipeline keeps going.
* "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

6 tar_stan_compile

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile() method of the CmdStanModel class. For
details, visit https://mc-stan.org/cmdstanr/reference/.

Value

tar_stan_compile() returns a target object to compile a Stan file. The return value of this target
is a character vector containing the Stan model source file and compiled executable file. A change
in either file will cause the target to rerun in the next run of the pipeline. See the "Target objects"
section for background.

https://mc-stan.org/cmdstanr/reference/

tar_stan_example_data 7

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(stantargets)

Do not use temporary storage for stan files in real projects
or else your targets will always rerun.

path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(tar_stan_compile(compiled_model, path))

»

targets: :tar_make()

»

3

tar_stan_example_data Simulate example data for tar_stan_example_file().

Description

An example dataset compatible with the model file from tar_stan_example_file().

Usage

tar_stan_example_data(n = 10L)

Arguments

n Integer of length 1, number of data points.

Format

A list with the following elements:

* n: integer, number of data points.

* X: numeric, covariate vector.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

8 tar_stan_example_file

* y: numeric, response variable.

* true_beta: numeric of length 1, value of the regression coefficient beta used in simulation.

e .join_data: a list of simulated values to be appended to as a . join_data column in the
output of targets generated by functions such as tar_stan_mcmc_rep_summary (). Contains
the regression coefficient beta (numeric of length 1) and prior predictive data y (numeric
vector).

Details

The tar_stan_example_data() function draws a Stan dataset from the prior predictive distribution
of the model from tar_stan_example_file(). First, the regression coefficient beta is drawn from
its standard normal prior, and the covariate x is computed. Then, conditional on the beta draws and
the covariate, the response vector y is drawn from its Normal(x * beta, 1) likelihood.

Value

List, dataset compatible with the model file from tar_stan_example_file().

See Also

Other examples: tar_stan_example_file()

Examples

tar_stan_example_data()

tar_stan_example_file Write an example Stan model file.

Description

Overwrites the file at path with a built-in example Stan model file.

Usage

tar_stan_example_file(path = tempfile(pattern = "", fileext = ".stan"))
Arguments

path Character of length 1, file path to write the model file.
Value

NULL (invisibly).

See Also

Other examples: tar_stan_example_data()

tar_stan_gq 9

Examples

path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
writeLines(readLines(path))

tar_stan_gq Generated quantities on an existing CmdStanFit object

Description

tar_stan_gq() creates targets to run the generated quantities of a Stan model and save draws and
summaries separately.

Usage

tar_stan_gq(
name,
stan_files,
data = list(),
fitted_params,
compile = c("original”, "copy"),
quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,
pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,
seed = NULL,
output_dir = NULL,
sig_figs = NULL,
parallel_chains = getOption("mc.cores”, 1),
threads_per_chain = NULL,
variables = NULL,
variables_fit = NULL,
summaries = list(),
summary_args = list(),
return_draws = TRUE,
return_summary = TRUE,
draws = NULL,
summary = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),

n n

format = "gs",

10

tar_stan_gq

format_df = "fst_tbl",

repository = targets::tar_option_get("repository”),

error = targets::tar_option_get("error"),

memory = targets::tar_option_get("memory”),

garbage_collection = targets::tar_option_get("garbage_collection”),
deployment = targets::tar_option_get("deployment”),

priority = targets::tar_option_get("priority"”),

resources =

targets::tar_option_get("resources"),

storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description

Arguments

name

stan_files

data

fitted_params

compile

quiet

stdout

stderr

targets::tar_option_get("description”)

Symbol, base name for the collection of targets. Serves as a prefix for target
names.

Character vector of Stan model files. If you supply multiple files, each model
will run on the one shared dataset generated by the code in data. If you supply
an unnamed vector, fs: :path_ext_remove(basename(stan_files)) will be
used as target name suffixes. If stan_files is a named vector, the suffixed will
come from names(stan_files).

(multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

Symbol, name of a CmdStanFit object computed in a previous target: for ex-
ample, the *_mcmc_* target from tar_stan_mcmc(). Must be a subclass that
$generate_quantities() can accept as fitted_params.

(logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile() method.

(logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

tar_stan_gq 11

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

tar_stan_gq

parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc.cores=value).
If the "mc. cores” option has not been set then the default is 1.

threads_per_chain

(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when
using the Stan functions reduce_sum() or map_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

variables (character vector) The variables to include.

variables_fit Character vector of variables to include in the big CmdStanFit object returned
by the model fit target. The variables argument, by contrast, is for the "draws"
target only. The "draws” target can only access the variables in the CmdStanFit
target. Control the variables in each with the variables and variables_fit
arguments.

summaries Optional list of summary functions passed to . . . in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

summary_args Optional list of summary function arguments passed to . args in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

return_draws Logical, whether to create a target for posterior draws. Saves posterior::as_draws_df (fit$draws())
to a compressed tibble. Convenient, but duplicates storage.

return_summary Logical, whether to create a target for fit$summary().

draws Deprecated on 2022-07-22. Use return_draws instead.
summary Deprecated on 2022-07-22. Use return_summary instead.
tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.

If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

tar_stan_gq 13

* "aws"”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

* "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

e "null"”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

14 tar_stan_gq

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile(), $generate_quantities(), and $summary ()
methods of the CmdStanModel class. If you previously compiled the model in an upstream tar_stan_compile()
target, then the model should not recompile.

Value

tar_stan_gq() returns list of target objects. See the "Target objects" section for background.
The target names use the name argument as a prefix, and the individual elements of stan_files
appear in the suffixes where applicable. As an example, the specific target objects returned by
tar_stan_gq(name = x, stan_files ="y.stan"”, ...) are as follows.

tar_stan_gq 15

» x_file_y: reproducibly track the Stan model file. Returns a character vector with the paths
to the model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original"”. Returns a character vector of lines in the model file.

* x_data: run the R expression in the data argument to produce a Stan dataset for the model.
Returns a Stan data list.

* x_gq_y: run generated quantities on the model and the dataset. Returns a cmdstanr CmdStanGQ
object with all the results.

e x_draws_y: extract draws from x_gqg_y. Omitted if draws = FALSE. Returns a tidy data frame
of draws.

e x_summary_y: extract compact summaries from x_gqg_y. Returns a tidy data frame of sum-
maries. Omitted if summary = FALSE.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories

explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other generated quantities: tar_stan_gg_rep_draws(), tar_stan_gqg_rep_summary ()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(stantargets)

Do not use temporary storage for stan files in real projects

or else your targets will always rerun.

path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mcmc(
your_model,

stan_files = c(x = path),
data = tar_stan_example_data(),
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()

),

tar_stan_gq(
custom_gq,

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

16

stan_files = path, # Can be a different model.

fitted_params = your_model_mcmc_x,

data = your_model_data, # Can be a different dataset.

stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()
)
)
}, ask = FALSE)
targets::tar_make()
1)
3

nu;SMH_gq_nquhaW@

tar_stan_gq_rep_draws Multiple runs of generated quantities per model with draws

Description

tar_stan_gg_rep_draws() creates targets to run generated quantities multiple times and save only

the draws from each run.

Usage

tar_stan_gqg_rep_draws(
name,
stan_files,
data = list(),
fitted_params,
batches = 1L,
reps = 1L,
combine = FALSE,
compile = c("original”, "copy"),
quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,
pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,
seed = NULL,
output_dir = NULL,
sig_figs = NULL,

parallel_chains = getOption("mc.cores”, 1),

threads_per_chain = NULL,
variables = NULL,
data_copy = character(9),
transform = NULL,

tar_stan_gq_rep_draws

17

tidy_eval = targets::tar_option_get("tidy_eval"),

packages =

targets::tar_option_get("packages”),

library = targets::tar_option_get("library"),
format = "gs",

format_df = "fst_tbl"”,

repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),

memory = "transient”,

garbage_collection = TRUE,

deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),

resources =

targets::tar_option_get("resources"”),

storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description

Arguments

name

stan_files

data

fitted_params

batches

targets::tar_option_get("description”)

Symbol, base name for the collection of targets. Serves as a prefix for target
names.

Character vector of paths to known existing Stan model files created before run-
ning the pipeline.

(multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

» A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

(multiple options) The parameter draws to use. One of the following:

* A CmdStanMCMC or CmdStanVB fitted model object.

¢ A posterior::draws_array (for MCMC) or posterior::draws_matrix (for VB)
object returned by CmdStanR’s $draws () method.

* A character vector of paths to CmdStan CSV output files.

NOTE: if you plan on making many calls to $generate_quantities() then
the most efficient option is to pass the paths of the CmdStan CSV output files
(this avoids CmdStanR having to rewrite the draws contained in the fitted model
object to CSV each time). If you no longer have the CSV files you can use
draws_to_csv() once to write them and then pass the resulting file paths to
$generate_quantities() as many times as needed.

Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

18

reps

combine

compile

quiet

stdout

stderr

dir

pedantic

include_paths

cpp_options

stanc_options

force_recompile

seed

tar_stan_ gq_rep_dra wSs

Number of replications per batch.

Logical, whether to create a target to combine all the model results into a single
data frame downstream. Convenient, but duplicates data.

(logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

(logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, Or errors.

(string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

(logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

(character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

(list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

(list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

(logical) Should the model be recompiled even if was not modified since last

compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile

option.

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

tar_stan_gq_rep_draws 19

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

* If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If apath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc. cores=value).
If the "mc. cores” option has not been set then the default is 1.

threads_per_chain
(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when
using the Stan functions reduce_sum() ormap_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

variables (character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.
e If NULL (the default) then all variables are included.

nn

* If an empty string (variables="") then none are included.

* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta"” selects all elements of theta;

— variables = c("thetal[1]", "theta[3]") selects only the 1st and 3rd
elements.

data_copy Character vector of names of scalars in data. These values will be inserted as
columns in the output data frame for each rep. To join more than just scalars,
include a .join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

transform Symbol or NULL, name of a function that accepts arguments data and draws
and returns a data frame. Here, data is the JAGS data list supplied to the model,
and draws is a data frame with one column per model parameter and one row
per posterior sample. Any arguments other than data and draws must have valid

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html

20

tidy_eval

packages

library

format

format_df

repository

error

memory

tar_stan_ gq_rep_dra wSs

default values because stantargets will not populate them. See the simulation-
based calibration (SBC) section of the simulation vignette for an example.

Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

Character vector of library paths to try when loading packages.

Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or

"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

* "aws”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file" then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

Character of length 1, what to do if the target stops and throws an error. Options:

e "stop": the whole pipeline stops and throws an error.
* "continue”: the whole pipeline keeps going.
* "abridge”: any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

e "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_stan_gq_rep_draws 21

dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

* "none": almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.
The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".
retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

https://books.ropensci.org/targets/crew.html

22

tar_stan_ gq_rep_dra wSs

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("”survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile() and $sample () methods of the CmdStanModel
class. If you previously compiled the model in an upstream tar_stan_compile() target, then the
model should not recompile.

Value

tar_stan_gg_rep_draws() returns a list of target objects. See the "Target objects" section for
background. The target names use the name argument as a prefix, and the individual elements of
stan_files appear in the suffixes where applicable. As an example, the specific target objects
returned by tar_stan_gq_rep_draws(name = x, stan_files = "y.stan") are as follows.

» x_file_y: reproducibly track the Stan model file. Returns a character vector with the paths
to the model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original”. Returns a character vector of lines in the model file.

* x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

* x_y: dynamic branching target to run generated quantities once per dataset. Each dynamic
branch returns a tidy data frames of draws corresponding to a batch of Stan data from x_data.

* x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of draws.

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get("seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html

tar_stan_gq_rep_summary 23

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other generated quantities: tar_stan_gq(), tar_stan_gq_rep_summary ()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(stantargets)

Do not use temporary storage for stan files in real projects

or else your targets will always rerun.

path <- tempfile(fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mcmc (
your_model,

stan_files = c(x = path),
data = tar_stan_example_data(),
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile(),
refresh = @
),
tar_stan_gqg_rep_draws(
generated_quantities,
stan_files = path,
data = tar_stan_example_data(),
fitted_params = your_model_mcmc_x,
batches = 2,
reps = 2,
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()
)
)
}, ask = FALSE)
targets: :tar_make()
»
3

tar_stan_gqg_rep_summary
Multiple runs of generated quantities per model with summaries

https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

24

Description

Usage

tar_stan_gqg_rep_summary(

name,
stan_files,
data = list(),
fitted_params,
batches = 1L,
reps = 1L,
combine = TRUE,

compile = c("original”, "copy"),

quiet = TRUE,

stdout = NULL,

stderr = NULL,

dir = NULL,

pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),

force_recompile = FALSE,

seed = NULL,
output_dir = NULL,
sig_figs = NULL,

parallel_chains = getOption("mc.cores”, 1),
threads_per_chain = NULL,
character(0),

data_copy
variables = NULL,
summaries = list(),
summary_args = list(),

tidy_eval = targets::tar_option_get("tidy_eval”),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),

format = "gs",
format_df = "fst_tbl"”,

repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory”),

tar_stan_gq_rep_sumimary

tar_stan_gg_rep_summaries() creates targets to run generated quantities multiple times and save
only the summaries from each run.

garbage_collection = targets::tar_option_get("garbage_collection”),

deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

tar_stan_gq_rep_summary 25

description = targets::tar_option_get("description”)

)
Arguments
name Symbol, base name for the collection of targets. Serves as a prefix for target
names.
stan_files Character vector of paths to known existing Stan model files created before run-
ning the pipeline.
data (multiple options) The data to use for the variables specified in the data block of

the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.
fitted_params (multiple options) The parameter draws to use. One of the following:

* A CmdStanMCMC or CmdStanVB fitted model object.

* A posterior::draws_array (for MCMC) or posterior::draws_matrix (for VB)
object returned by CmdStanR’s $draws () method.

* A character vector of paths to CmdStan CSV output files.

NOTE: if you plan on making many calls to $generate_quantities() then
the most efficient option is to pass the paths of the CmdStan CSV output files
(this avoids CmdStanR having to rewrite the draws contained in the fitted model
object to CSV each time). If you no longer have the CSV files you can use
draws_to_csv() once to write them and then pass the resulting file paths to
$generate_quantities() as many times as needed.

batches Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

reps Number of replications per batch.

combine Logical, whether to create a target to combine all the model results into a single

data frame downstream. Convenient, but duplicates data.

compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

quiet (logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

stdout Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

26

stderr

dir

pedantic

include_paths

cpp_options

stanc_options

force_recompile

seed

output_dir

tar_stan_gq_rep_sumimary

Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

(string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

(logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

(character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

(list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

(list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

(logical) Should the model be recompiled even if was not modified since last

compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile

option.

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If apath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

tar_stan_gq_rep_summary 27

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc. cores=value).
If the "mc. cores” option has not been set then the default is 1.

threads_per_chain

(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when
using the Stan functions reduce_sum() or map_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

data_copy Character vector of names of scalars in data. These values will be inserted as
columns in the output data frame for each rep. To join more than just scalars,
include a . join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

variables (character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.
e If NULL (the default) then all variables are included.
o If an empty string (variables="") then none are included.
* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta"” selects all elements of theta;
— variables = c("thetal[1]", "thetal[3]") selects only the 1st and 3rd
elements.

summaries Optional list of summary functions passed to . . . in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

summary_args Optional list of summary function arguments passed to . args in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather" or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html

28

format_df

repository

error

memory

tar_stan_gq_rep_sumimary

Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather" or

"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

Character of length 1, remote repository for target storage. Choices:

e "local": file system of the local machine.

* "aws"”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.
* "continue”: the whole pipeline keeps going.
* "abridge”: any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker"”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

deployment

Logical, whether to run base: : gc() just before the target runs.

Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_gq_rep_summary 29

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile() and $generate_quantities() methods of the
CmdStanModel class. If you previously compiled the model in an upstream tar_stan_compile()
target, then the model should not recompile.

30 tar_stan_gq_rep_summary

Value

tar_stan_gg_rep_summaries() returns a list of target objects. See the "Target objects" section
for background. The target names use the name argument as a prefix, and the individual elements of
stan_f1iles appear in the suffixes where applicable. As an example, the specific target objects re-
turned by tar_stan_gg_rep_summary(name = x, stan_files = "y.stan") returns a list of target
objects:

» x_file_y: reproducibly track the Stan model file. Returns a character vector with the paths
to the model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original”. Returns a character vector of lines in the model file.

» x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

* x_y: dynamic branching target to run generated quantities once per dataset. Each dynamic
branch returns a tidy data frames of summaries corresponding to a batch of Stan data from
x_data.

* x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of summaries.

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get("seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other generated quantities: tar_stan_gq(), tar_stan_gq_rep_draws()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_mcmc

targets::tar_script({
library(stantargets)

Do not use temporary storage for stan files in real projects

or else your targets will always rerun.
path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)

list(
tar_stan_mcmc(
your_model,
stan_files = c(x

path),

data = tar_stan_example_data(),
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()

)Y

tar_stan_gq_rep_summary (
generated_quantities,

stan_files = path

’

data = tar_stan_example_data(),
fitted_params = your_model_mcmc_x,

batches = 2,
reps = 2,

stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()

)
)
}, ask = FALSE)
targets::tar_make()
B
3

31

tar_stan_mcmc

One MCMC per model with multiple outputs

Description

tar_stan_mcmc() creates targets to run one MCMC per model and separately save summaries

draws, and diagnostics.

Usage

tar_stan_mcmc(
name,
stan_files,
data = list(),

compile = c("original”, "copy"),

quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,

32

pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,

output_dir = NULL,

output_basename = NULL,

sig_figs = NULL,

chains = 4,

parallel_chains = getOption("mc.cores”, 1),
chain_ids = seqg_len(chains),
threads_per_chain = NULL,

opencl_ids = NULL,

iter_warmup = NULL,

iter_sampling = NULL,

save_warmup = FALSE,

thin = NULL,

max_treedepth = NULL,

adapt_engaged = TRUE,

adapt_delta = NULL,

step_size = NULL,

metric = NULL,

metric_file = NULL,

inv_metric = NULL,

init_buffer = NULL,

term_buffer = NULL,

window = NULL,

fixed_param = FALSE,

show_messages = TRUE,

diagnostics = c("divergences”, "treedepth”, "ebfmi"),
variables = NULL,

variables_fit = NULL,

inc_warmup = FALSE,

inc_warmup_fit = FALSE,

summaries = list(),

summary_args = list(),

return_draws = TRUE,

return_diagnostics = TRUE,

return_summary = TRUE,

draws = NULL,

summary = NULL,

tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),

tar_stan_mcmc

tar_stan_mcmc 33

format = "gs",

format_df = "fst_tbl",

repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),

memory = targets::tar_option_get("memory”),
garbage_collection = targets::tar_option_get("garbage_collection”),
deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description = targets::tar_option_get("description”)

)
Arguments

name Symbol, base name for the collection of targets. Serves as a prefix for target
names.

stan_files Character vector of Stan model files. If you supply multiple files, each model
will run on the one shared dataset generated by the code in data. If you supply
an unnamed vector, fs: :path_ext_remove(basename(stan_files)) will be
used as target name suffixes. If stan_files is a named vector, the suffixed will
come from names(stan_files).

data Code to generate the data for the Stan model.

compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

quiet (logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

stdout Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic

mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html

34

cpp_options

stanc_options

force_recompile

seed

refresh

init

tar_stan_mcmc

(list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

(list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

(logical) Should the model be recompiled even if was not modified since last

compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile

option.

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

(non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

(multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0@. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number @. This initializes all parameters to ;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

tar_stan_mcmc 35

case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* Ifapath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

chains (positive integer) The number of Markov chains to run. The default is 4.
parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc. cores=value).
If the "mc. cores” option has not been set then the default is 1.

chain_ids (integer vector) A vector of chain IDs. Must contain as many unique positive
integers as the number of chains. If not set, the default chain IDs are used
(integers starting from 1).

threads_per_chain
(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when
using the Stan functions reduce_sum() ormap_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

iter_warmup (positive integer) The number of warmup iterations to run per chain. Note: in
the CmdStan User’s Guide this is referred to as num_warmup.

iter_sampling (positive integer) The number of post-warmup iterations to run per chain. Note:
in the CmdStan User’s Guide this is referred to as num_samples.

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

36

save_warmup
thin

max_treedepth

adapt_engaged

adapt_delta

step_size

metric

metric_file

inv_metric

init_buffer

term_buffer

window

fixed_param

show_messages

tar_stan_mcmc

(logical) Should warmup iterations be saved? The default is FALSE.

(positive integer) The period between saved samples. This should typically be
left at its default (no thinning) unless memory is a problem.

(positive integer) The maximum allowed tree depth for the NUTS engine. See
the Tree Depth section of the CmdStan User’s Guide for more details.

(logical) Do warmup adaptation? The default is TRUE. If a precomputed in-
verse metric is specified via the inv_metric argument (or metric_file) then,
if adapt_engaged=TRUE, Stan will use the provided inverse metric just as an ini-
tial guess during adaptation. To turn off adaptation when using a precomputed
inverse metric set adapt_engaged=FALSE.

(real in (@, 1)) The adaptation target acceptance statistic.

(positive real) The initial step size for the discrete approximation to continuous
Hamiltonian dynamics. This is further tuned during warmup.

(string) One of "diag_e", "dense_e", or "unit_e", specifying the geometry of
the base manifold. See the Euclidean Metric section of the CmdStan User’s
Guide for more details. To specify a precomputed (inverse) metric, see the
inv_metric argument below.

(character vector) The paths to JSON or Rdump files (one per chain) compatible
with CmdStan that contain precomputed inverse metrics. The metric_file
argument is inherited from CmdStan but is confusing in that the entry in JSON
or Rdump file(s) must be named inv_metric, referring to the inverse metric.
We recommend instead using CmdStanR’s inv_metric argument (see below) to
specify an inverse metric directly using a vector or matrix from your R session.

(vector, matrix) A vector (if metric="'diag_e"') or amatrix (if metric="'dense_e")

for initializing the inverse metric. This can be used as an alternative to the
metric_file argument. A vector is interpreted as a diagonal metric. The in-
verse metric is usually set to an estimate of the posterior covariance. See the
adapt_engaged argument above for details about (and control over) how speci-
fying a precomputed inverse metric interacts with adaptation.

(nonnegative integer) Width of initial fast timestep adaptation interval during
warmup.

(nonnegative integer) Width of final fast timestep adaptation interval during
warmup.

(nonnegative integer) Initial width of slow timestep/metric adaptation interval.

(logical) When TRUE, call CmdStan with argument "algorithm=fixed_param".
The default is FALSE. The fixed parameter sampler generates a new sample with-
out changing the current state of the Markov chain; only generated quantities
may change. This can be useful when, for example, trying to generate pseudo-
data using the generated quantities block. If the parameters block is empty then
using fixed_param=TRUE is mandatory. When fixed_param=TRUE the chains
and parallel_chains arguments will be set to 1.

(logical) When TRUE (the default), prints all output during the sampling process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

tar_stan_mcmc 37

diagnostics (character vector) The diagnostics to automatically check and warn about af-
ter sampling. Setting this to an empty string "" or NULL can be used to pre-
vent CmdStanR from automatically reading in the sampler diagnostics from
CSV if you wish to manually read in the results and validate them yourself,
for example using read_cmdstan_csv(). The currently available diagnostics
are "divergences”, "treedepth”, and "ebfmi” (the default is to check all of
them).
These diagnostics are also available after fitting. The $sampler_diagnostics()
method provides access the diagnostic values for each iteration and the $diagnostic_summary()
method provides summaries of the diagnostics and can regenerate the warning
messages.
Diagnostics like R-hat and effective sample size are not currently available via
the diagnostics argument but can be checked after fitting using the $summary ()
method.

variables (character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.

e If NULL (the default) then all variables are included.
* If an empty string (variables="") then none are included.
* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta"” selects all elements of theta;
— variables = c("thetal[1]", "theta[3]") selects only the 1stand 3rd
elements.

variables_fit Character vector of variables to include in the big CmdStanFit object returned
by the model fit target. The variables argument, by contrast, is for the "draws”
target only. The "draws” target can only access the variables in the CmdStanFit
target. Control the variables in each with the variables and variables_fit
arguments.

inc_warmup (logical) Should warmup draws be included? Defaults to FALSE. Ignored except
when used with CmdStanMCMC objects.

inc_warmup_fit Logical of length 1, whether to include warmup draws in the big MCMC ob-
ject (the target with "mcmc” in the name). inc_warmup must not be TRUE if
inc_warmup_fit is FALSE.

summaries Optional list of summary functions passed to . . . in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

summary_args Optional list of summary function arguments passed to . args in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

return_draws Logical, whether to create a target for posterior draws. Saves posterior: :as_draws_df (fit$draws())
to a compressed tibble. Convenient, but duplicates storage.

return_diagnostics
Logical, whether to create a target for posterior: :as_draws_df (fit$sampler_diagnostics()).
Saves posterior::as_draws_df (fit$draws()) to a compressed tibble. Con-
venient, but duplicates storage.

return_summary Logical, whether to create a target for fit$summary().

draws Deprecated on 2022-07-22. Use return_draws instead.

tar_stan_mcmc

summary Deprecated on 2022-07-22. Use return_summary instead.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the non-data-frame targets such as
the Stan data and any CmdStanFit objects. Please choose an all=purpose for-
mat such as "qgs"” or "aws_qgs" rather than a file format like "file"” or a data
frame format like "parquet"”. For more on storage formats, see the help file of
targets::tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

* "aws"”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tionof https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.
* "continue”: the whole pipeline keeps going.
e "abridge": any currently running targets keep running, but no new tar-

gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html

tar_stan_mcmc 39

loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

* "none": almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.
e "worker": the worker loads the targets dependencies.

* "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

https://books.ropensci.org/targets/crew.html

40 tar_stan_mcmc

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("”survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile(), $sample(), and $summary () methods of the
CmdStanModel class. If you previously compiled the model in an upstream tar_stan_compile()
target, then the model should not recompile.

Value

tar_stan_memc() returns a list of target objects. See the "Target objects" section for background.
The target names use the name argument as a prefix, and the individual elements of stan_files
appear in the suffixes where applicable. As an example, the specific target objects returned by
tar_stan_mcmc(name = x, stan_files ="y.stan", ...) are as follows.

» x_file_y: reproducibly track the Stan model file. Returns a character vector with paths to the
model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original”. Returns a character vector of lines in the model file.

* x_data: run the R expression in the data argument to produce a Stan dataset for the model.
Returns a Stan data list.

e x_mcmc_y: run MCMC on the model and the dataset. Returns a cmdstanr CmdStanMCMC
object with all the results.

e x_draws_y: extract draws from x_mcmc_y. Omitted if draws = FALSE. Returns a tidy data
frame of draws.

e Xx_summary_y: extract compact summaries from x_mcmc_y. Returns a tidy data frame of sum-
maries. Omitted if summary = FALSE.

* x_diagnostics: extract HMC diagnostics from x_mcmc_y. Returns a tidy data frame of HMC
diagnostics. Omitted if diagnostics = FALSE.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists

of target objects. Target objects represent skippable steps of the analysis pipeline as described

at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_mcmc_rep_diagnostics 41

See Also

Other MCMC: tar_stan_mcmc_rep_diagnostics(), tar_stan_mcmc_rep_draws(), tar_stan_mcmc_rep_summary ()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(stantargets)

Do not use temporary storage for stan files in real projects

or else your targets will always rerun.

path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mcmc(
your_model,

stan_files = path,
data = tar_stan_example_data(),
variables = "beta",
summaries = list(~quantile(.x, probs = c(0.25, 0.75))),
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()
)

)
}, ask = FALSE)

targets::tar_make()
»
3

tar_stan_mcmc_rep_diagnostics
Multiple MCMCs per model with sampler diagnostics

Description

tar_stan_mcmc_rep_diagnostics() creates targets to run MCMC multiple times per model and
save only the sampler diagnostics from each run.

Usage

tar_stan_mcmc_rep_diagnostics(
name,
stan_files,
data = list(),
batches = 1L,
reps = 1L,
combine = FALSE,
compile = c("original”, "copy"),

42

quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,

pedantic = FALSE,

include_paths
cpp_options =
stanc_options

= NULL,
list(Q),
= list(),

force_recompile = FALSE,

seed = NULL,

refresh = NULL,

init = NULL,

save_latent_dynamics = FALSE,
output_dir = NULL,
output_basename = NULL,
sig_figs = NULL,

chains = 4,

parallel_chains = getOption("mc.cores”, 1),
chain_ids = seqg_len(chains),
threads_per_chain = NULL,

opencl_ids = NULL,

iter_warmup =
iter_sampling
save_warmup =
thin = NULL,

max_treedepth
adapt_engaged
adapt_delta =

NULL,
= NULL,
FALSE,

= NULL,
= TRUE,
NULL,

step_size = NULL,

metric = NULL,
metric_file =

NULL,

inv_metric = NULL,

tar_stan_mcmc_rep_diagnostics

init_buffer = NULL,

term_buffer = NULL,

window = NULL,

fixed_param = FALSE,

show_messages = TRUE,

diagnostics = c("divergences"”, "treedepth”, "ebfmi"),

inc_warmup = FALSE,
data_copy = character(0),

tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),

format = "gs",

format_df = "fst_tbl",

repository = targets::tar_option_get("repository”),

error = targets::tar_option_get("error"),
memory = "transient",

tar_stan_mcmc_rep_diagnostics 43

garbage_collection = TRUE,

deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description = targets::tar_option_get("description”)

)
Arguments

name Symbol, base name for the collection of targets. Serves as a prefix for target
names.

stan_files Character vector of paths to known existing Stan model files created before run-
ning the pipeline.

data Code to generate a single replication of a simulated dataset. The workflow sim-
ulates multiple datasets, and each model runs on each dataset. To join data on to
the model summaries, include a . join_data element of your Stan data list with
names and dimensions corresponding to those of the model. For details, read
https://docs.ropensci.org/stantargets/articles/simulation.html.

batches Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

reps Number of replications per batch.

combine Logical, whether to create a target to combine all the model results into a single
data frame downstream. Convenient, but duplicates data.

compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

quiet (logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

stdout Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, Or errors.

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic

mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html

44

include_paths

cpp_options

stanc_options

force_recompile

seed

refresh

init

tar_stan_mcmc_rep_diagnostics

(character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

(list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

(list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

(logical) Should the model be recompiled even if was not modified since last

compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile

option.

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

(non-negative integer) The number of iterations between printed screen updates.
If refresh = 0, only error messages will be printed.

(multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

e The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

tar_stan_mcmc_rep_diagnostics 45

user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

output_dir (string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

o If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* Ifapath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

chains (positive integer) The number of Markov chains to run. The default is 4.
parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc.cores=value).
If the "mc. cores” option has not been set then the default is 1.

chain_ids (integer vector) A vector of chain IDs. Must contain as many unique positive
integers as the number of chains. If not set, the default chain IDs are used
(integers starting from 1).

threads_per_chain
(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when
using the Stan functions reduce_sum() or map_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

iter_warmup (positive integer) The number of warmup iterations to run per chain. Note: in
the CmdStan User’s Guide this is referred to as num_warmup.

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

46

iter_sampling

save_warmup

thin

max_treedepth

adapt_engaged

adapt_delta

step_size

metric

metric_file

inv_metric

init_buffer

term_buffer

window

fixed_param

tar_stan_mcmc_rep_diagnostics

(positive integer) The number of post-warmup iterations to run per chain. Note:
in the CmdStan User’s Guide this is referred to as num_samples.

(logical) Should warmup iterations be saved? The default is FALSE.

(positive integer) The period between saved samples. This should typically be
left at its default (no thinning) unless memory is a problem.

(positive integer) The maximum allowed tree depth for the NUTS engine. See
the Tree Depth section of the CmdStan User’s Guide for more details.

(logical) Do warmup adaptation? The default is TRUE. If a precomputed in-
verse metric is specified via the inv_metric argument (or metric_file) then,
if adapt_engaged=TRUE, Stan will use the provided inverse metric just as an ini-
tial guess during adaptation. To turn off adaptation when using a precomputed
inverse metric set adapt_engaged=FALSE.

(real in (@, 1)) The adaptation target acceptance statistic.

(positive real) The initial step size for the discrete approximation to continuous
Hamiltonian dynamics. This is further tuned during warmup.

(string) One of "diag_e", "dense_e", or "unit_e", specifying the geometry of
the base manifold. See the Euclidean Metric section of the CmdStan User’s
Guide for more details. To specify a precomputed (inverse) metric, see the
inv_metric argument below.

(character vector) The paths to JSON or Rdump files (one per chain) compatible
with CmdStan that contain precomputed inverse metrics. The metric_file
argument is inherited from CmdStan but is confusing in that the entry in JSON
or Rdump file(s) must be named inv_metric, referring to the inverse metric.
We recommend instead using CmdStanR’s inv_metric argument (see below) to
specify an inverse metric directly using a vector or matrix from your R session.

(vector, matrix) A vector (if metric="diag_e"') or amatrix (if metric="'dense_e")

for initializing the inverse metric. This can be used as an alternative to the
metric_file argument. A vector is interpreted as a diagonal metric. The in-
verse metric is usually set to an estimate of the posterior covariance. See the
adapt_engaged argument above for details about (and control over) how speci-
fying a precomputed inverse metric interacts with adaptation.

(nonnegative integer) Width of initial fast timestep adaptation interval during
warmup.

(nonnegative integer) Width of final fast timestep adaptation interval during
warmup.

(nonnegative integer) Initial width of slow timestep/metric adaptation interval.

(logical) When TRUE, call CmdStan with argument "algorithm=fixed_param".
The default is FALSE. The fixed parameter sampler generates a new sample with-
out changing the current state of the Markov chain; only generated quantities
may change. This can be useful when, for example, trying to generate pseudo-
data using the generated quantities block. If the parameters block is empty then
using fixed_param=TRUE is mandatory. When fixed_param=TRUE the chains
and parallel_chains arguments will be set to 1.

tar_stan_mcmc_rep_diagnostics 47

show_messages (logical) When TRUE (the default), prints all output during the sampling process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

diagnostics (character vector) The diagnostics to automatically check and warn about af-
ter sampling. Setting this to an empty string "" or NULL can be used to pre-
vent CmdStanR from automatically reading in the sampler diagnostics from
CSV if you wish to manually read in the results and validate them yourself,
for example using read_cmdstan_csv(). The currently available diagnostics
are "divergences”, "treedepth”, and "ebfmi” (the default is to check all of
them).
These diagnostics are also available after fitting. The $sampler_diagnostics()
method provides access the diagnostic values for each iteration and the $diagnostic_summary()
method provides summaries of the diagnostics and can regenerate the warning
messages.

Diagnostics like R-hat and effective sample size are not currently available via
the diagnostics argument but can be checked after fitting using the $summary ()

method.

inc_warmup (logical) Should warmup draws be included? Defaults to FALSE. Ignored except
when used with CmdStanMCMC objects.

data_copy Character vector of names of scalars in data. These values will be inserted as

columns in the output data frame for each rep. To join more than just scalars,
include a . join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet”.
For more on storage formats, see the help file of targets::tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather" or
"aws_parquet”. For more on storage formats, see the help file of targets: :tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

* "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html
https://books.ropensci.org/targets/data.html

48

tar_stan_mcmc_rep_diagnostics

e "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop”: the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

* "abridge"”: any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

e "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file"” with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_mcmc_rep_diagnostics 49

* "none": almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Saved diagnostics could get quite large in storage, so please use thinning if necessary.

Most of the arguments are passed to the $compile() and $generate_quantities() methods of the
CmdStanModel class. If you previously compiled the model in an upstream tar_stan_compile()
target, then the model should not recompile.

Value

tar_stan_mcmc_rep_diagnostics() returns a list of target objects. See the "Target objects" sec-
tion for background. The target names use the name argument as a prefix, and the individual ele-
ments of stan_files appear in the suffixes where applicable. As an example, the specific target
objects returned by tar_stan_mcmc_rep_diagnostics(name = x, stan_files ="y.stan") are
as follows.

e x_file_y: reproducibly track the Stan model file. Returns a character vector with the paths
to the model file and compiled executable.

50 tar_stan_mcmc_rep_diagnostics

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original”. Returns a character vector of lines in the model file.

* x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

* x_y: dynamic branching target to run MCMC once per dataset. Each dynamic branch returns
a tidy data frames of HMC diagnostics corresponding to a batch of Stan data from x_data.

* x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of HMC diagnostics.

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get("seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other MCMC: tar_stan_mcmc (), tar_stan_mcmc_rep_draws(), tar_stan_mcmc_rep_summary ()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
library(stantargets)
Do not use temporary storage for stan files in real projects
or else your targets will always rerun.
path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mcmc_rep_diagnostics(

your_model,

stan_files = path,

data = tar_stan_example_data(),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_mcmc_rep_draws 51

batches = 2,
reps = 2,
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()
)
)
}, ask = FALSE)
targets: :tar_make()
»
}

tar_stan_mcmc_rep_draws
Multiple MCMC runs per model with draws

Description

tar_stan_mcmc_rep_draws() creates targets to run MCMC multiple times per model and save
only the draws from each run.

Usage

tar_stan_mcmc_rep_draws(
name,
stan_files,
data = list(),
batches = 1L,
reps = 1L,
combine = FALSE,
compile = c("original”, "copy"),
quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,
pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,

output_dir = NULL,

output_basename = NULL,

sig_figs = NULL,

chains = 4,

parallel_chains = getOption("mc.cores”, 1),

52

chain_ids = seg_len(chains),
threads_per_chain = NULL,
opencl_ids = NULL,
iter_warmup = NULL,
iter_sampling = NULL,
save_warmup = FALSE,

thin = NULL,
max_treedepth = NULL,
adapt_engaged = TRUE,
adapt_delta = NULL,
step_size = NULL,

metric = NULL,
metric_file = NULL,
inv_metric = NULL,
init_buffer = NULL,
term_buffer = NULL,
window = NULL,
fixed_param = FALSE,
show_messages = TRUE,

diagnostics = c("divergences"”, "treedepth”, "ebfmi"),

inc_warmup = FALSE,

variables = NULL,

data_copy = character(9),

transform = NULL,

tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages”),
library = targets::tar_option_get("library"),
format = "gs",

format_df = "fst_tbl",

repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),

memory = "transient",

garbage_collection = TRUE,

deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description = targets::tar_option_get("description”)

tar_stan_mcmc_rep_draws

Arguments
name Symbol, base name for the collection of targets. Serves as a prefix for target
names.
stan_files

ning the pipeline.

Character vector of paths to known existing Stan model files created before run-

data

batches

reps

combine

compile

quiet

stdout

stderr

dir

pedantic

include_paths

cpp_options

stanc_options

force_recompile

tar_stan_mcmc_rep_draws 53

Code to generate a single replication of a simulated dataset. The workflow sim-
ulates multiple datasets, and each model runs on each dataset. To join data on to
the model summaries, include a . join_data element of your Stan data list with
names and dimensions corresponding to those of the model. For details, read
https://docs.ropensci.org/stantargets/articles/simulation.html.

Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

Number of replications per batch.

Logical, whether to create a target to combine all the model results into a single
data frame downstream. Convenient, but duplicates data.

(logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile() method.

(logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

(string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

(logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

(character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

(list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

(list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

(logical) Should the model be recompiled even if was not modified since last

compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile

option.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

54

seed

refresh

init

tar_stan_mcmc_rep_draws

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

(non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

(multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number @. This initializes all parameters to ©;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

output_dir

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

tar_stan_mcmc_rep_draws 55

* Ifapath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().
output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

chains (positive integer) The number of Markov chains to run. The default is 4.
parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc.cores=value).
If the "mc. cores” option has not been set then the default is 1.

chain_ids (integer vector) A vector of chain IDs. Must contain as many unique positive
integers as the number of chains. If not set, the default chain IDs are used
(integers starting from 1).

threads_per_chain
(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when
using the Stan functions reduce_sum() or map_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

iter_warmup (positive integer) The number of warmup iterations to run per chain. Note: in
the CmdStan User’s Guide this is referred to as num_warmup.

iter_sampling (positive integer) The number of post-warmup iterations to run per chain. Note:
in the CmdStan User’s Guide this is referred to as num_samples.

save_warmup (logical) Should warmup iterations be saved? The default is FALSE.

thin (positive integer) The period between saved samples. This should typically be
left at its default (no thinning) unless memory is a problem.

max_treedepth (positive integer) The maximum allowed tree depth for the NUTS engine. See
the Tree Depth section of the CmdStan User’s Guide for more details.

adapt_engaged (logical) Do warmup adaptation? The default is TRUE. If a precomputed in-
verse metric is specified via the inv_metric argument (or metric_file) then,
if adapt_engaged=TRUE, Stan will use the provided inverse metric just as an ini-
tial guess during adaptation. To turn off adaptation when using a precomputed
inverse metric set adapt_engaged=FALSE.

adapt_delta (real in (@, 1)) The adaptation target acceptance statistic.

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

tar_stan_mcmc_rep_draws

step_size (positive real) The initial step size for the discrete approximation to continuous
Hamiltonian dynamics. This is further tuned during warmup.

metric (string) One of "diag_e", "dense_e", or "unit_e", specifying the geometry of
the base manifold. See the Euclidean Metric section of the CmdStan User’s
Guide for more details. To specify a precomputed (inverse) metric, see the
inv_metric argument below.

metric_file (character vector) The paths to JSON or Rdump files (one per chain) compatible
with CmdStan that contain precomputed inverse metrics. The metric_file
argument is inherited from CmdStan but is confusing in that the entry in JSON
or Rdump file(s) must be named inv_metric, referring to the inverse metric.
We recommend instead using CmdStanR’s inv_metric argument (see below) to
specify an inverse metric directly using a vector or matrix from your R session.

inv_metric (vector, matrix) A vector (if metric="'diag_e') or a matrix (if metric="'dense_e"')
for initializing the inverse metric. This can be used as an alternative to the
metric_file argument. A vector is interpreted as a diagonal metric. The in-
verse metric is usually set to an estimate of the posterior covariance. See the
adapt_engaged argument above for details about (and control over) how speci-
fying a precomputed inverse metric interacts with adaptation.

init_buffer (nonnegative integer) Width of initial fast timestep adaptation interval during
warmup.

term_buffer (nonnegative integer) Width of final fast timestep adaptation interval during
warmup.

window (nonnegative integer) Initial width of slow timestep/metric adaptation interval.

fixed_param (logical) When TRUE, call CmdStan with argument "algorithm=fixed_param"”.
The default is FALSE. The fixed parameter sampler generates a new sample with-
out changing the current state of the Markov chain; only generated quantities
may change. This can be useful when, for example, trying to generate pseudo-
data using the generated quantities block. If the parameters block is empty then
using fixed_param=TRUE is mandatory. When fixed_param=TRUE the chains
and parallel_chains arguments will be set to 1.

show_messages (logical) When TRUE (the default), prints all output during the sampling process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

diagnostics (character vector) The diagnostics to automatically check and warn about af-
ter sampling. Setting this to an empty string ""” or NULL can be used to pre-
vent CmdStanR from automatically reading in the sampler diagnostics from
CSV if you wish to manually read in the results and validate them yourself,
for example using read_cmdstan_csv(). The currently available diagnostics
are "divergences”, "treedepth”, and "ebfmi” (the default is to check all of
them).

These diagnostics are also available after fitting. The $sampler_diagnostics()

method provides access the diagnostic values for each iteration and the $diagnostic_summary()
method provides summaries of the diagnostics and can regenerate the warning

messages.

tar_stan_mcmc_rep_draws 57

Diagnostics like R-hat and effective sample size are not currently available via
the diagnostics argument but can be checked after fitting using the $summary ()

method.

inc_warmup (logical) Should warmup draws be included? Defaults to FALSE. Ignored except
when used with CmdStanMCMC objects.

variables (character vector) Optionally, the names of the variables (parameters, trans-

formed parameters, and generated quantities) to read in.
e If NULL (the default) then all variables are included.

nn

* If an empty string (variables="") then none are included.

* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta” selects all elements of theta;

— variables = c("thetal[1]", "theta[3]") selects only the 1st and 3rd
elements.

data_copy Character vector of names of scalars in data. These values will be inserted as
columns in the output data frame for each rep. To join more than just scalars,
include a .join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

transform Symbol or NULL, name of a function that accepts arguments data and draws
and returns a data frame. Here, data is the JAGS data list supplied to the model,
and draws is a data frame with one column per model parameter and one row
per posterior sample. Any arguments other than data and draws must have valid
default values because stantargets will not populate them. See the simulation-
based calibration (SBC) section of the simulation vignette for an example.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

* "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html
https://books.ropensci.org/targets/data.html

58

tar_stan_mcmc_rep_dra wSs

e "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop”: the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

* "abridge"”: any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

e "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file"” with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_mcmc_rep_draws 59

* "none": almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.
* "none”: the dependencies are not loaded at all. This choice is almost never

recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Draws could take up a lot of storage. If storage becomes excessive, please consider thinning the
draws or using tar_stan_mcmc_rep_summary () instead.

Most of the arguments are passed to the $compile() and $sample () methods of the CmdStanModel
class. If you previously compiled the model in an upstream tar_stan_compile() target, then the
model should not recompile.

Value

tar_stan_mcmc_rep_draws() returns a list of target objects. See the "Target objects" section for
background. The target names use the name argument as a prefix, and the individual elements of
stan_files appear in the suffixes where applicable. As an example, the specific target objects
returned by tar_stan_mcmc_rep_draws(name = x, stan_files ="y.stan") are as follows.

e x_file_y: reproducibly track the Stan model file. Returns a character vector with the paths
to the model file and compiled executable.

60 tar_stan_mcmc_rep_draws

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original”. Returns a character vector of lines in the model file.

* x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

* x_y: dynamic branching target to run MCMC once per dataset. Each dynamic branch returns
a tidy data frames of draws corresponding to a batch of Stan data from x_data.

* x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of draws.

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get("seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other MCMC: tar_stan_mcmc (), tar_stan_mcmc_rep_diagnostics(), tar_stan_mcmc_rep_summary ()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
library(stantargets)
Do not use temporary storage for stan files in real projects
or else your targets will always rerun.
path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mcmc_rep_draws(

your_model,

stan_files = path,

data = tar_stan_example_data(),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_mcmc_rep_summary

batches = 2,
reps = 2,
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()
)
)
}, ask = FALSE)
targets: :tar_make()
»
}

tar_stan_mcmc_rep_summary
Multiple MCMCs per model with summaries

Description

Targets to run MCMC multiple times and save only the summary output from each run.

Usage
tar_stan_mcmc_rep_summary (
name,
stan_files,
data = list(),
batches = 1L,
reps = 1L,
combine = TRUE,
compile = c("original”, "copy"),
quiet = TRUE,

stdout = NULL,

stderr = NULL,

dir = NULL,

pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,

output_dir = NULL,

output_basename = NULL,

sig_figs = NULL,

chains = 4,

parallel_chains = getOption("mc.cores”, 1),
chain_ids = seqg_len(chains),

62

tar_stan_mcmc_rep_summary

threads_per_chain = NULL,
opencl_ids = NULL,
iter_warmup = NULL,
iter_sampling = NULL,
save_warmup = FALSE,
thin = NULL,
max_treedepth = NULL,
adapt_engaged = TRUE,
adapt_delta = NULL,
step_size = NULL,
metric = NULL,
metric_file = NULL,
inv_metric = NULL,
init_buffer = NULL,
term_buffer = NULL,
window = NULL,
fixed_param = FALSE,
show_messages = TRUE,

diagnostics = c("divergences"”, "treedepth”, "ebfmi"),
data_copy = character(9),
variables = NULL,

summaries = NULL,

summary_args = NULL,

tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),

format = "qgs",

format_df = "fst_tbl",

repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),

memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection”),
deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description = targets::tar_option_get("description”)

Arguments
name Symbol, base name for the collection of targets. Serves as a prefix for target
names.
stan_files Character vector of paths to known existing Stan model files created before run-

ning the pipeline.

data Code to generate a single replication of a simulated dataset. The workflow sim-

tar_stan_mcmc_rep_summary 63

ulates multiple datasets, and each model runs on each dataset. To join data on to
the model summaries, include a . join_data element of your Stan data list with
names and dimensions corresponding to those of the model. For details, read
https://docs.ropensci.org/stantargets/articles/simulation.html.

batches Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

reps Number of replications per batch.

combine Logical, whether to create a target to combine all the model results into a single

data frame downstream. Convenient, but duplicates data.

compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

quiet (logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

stdout Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last

compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

64

seed

refresh

init

tar_stan_mcmc_rep_summary

(positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

(non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

(multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number @. This initializes all parameters to ©;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

output_dir

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

tar_stan_mcmc_rep_summary 65

* Ifapath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().
output_basename
(string) A string to use as a prefix for the names of the output CSV files of
CmdStan. If NULL (the default), the basename of the output CSV files will be
comprised from the model name, timestamp, and 5 random characters.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

chains (positive integer) The number of Markov chains to run. The default is 4.
parallel_chains
(positive integer) The maximum number of MCMC chains to run in parallel.
If parallel_chains is not specified then the default is to look for the option
"mc. cores”, which can be set for an entire R session by options(mc.cores=value).
If the "mc. cores” option has not been set then the default is 1.

chain_ids (integer vector) A vector of chain IDs. Must contain as many unique positive
integers as the number of chains. If not set, the default chain IDs are used
(integers starting from 1).

threads_per_chain
(positive integer) If the model was compiled with threading support, the number
of threads to use in parallelized sections within an MCMC chain (e.g., when
using the Stan functions reduce_sum() or map_rect()). This is in contrast with
parallel_chains, which specifies the number of chains to run in parallel. The
actual number of CPU cores used is parallel_chains*threads_per_chain.
For an example of using threading see the Stan case study Reduce Sum: A
Minimal Example.

opencl_ids (integer vector of length 2) The platform and device IDs of the OpenCL device to
use for fitting. The model must be compiled with cpp_options = list(stan_opencl
= TRUE) for this argument to have an effect.

iter_warmup (positive integer) The number of warmup iterations to run per chain. Note: in
the CmdStan User’s Guide this is referred to as num_warmup.

iter_sampling (positive integer) The number of post-warmup iterations to run per chain. Note:
in the CmdStan User’s Guide this is referred to as num_samples.

save_warmup (logical) Should warmup iterations be saved? The default is FALSE.

thin (positive integer) The period between saved samples. This should typically be
left at its default (no thinning) unless memory is a problem.

max_treedepth (positive integer) The maximum allowed tree depth for the NUTS engine. See
the Tree Depth section of the CmdStan User’s Guide for more details.

adapt_engaged (logical) Do warmup adaptation? The default is TRUE. If a precomputed in-
verse metric is specified via the inv_metric argument (or metric_file) then,
if adapt_engaged=TRUE, Stan will use the provided inverse metric just as an ini-
tial guess during adaptation. To turn off adaptation when using a precomputed
inverse metric set adapt_engaged=FALSE.

adapt_delta (real in (@, 1)) The adaptation target acceptance statistic.

https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

tar_stan_mcmc_rep_summary

step_size (positive real) The initial step size for the discrete approximation to continuous
Hamiltonian dynamics. This is further tuned during warmup.

metric (string) One of "diag_e", "dense_e", or "unit_e", specifying the geometry of
the base manifold. See the Euclidean Metric section of the CmdStan User’s
Guide for more details. To specify a precomputed (inverse) metric, see the
inv_metric argument below.

metric_file (character vector) The paths to JSON or Rdump files (one per chain) compatible
with CmdStan that contain precomputed inverse metrics. The metric_file
argument is inherited from CmdStan but is confusing in that the entry in JSON
or Rdump file(s) must be named inv_metric, referring to the inverse metric.
We recommend instead using CmdStanR’s inv_metric argument (see below) to
specify an inverse metric directly using a vector or matrix from your R session.

inv_metric (vector, matrix) A vector (if metric="'diag_e') or a matrix (if metric="'dense_e"')
for initializing the inverse metric. This can be used as an alternative to the
metric_file argument. A vector is interpreted as a diagonal metric. The in-
verse metric is usually set to an estimate of the posterior covariance. See the
adapt_engaged argument above for details about (and control over) how speci-
fying a precomputed inverse metric interacts with adaptation.

init_buffer (nonnegative integer) Width of initial fast timestep adaptation interval during
warmup.

term_buffer (nonnegative integer) Width of final fast timestep adaptation interval during
warmup.

window (nonnegative integer) Initial width of slow timestep/metric adaptation interval.

fixed_param (logical) When TRUE, call CmdStan with argument "algorithm=fixed_param"”.
The default is FALSE. The fixed parameter sampler generates a new sample with-
out changing the current state of the Markov chain; only generated quantities
may change. This can be useful when, for example, trying to generate pseudo-
data using the generated quantities block. If the parameters block is empty then
using fixed_param=TRUE is mandatory. When fixed_param=TRUE the chains
and parallel_chains arguments will be set to 1.

show_messages (logical) When TRUE (the default), prints all output during the sampling process,
such as iteration numbers and elapsed times. If the output is silenced then the
$output () method of the resulting fit object can be used to display the silenced
messages.

diagnostics (character vector) The diagnostics to automatically check and warn about af-
ter sampling. Setting this to an empty string ""” or NULL can be used to pre-
vent CmdStanR from automatically reading in the sampler diagnostics from
CSV if you wish to manually read in the results and validate them yourself,
for example using read_cmdstan_csv(). The currently available diagnostics
are "divergences”, "treedepth”, and "ebfmi” (the default is to check all of
them).
These diagnostics are also available after fitting. The $sampler_diagnostics()
method provides access the diagnostic values for each iteration and the $diagnostic_summary()
method provides summaries of the diagnostics and can regenerate the warning
messages.

tar_stan_mcmc_rep_summary 67

Diagnostics like R-hat and effective sample size are not currently available via
the diagnostics argument but can be checked after fitting using the $summary ()
method.

data_copy Character vector of names of scalars in data. These values will be inserted as
columns in the output data frame for each rep. To join more than just scalars,
include a . join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

variables (character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.

e If NULL (the default) then all variables are included.

nn

* If an empty string (variables="") then none are included.

* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta" selects all elements of theta;

— variables = c("thetal[1]", "theta[3]") selects only the 1st and 3rd
elements.

summaries Optional list of summary functions passed to . . . in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

summary_args Optional list of summary function arguments passed to . args in posterior: : summarize_draws()
through $summary () on the CmdStanFit object.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather" or "aws_parquet".
For more on storage formats, see the help file of targets: :tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: :tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local": file system of the local machine.

* "aws"”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-

tion of https://books.ropensci.org/targets/data.html for details for
instructions.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

68

error

memory

tar_stan_mcmc_rep_summary

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

e "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

deployment

priority

resources

storage

Logical, whether to run base: : gc() just before the target runs.

Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().

Must be one of the following values:
* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.
* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_mcmc_rep_summary 69

but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

e "worker": the worker loads the targets dependencies.

* "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile () and $sample () methods of the CmdStanModel
class. If you previously compiled the model in an upstream tar_stan_compile() target, then the
model should not recompile.

Value

tar_stan_memc_rep_summary () returns a list of target objects. See the "Target objects" section
for background. The target names use the name argument as a prefix, and the individual elements
of stan_files appear in the suffixes where applicable. As an example, the specific target objects
returned by tar_stan_mcmc_rep_summary(name = x, stan_files = "y.stan") are as follows.

e x_file_y: reproducibly track the Stan model file. Returns a character vector with the paths
to the model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original". Returns a character vector of lines in the model file.

» x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

70 tar_stan_mcmc_rep_summary

* x_y: dynamic branching target to run MCMC once per dataset. Each dynamic branch returns
a tidy data frames of summaries. corresponding to a batch of Stan data from x_data.

* x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of summaries.

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get(”seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other MCMC: tar_stan_mcmc (), tar_stan_mcmc_rep_diagnostics(), tar_stan_mcmc_rep_draws()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
library(stantargets)
Do not use temporary storage for stan files in real projects
or else your targets will always rerun.
path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mcmc_rep_summary (

your_model,

stan_files = path,

data = tar_stan_example_data(),

batches = 2,

reps = 2,

stdout = R.utils::nullfile(),

stderr = R.utils::nullfile()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_mle 71

}, ask = FALSE)
targets: :tar_make()
»

}

tar_stan_mle One optimization run per model with multiple outputs

Description

tar_stan_mle() creates targets to optimize a Stan model once per model and separately save
draws-like output and summary-like output.

Usage

tar_stan_mle(
name,
stan_files,
data = list(),
compile = c("original”, "copy"),
quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,
pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,
output_dir = NULL,
algorithm = NULL,
init_alpha = NULL,
iter = NULL,

tol_obj = NULL,
tol_rel_obj = NULL,
tol_grad = NULL,
tol_rel_grad = NULL,
tol_param = NULL,
history_size = NULL,
sig_figs = NULL,
variables = NULL,
variables_fit = NULL,
summaries = list(),

72 tar_stan_mle
summary_args = list(),
return_draws = TRUE,
return_summary = TRUE,
draws = NULL,
summary = NULL,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = "gs",
format_df = "fst_tbl"”,
repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory”),
garbage_collection = targets::tar_option_get("garbage_collection”),
deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description”)
)
Arguments
name Symbol, base name for the collection of targets. Serves as a prefix for target
names.
stan_files Character vector of Stan model files. If you supply multiple files, each model
will run on the one shared dataset generated by the code in data. If you supply
an unnamed vector, fs: :path_ext_remove(basename(stan_files)) will be
used as target name suffixes. If stan_files is a named vector, the suffixed will
come from names(stan_files).
data (multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan using write_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile() method.
quiet (logical) Should the verbose output from CmdStan during compilation be sup-

pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

tar_stan_mle 73

stdout Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, Or errors.

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

refresh (non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

init (multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number @. This initializes all parameters to ;

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

74

tar_stan_mle

¢ A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

output_dir

algorithm

init_alpha
iter
tol_obj
tol_rel_obj

tol_grad
tol_rel_grad

tol_param

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If apath, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

(string) The optimization algorithm. One of "1bfgs”, "bfgs”, or "newton”.
The control parameters below are only available for "1bfgs” and "bfgs. For
their default values and more details see the CmdStan User’s Guide. The default

values can also be obtained by running cmdstanr_example(method="optimize")$metadata().

(positive real) The initial step size parameter.
(positive integer) The maximum number of iterations.
(positive real) Convergence tolerance on changes in objective function value.

(positive real) Convergence tolerance on relative changes in objective function
value.

(positive real) Convergence tolerance on the norm of the gradient.
(positive real) Convergence tolerance on the relative norm of the gradient.

(positive real) Convergence tolerance on changes in parameter value.

tar_stan_mle 75

history_size (positive integer) The size of the history used when approximating the Hessian.
Only available for L-BFGS.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

variables (character vector) The variables to include.

variables_fit Character vector of variables to include in the big CmdStanFit object returned
by the model fit target. The variables argument, by contrast, is for the "draws”
target only. The "draws” target can only access the variables in the CmdStanFit
target. Control the variables in each with the variables and variables_fit
arguments.

summaries Optional list of summary functions passed to . . . in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

summary_args Optional list of summary function arguments passed to . args in posterior: : summarize_draws()
through $summary () on the CmdStanFit object.

return_draws Logical, whether to create a target for posterior draws. Saves posterior::as_draws_df (fit$draws())
to a compressed tibble. Convenient, but duplicates storage.

return_summary Logical, whether to create a target for fit$summary().

draws Deprecated on 2022-07-22. Use return_draws instead.
summary Deprecated on 2022-07-22. Use return_summary instead.
tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.

If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

repository Character of length 1, remote repository for target storage. Choices:

* "local”: file system of the local machine.

* "aws”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

tar_stan_mle

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

e "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.
* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_mle 77

but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile(), $optimize(), and $summary () methods of
the CmdStanModel class. If you previously compiled the model in an upstream tar_stan_compile()
target, then the model should not recompile.

Value

tar_stan_mle() returns a list of target objects. See the "Target objects" section for background.
The target names use the name argument as a prefix, and the individual elements of stan_files
appear in the suffixes where applicable. As an example, the specific target objects returned by
tar_stan_mle(name = x, stan_files ="y.stan", ...) are as follows.

» x_file_y: reproducibly track the Stan model file. Returns a character vector with paths to the
model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original"”. Returns a character vector of lines in the model file.

* x_data: run the R expression in the data argument to produce a Stan dataset for the model.
Returns a Stan data list.

78 tar_stan_mle

* x_mle_y: run generated quantities on the model and the dataset. Returns a cmdstanr CmdStanGQ
object with all the results.

e x_draws_y: extract maximum likelihood estimates from x_mle_y in draws format. Omitted
if draws = FALSE. Returns a wide data frame of MLEs.

e x_summary_y: extract MLEs from from x_mle_y in summary format. Returns a long data
frame of MLESs. Omitted if summary = FALSE.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other optimization: tar_stan_mle_rep_draws(), tar_stan_mle_rep_summary ()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(stantargets)

Do not use temporary storage for stan files in real projects

or else your targets will always rerun.

path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mle(
your_model,

stan_files = path,
data = tar_stan_example_data(),
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()
)
)
}, ask = FALSE)
targets: :tar_make()
»
3

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_mle_rep_draws 79

tar_stan_mle_rep_draws
Multiple optimization runs per model with draws

Description

tar_stan_mle_rep_draws() creates targets to run maximum likelihood multiple times per model
and save the MLEs in a wide-form draws-like data frame.

Usage
tar_stan_mle_rep_draws(
name,
stan_files,
data = list(),
batches = 1L,
reps = 1L,
combine = TRUE,
compile = c("original”, "copy"),
quiet = TRUE,

stdout = NULL,

stderr = NULL,

dir = NULL,

pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,

output_dir = NULL,

algorithm = NULL,

init_alpha = NULL,

iter = NULL,

sig_figs = NULL,

tol_obj = NULL,

tol_rel_obj = NULL,

tol_grad = NULL,

tol_rel_grad = NULL,

tol_param = NULL,

history_size = NULL,

data_copy = character(9),

variables = NULL,

tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages”),

80

tar_stan_mle_rep_draws

library = targets::tar_option_get("library"),
format = "gs",

format_df = "fst_tbl",

repository = targets::tar_option_get("repository”),

error =

targets::tar_option_get("error"),

memory = targets::tar_option_get("memory”),
garbage_collection = targets::tar_option_get("garbage_collection”),

deployment

targets::tar_option_get("deployment”),

priority = targets::tar_option_get("priority”),

resources

storage

targets::tar_option_get("resources"”),

targets::tar_option_get("storage"),

retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description

Arguments

name

stan_files

data

batches

reps

combine

compile

quiet

stdout

= targets::tar_option_get("description”)

Symbol, base name for the collection of targets. Serves as a prefix for target
names.

Character vector of paths to known existing Stan model files created before run-
ning the pipeline.

(multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.
* NULL or an empty list if the Stan program has no data block.

Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

Number of replications per batch.

Logical, whether to create a target to combine all the model results into a single
data frame downstream. Convenient, but duplicates data.

(logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

(logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

tar_stan_mle_rep_draws 81

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

refresh (non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

init (multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;
e The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

82

tar_stan_mle_rep_draws

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

output_dir

algorithm

init_alpha
iter

sig_figs

tol_obj
tol_rel_obj

tol_grad
tol_rel_grad

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

(string) The optimization algorithm. One of "1bfgs”, "bfgs”, or "newton”.
The control parameters below are only available for "1bfgs” and "bfgs. For
their default values and more details see the CmdStan User’s Guide. The default
values can also be obtained by running cmdstanr_example(method="optimize")$metadata().

(positive real) The initial step size parameter.
(positive integer) The maximum number of iterations.

(positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

(positive real) Convergence tolerance on changes in objective function value.

(positive real) Convergence tolerance on relative changes in objective function
value.

(positive real) Convergence tolerance on the norm of the gradient.

(positive real) Convergence tolerance on the relative norm of the gradient.

tar_stan_mle_rep_draws 83

tol_param (positive real) Convergence tolerance on changes in parameter value.

history_size (positive integer) The size of the history used when approximating the Hessian.
Only available for L-BFGS.

data_copy Character vector of names of scalars in data. These values will be inserted as
columns in the output data frame for each rep. To join more than just scalars,
include a . join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

variables (character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.
e If NULL (the default) then all variables are included.

nn

* If an empty string (variables="") then none are included.

* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta"” selects all elements of theta;
— variables = c("thetal[1]", "thetal[3]") selects only the 1st and 3rd

elements.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather" or "aws_parquet".
For more on storage formats, see the help file of targets::tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local": file system of the local machine.

* "aws"”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

e "gcp": Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

84

memory

tar_stan_mle_rep_draws

e "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

e "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

e "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

deployment

priority

resources

storage

Logical, whether to run base: : gc() just before the target runs.

Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().

Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

* "none": almost never recommended. It is only for niche situations, e.g. the

data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").
If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_mle_rep_draws 85

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile() and $optimize () methods of the CmdStanModel
class. If you previously compiled the model in an upstream tar_stan_compile() target, then the
model should not recompile.

Value

tar_stan_mle_rep_draws() returns a list of target objects. See the "Target objects" section for
background. The target names use the name argument as a prefix, and the individual elements of
stan_files appear in the suffixes where applicable. As an example, the specific target objects
returned by tar_stan_mcmc_rep_draws(name = x, stan_files ="y.stan") are as follows.

» x_file_y: reproducibly track the Stan model file. Returns a character vector with paths to the
model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original”. Returns a character vector of lines in the model file.

» x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

* x_y: dynamic branching target to run maximum likelihood once per dataset. Each dynamic
branch returns a tidy data frames of maximum likelihood estimates corresponding to a batch
of Stan data from x_data.

e x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of maximum likelihood estimates.

86 tar_stan_mle_rep_draws

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get("seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories

explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other optimization: tar_stan_mle(), tar_stan_mle_rep_summary()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(stantargets)

Do not use temporary storage for stan files in real projects

or else your targets will always rerun.

path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mle_rep_draws(
your_model,

stan_files = path,
data = tar_stan_example_data(),
batches = 2,
reps = 2,
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()
)
)
}, ask = FALSE)
targets::tar_make()
»
3

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_mle_rep_summary 87

tar_stan_mle_rep_summary
Multiple optimization runs per model with summaries

Description

tar_stan_mle_rep_summaries() creates targets to run maximum likelihood multiple times per
model and save the MLEs in a long-form summary-like data frame.

Usage
tar_stan_mle_rep_summary (
name,
stan_files,
data = list(),
batches = 1L,
reps = 1L,
combine = TRUE,
compile = c("original”, "copy"),
quiet = TRUE,

stdout = NULL,

stderr = NULL,

dir = NULL,

pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,
output_dir = NULL,
algorithm = NULL,
init_alpha = NULL,

iter = NULL,

tol_obj = NULL,
tol_rel_obj = NULL,
tol_grad = NULL,
tol_rel_grad = NULL,
tol_param = NULL,
history_size = NULL,
sig_figs = NULL,
data_copy = character(9),
variables = NULL,
summaries = list(),
summary_args = list(),

88 tar_stan_mle_rep_summary

tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages”),
library = targets::tar_option_get("library"),

format = "gs",

format_df = "fst_tbl"”,

repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),

memory = targets::tar_option_get("memory”),
garbage_collection = targets::tar_option_get("garbage_collection”),
deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description = targets::tar_option_get("description”)

Arguments

name Symbol, base name for the collection of targets. Serves as a prefix for target
names.

stan_files Character vector of paths to known existing Stan model files created before run-
ning the pipeline.

data (multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

batches Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

reps Number of replications per batch.

combine Logical, whether to create a target to combine all the model results into a single
data frame downstream. Convenient, but duplicates data.

compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

quiet (logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

stdout Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

tar_stan_mle_rep_summary 89

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

refresh (non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

init (multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;
e The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

90

tar_stan_m]e_rep_s umimary

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

output_dir

algorithm

init_alpha
iter
tol_obj
tol_rel_obj

tol_grad
tol_rel_grad
tol_param

history_size

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

(string) The optimization algorithm. One of "lbfgs”, "bfgs”, or "newton”.
The control parameters below are only available for "1bfgs” and "bfgs. For
their default values and more details see the CmdStan User’s Guide. The default

values can also be obtained by running cmdstanr_example (method="optimize")$metadata().

(positive real) The initial step size parameter.
(positive integer) The maximum number of iterations.
(positive real) Convergence tolerance on changes in objective function value.

(positive real) Convergence tolerance on relative changes in objective function
value.

(positive real) Convergence tolerance on the norm of the gradient.
(positive real) Convergence tolerance on the relative norm of the gradient.
(positive real) Convergence tolerance on changes in parameter value.

(positive integer) The size of the history used when approximating the Hessian.
Only available for L-BFGS.

tar_stan_mle_rep_summary 91

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

data_copy Character vector of names of scalars in data. These values will be inserted as
columns in the output data frame for each rep. To join more than just scalars,
include a .join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

variables (character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.

e If NULL (the default) then all variables are included.

nn

* If an empty string (variables="") then none are included.

* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta" selects all elements of theta;

— variables = c("thetal[1]", "theta[3]") selects only the 1st and 3rd
elements.

summaries Optional list of summary functions passed to . . . in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

summary_args Optional list of summary function arguments passed to . args in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: :tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

* "aws"”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

92

error

memory

tar_stan_m]e_rep_s umimary

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

e "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection

deployment

priority

resources

storage

Logical, whether to run base: : gc() just before the target runs.

Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().

Must be one of the following values:
* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.
* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_mle_rep_summary 93

but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

e "worker": the worker loads the targets dependencies.

* "none": the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile() and $optimize () methods of the CmdStanModel
class. If you previously compiled the model in an upstream tar_stan_compile() target, then the
model should not recompile.

Value

tar_stan_mle_rep_summaries() returns a list of target objects. See the "Target objects" section
for background. The target names use the name argument as a prefix, and the individual elements
of stan_files appear in the suffixes where applicable. The specific target objects returned by
tar_stan_mle_rep_summary(name = x, , stan_files ="y.stan") are as follows.

e x_file_y: reproducibly track the Stan model file. Returns a character vector with paths to the
model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original". Returns a character vector of lines in the model file.

» x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

94 tar_stan_mle_rep_summary

* x_y: dynamic branching target to run maximum likelihood once per dataset. Each dynamic
branch returns a tidy data frames of maximum likelihood estimates corresponding to a batch
of Stan data from x_data.

* x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of maximum likelihood estimates.

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get("seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists

of target objects. Target objects represent skippable steps of the analysis pipeline as described

at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other optimization: tar_stan_mle(), tar_stan_mle_rep_draws()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(stantargets)

Do not use temporary storage for stan files in real projects

or else your targets will always rerun.

path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_mle_rep_summary(
your_model,

stan_files = path,

data = tar_stan_example_data(),
batches = 2,

reps = 2,

stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_summary

)

}, ask = FALSE)

95

targets::tar_make()

b
}

tar_stan_summary

One summary of a CmdStanFit object

Description

Create a target to run the $summary () method of a CmdStanFit object.

Usage

tar_stan_summary(

name,
fit,
data =

variables

NULL,

summaries = NULL,

summary_args = NULL,

format = "fst_tbl",

repository = targets::tar_option_get("repository”),

error =

targets::tar_option_get("error"),

memory = targets::tar_option_get("memory”),
garbage_collection = targets::tar_option_get("garbage_collection”),

deployment

targets::tar_option_get("deployment”),

priority = targets::tar_option_get("priority”),

resources

storage

targets::tar_option_get("resources"”),
targets::tar_option_get("storage"),

retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description

Arguments
name
fit

data
variables

summaries

targets::tar_option_get("description”)

Symbol, base name for the collection of targets. Serves as a prefix for target
names.

Symbol, name of a CmdStanFit object or an upstream target that returns a
CmdStanFit object.

Code to generate the data for the Stan model.
(character vector) The variables to include.

Optional list of summary functions passed to . . . in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

tar_stan_summary

summary_args Optional list of summary function arguments passed to . args in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet".
For more on storage formats, see the help file of targets: :tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

e "aws": Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

e "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_summary 97

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

* "none": almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

tar_stan_memc() etc. with summary = TRUE already gives you a target with output from the
$summary () method. Use tar_stan_summary() to create additional specialized summaries.

98 tar_stan_summary

Value

tar_stan_summary () returns target object to summarize a CmdStanFit object. The return value of
the target is a tidy data frame of summaries returned by the $summary () method of the CmdStanFit
object. See the "Target objects" section for background.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

Examples

First, write your Stan model file, e.g. model.stan.
Then in _targets.R, write a pipeline like this:
if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
Running inside a temporary directory to avoid
modifying the user's file space. The file "model.stan”
created below lives in a temporary directory.
This satisfies CRAN policies.
tar_stan_example_file("model.stan")
targets::tar_script({
library(stantargets)
list(
Run a model and produce default summaries.
tar_stan_mcmc(

your_model,
stan_files = "model.stan”,
data = tar_stan_example_data()

),
Produce a more specialized summary
tar_stan_summary(
your_summary,
fit = your_model_mcmc_model,
data = your_model_data_model,
variables = "beta"”,
summaries = list(~quantile(.x, probs = c(0.25, 0.75)))
)
)}, ask = FALSE)
targets: :tar_make()
»
3

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar _stan_vb

tar_stan_vb One variational Bayes run per model with multiple outputs

Description

Targets to run a Stan model once with variational Bayes and save multiple outputs.

Usage

tar_stan_vb(
name,
stan_files,
data = list(),
compile = c("original”, "copy"),
quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,
pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,
output_dir = NULL,

algorithm = NULL,

iter = NULL,
grad_samples
elbo_samples
eta = NULL,
adapt_engaged = NULL,
adapt_iter = NULL,
tol_rel_obj = NULL,
eval_elbo = NULL,
output_samples = NULL,
sig_figs = NULL,
variables = NULL,
variables_fit = NULL,
summaries = list(),
summary_args = list(),
return_draws = TRUE,
return_summary = TRUE,
draws = NULL,

summary = NULL,

NULL,
NULL,

100 tar _stan_vb
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = "gs",
format_df = "fst_tbl",
repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory”),
garbage_collection = targets::tar_option_get("garbage_collection”),
deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description”)
)
Arguments
name Symbol, base name for the collection of targets. Serves as a prefix for target
names.
stan_files Character vector of Stan model files. If you supply multiple files, each model
will run on the one shared dataset generated by the code in data. If you supply
an unnamed vector, fs: :path_ext_remove(basename(stan_files)) will be
used as target name suffixes. If stan_files is a named vector, the suffixed will
come from names(stan_files).
data (multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan using write_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

quiet (logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

stdout Character of length 1, file path to write the stdout stream of the model when

it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

tar _stan_vb 101

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

refresh (non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

init (multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;
e The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

102

tar _stan_vb

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

output_dir

algorithm
iter
grad_samples

elbo_samples

eta

adapt_engaged

adapt_iter
tol_rel_obj

eval_elbo

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

(string) The algorithm. Either "meanfield” or "fullrank”.
(positive integer) The maximum number of iterations.
(positive integer) The number of samples for Monte Carlo estimate of gradients.

(positive integer) The number of samples for Monte Carlo estimate of ELBO
(objective function).

(positive real) The step size weighting parameter for adaptive step size sequence.

(logical) Do warmup adaptation? The default is TRUE. If a precomputed in-
verse metric is specified via the inv_metric argument (or metric_file) then,
if adapt_engaged=TRUE, Stan will use the provided inverse metric just as an ini-
tial guess during adaptation. To turn off adaptation when using a precomputed
inverse metric set adapt_engaged=FALSE.

(positive integer) The maximum number of adaptation iterations.
(positive real) Convergence tolerance on the relative norm of the objective.

(positive integer) Evaluate ELBO every Nth iteration.

tar _stan_vb 103

output_samples (positive integer) Use draws argument instead. output_samples will be depre-
cated in the future.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

variables (character vector) The variables to include.

variables_fit Character vector of variables to include in the big CmdStanFit object returned
by the model fit target. The variables argument, by contrast, is for the "draws”
target only. The "draws” target can only access the variables in the CmdStanFit
target. Control the variables in each with the variables and variables_fit
arguments.

summaries Optional list of summary functions passed to . . . in posterior: :summarize_draws()
through $summary () on the CmdStanFit object.

summary_args Optional list of summary function arguments passed to . args in posterior: : summarize_draws()
through $summary () on the CmdStanFit object.

return_draws Logical, whether to create a target for posterior draws. Saves posterior::as_draws_df (fit$draws())
to a compressed tibble. Convenient, but duplicates storage.

return_summary Logical, whether to create a target for fit$summary().

draws Deprecated on 2022-07-22. Use return_draws instead.
summary Deprecated on 2022-07-22. Use return_summary instead.
tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.

If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

repository Character of length 1, remote repository for target storage. Choices:

* "local”: file system of the local machine.

* "aws”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

104 tar _stan_vb

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

e "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.
* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar _stan_vb 105

but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile(), $variational(), and $summary () methods
of the CmdStanModel class. If you previously compiled the model in an upstream tar_stan_compile()
target, then the model should not recompile.

Value

tar_stan_vb() returns a list of target objects. See the "Target objects" section for background.
The target names use the name argument as a prefix, and the individual elements of stan_files
appear in the suffixes where applicable. As an example, the specific target objects returned by
tar_stan_vb(name = x, stan_files ="y.stan"”, ...) are as follows.

» x_file_y: reproducibly track the Stan model file. Returns a character vector with paths to the
model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original"”. Returns a character vector of lines in the model file.

* x_data: run the R expression in the data argument to produce a Stan dataset for the model.
Returns a Stan data list.

106 tar_stan_vb

* X_vb_y: run variational Bayes on the model and the dataset. Returns a cmdstanr CmdStanVB
object with all the results.

e x_draws_y: extract draws from x_vb_y. Omitted if draws = FALSE. Returns a tidy data frame
of draws.

e x_summary_y: extract compact summaries from x_vb_y. Returns a tidy data frame of sum-
maries. Omitted if summary = FALSE.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories

explains target factories (functions like this one which generate targets) and the design specifica-
tion at https://books.ropensci.org/targets-design/ details the structure and composition
of target objects.

See Also

Other variational Bayes: tar_stan_vb_rep_draws(), tar_stan_vb_rep_summary ()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
library(stantargets)
Do not use temporary storage for stan files in real projects
or else your targets will always rerun.
path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_vb(
your_model,
stan_files = path,
data = tar_stan_example_data(),
variables = "beta”,
summaries = list(~quantile(.x, probs = c(0.25, 0.75))),
stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()
)
)
}, ask = FALSE)
targets: :tar_make()
»
3

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_vb_rep_draws 107

tar_stan_vb_rep_draws Multiple variational Bayes runs per model with draws

Description

tar_stan_vb_rep_draws() creates targets to run variational Bayes multiple times per model and
save only the draws from each run.

Usage

tar_stan_vb_rep_draws(
name,
stan_files,
data = list(),
batches = 1L,
reps = 1L,
combine = FALSE,
compile = c("original”, "copy"),
quiet = TRUE,
stdout = NULL,
stderr = NULL,
dir = NULL,
pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,
output_dir = NULL,

algorithm = NULL,

iter = NULL,
grad_samples
elbo_samples
eta = NULL,
adapt_engaged = NULL,

adapt_iter = NULL,

tol_rel_obj = NULL,

eval_elbo = NULL,

output_samples = NULL,

sig_figs = NULL,

data_copy = character(9),

variables = NULL,

transform = NULL,

tidy_eval = targets::tar_option_get("tidy_eval"),

NULL,
NULL,

108

pack
libr
form
form
repo
erro
memo
garb
depl
prio
reso
stor
retr
cue

desc

Arguments

name

stan_f

data

batche

reps

combin

compil

quiet

stdout

tar_stan_vb_rep_draws

ages = targets::tar_option_get("packages”),

ary = targets::tar_option_get("library"),

at = "gs",

at_df = "fst_tbl",

sitory = targets::tar_option_get("repository”),
r = targets::tar_option_get("error"),

ry = "transient”,

age_collection = TRUE,

oyment = targets::tar_option_get("deployment”),
rity = targets::tar_option_get("priority”),
urces = targets::tar_option_get("resources”),
age = targets::tar_option_get("storage"),

ieval = targets::tar_option_get("retrieval”),

= targets::tar_option_get("cue"),

ription = targets::tar_option_get("description”)

Symbol, base name for the collection of targets. Serves as a prefix for target
names.

iles Character vector of paths to known existing Stan model files created before run-
ning the pipeline.
(multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

* A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan using write_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

s Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

Number of replications per batch.

e Logical, whether to create a target to combine all the model results into a single
data frame downstream. Convenient, but duplicates data.

e (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

(logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

tar_stan_vb_rep_draws 109

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

refresh (non-negative integer) The number of iterations between printed screen updates.
If refresh = @, only error messages will be printed.

init (multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;
e The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

110

tar_stan_vb_rep_draws

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

output_dir

algorithm
iter
grad_samples

elbo_samples

eta
adapt_engaged
adapt_iter
tol_rel_obj
eval_elbo

output_samples

sig_figs

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

e If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

(string) The algorithm. Either "meanfield” or "fullrank”.
(positive integer) The maximum number of iterations.
(positive integer) The number of samples for Monte Carlo estimate of gradients.

(positive integer) The number of samples for Monte Carlo estimate of ELBO
(objective function).

(positive real) The step size weighting parameter for adaptive step size sequence.
(logical) Do warmup adaptation?

(positive integer) The maximum number of adaptation iterations.

(positive real) Convergence tolerance on the relative norm of the objective.
(positive integer) Evaluate ELBO every Nth iteration.

(positive integer) Use draws argument instead. output_samples will be depre-
cated in the future.

(positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant

tar_stan_vb_rep_draws 111

figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

data_copy Character vector of names of scalars in data. These values will be inserted as
columns in the output data frame for each rep. To join more than just scalars,
include a . join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

variables (character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.

e If NULL (the default) then all variables are included.

* If an empty string (variables="") then none are included.

* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta"” selects all elements of theta;

— variables = c("thetal[1]", "theta[3]") selects only the 1st and 3rd
elements.

transform Symbol or NULL, name of a function that accepts arguments data and draws
and returns a data frame. Here, data is the JAGS data list supplied to the model,
and draws is a data frame with one column per model parameter and one row
per posterior sample. Any arguments other than data and draws must have valid
default values because stantargets will not populate them. See the simulation-
based calibration (SBC) section of the simulation vignette for an example.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather” or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

e "aws"”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

* "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html

112 tar_stan_vb_rep_draws

Note: if repository is not "local” and format is "file"” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

e "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

* "null”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker", in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.
* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,

https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_vb_rep_draws 113

but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Draws could take up a lot of storage. If storage becomes excessive, please consider thinning the
draws or using tar_stan_vb_rep_summaries() instead.

Most of the arguments are passed to the $compile() and $variational () methods of the CmdStanModel
class. If you previously compiled the model in an upstream tar_stan_compile() target, then the
model should not recompile.

Value

tar_stan_vb_rep_summaries() returns a list of target objects. See the "Target objects" section
for background. The target names use the name argument as a prefix, and the individual elements
of stan_files appear in the suffixes where applicable. As an example, the specific target objects
returned by tar_stan_vb_rep_draws(name = x, stan_files ="y.stan") are as follows.

e x_file_y: reproducibly track the Stan model file. Returns a character vector with paths to the
model file and compiled executable.

* x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original"”. Returns a character vector of lines in the model file.

114 tar_stan_vb_rep_draws

* x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

* x_y: dynamic branching target to run variational Bayes once per dataset. Each dynamic branch
returns a tidy data frames of draws corresponding to a batch of Stan data from x_data.

* x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of draws.

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get("seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other variational Bayes: tar_stan_vb(), tar_stan_vb_rep_summary()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
library(stantargets)
Do not use temporary storage for stan files in real projects
or else your targets will always rerun.
path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(
tar_stan_vb_rep_draws(

your_model,

stan_files = path,

data = tar_stan_example_data(),

batches = 2,

reps = 2,

stdout = R.utils::nullfile(),

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_vb_rep_summary 115

stderr = R.utils::nullfile()
)
)
}, ask = FALSE)
targets: :tar_make()
1)
3

tar_stan_vb_rep_summary
Multiple iterations per model of variational Bayes with summaries

Description

tar_stan_vb_rep_summaries() creates targets to run variational Bayes multiple times and save
only the summary output from each run.

Usage
tar_stan_vb_rep_summary(
name,
stan_files,
data = list(),
batches = 1L,
reps = 1L,
combine = TRUE,
compile = c("original”, "copy"),
quiet = TRUE,

stdout = NULL,

stderr = NULL,

dir = NULL,

pedantic = FALSE,
include_paths = NULL,
cpp_options = list(),
stanc_options = list(),
force_recompile = FALSE,

seed = NULL,
refresh = NULL,
init = NULL,

save_latent_dynamics = FALSE,
output_dir = NULL,

algorithm = NULL,

iter = NULL,

grad_samples = NULL,
elbo_samples = NULL,

eta = NULL,

adapt_engaged = NULL,

116 tar_stan_vb_rep_summary

adapt_iter = NULL,

tol_rel_obj = NULL,

eval_elbo = NULL,

output_samples = NULL,

sig_figs = NULL,

data_copy = character(9),

variables = NULL,

summaries = list(),

summary_args = list(),

tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages”),
library = targets::tar_option_get("library"),
format = "gs",

format_df = "fst_tbl",

repository = targets::tar_option_get("repository”),
error = targets::tar_option_get("error"),

memory = targets::tar_option_get("memory”),
garbage_collection = targets::tar_option_get("garbage_collection”),
deployment = targets::tar_option_get("deployment”),
priority = targets::tar_option_get("priority”),
resources = targets::tar_option_get("resources”),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval”),
cue = targets::tar_option_get("cue"),

description = targets::tar_option_get("description”)

Arguments

name Symbol, base name for the collection of targets. Serves as a prefix for target
names.

stan_files Character vector of paths to known existing Stan model files created before run-
ning the pipeline.

data (multiple options) The data to use for the variables specified in the data block of
the Stan program. One of the following:

» A named list of R objects with the names corresponding to variables de-
clared in the data block of the Stan program. Internally this list is then writ-
ten to JSON for CmdStan usingwrite_stan_json(). Seewrite_stan_json()
for details on the conversions performed on R objects before they are passed
to Stan.

* A path to a data file compatible with CmdStan (JSON or R dump). See the
appendices in the CmdStan guide for details on using these formats.

* NULL or an empty list if the Stan program has no data block.

batches Number of batches. Each batch is a sequence of branch targets containing mul-
tiple reps. Each rep generates a dataset and runs the model on it.

reps Number of replications per batch.

tar_stan_vb_rep_summary 117

combine Logical, whether to create a target to combine all the model results into a single
data frame downstream. Convenient, but duplicates data.

compile (logical) Do compilation? The default is TRUE. If FALSE compilation can be done
later via the $compile () method.

quiet (logical) Should the verbose output from CmdStan during compilation be sup-
pressed? The default is TRUE, but if you encounter an error we recommend trying
again with quiet=FALSE to see more of the output.

stdout Character of length 1, file path to write the stdout stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stdout. Does not apply to messages, warnings, or errors.

stderr Character of length 1, file path to write the stderr stream of the model when
it runs. Set to NULL to print to the console. Set to R.utils::nullfile() to
suppress stderr. Does not apply to messages, warnings, or errors.

dir (string) The path to the directory in which to store the CmdStan executable (or
.hpp file if using $save_hpp_file()). The default is the same location as the
Stan program.

pedantic (logical) Should pedantic mode be turned on? The default is FALSE. Pedantic
mode attempts to warn you about potential issues in your Stan program beyond
syntax errors. For details see the Pedantic mode chapter in the Stan Reference
Manual. Note: to do a pedantic check for a model without compiling it or for
a model that is already compiled the $check_syntax() method can be used
instead.

include_paths (character vector) Paths to directories where Stan should look for files specified
in #include directives in the Stan program.

cpp_options (list) Any makefile options to be used when compiling the model (STAN_THREADS,
STAN_MPI, STAN_OPENCL, etc.). Anything you would otherwise write in the
make/local file. For an example of using threading see the Stan case study
Reduce Sum: A Minimal Example.

stanc_options (list) Any Stan-to-C++ transpiler options to be used when compiling the model.
See the Examples section below as well as the stanc chapter of the CmdStan
Guide for more details on available options: https://mc-stan.org/docs/cmdstan-
guide/stanc.html.

force_recompile
(logical) Should the model be recompiled even if was not modified since last
compiled. The default is FALSE. Can also be set via a global cmdstanr_force_recompile
option.

seed (positive integer(s)) A seed for the (P)RNG to pass to CmdStan. In the case of
multi-chain sampling the single seed will automatically be augmented by the
the run (chain) ID so that each chain uses a different seed. The exception is the
transformed data block, which defaults to using same seed for all chains so that
the same data is generated for all chains if RNG functions are used. The only
time seed should be specified as a vector (one element per chain) is if RNG
functions are used in transformed data and the goal is to generate different data
for each chain.

refresh (non-negative integer) The number of iterations between printed screen updates.
If refresh = 0, only error messages will be printed.

https://mc-stan.org/docs/stan-users-guide/pedantic-mode.html
https://mc-stan.org/users/documentation/case-studies/reduce_sum_tutorial.html

118

init

tar_stan_ Vb_rep_s umimary

(multiple options) The initialization method to use for the variables declared in
the parameters block of the Stan program. One of the following:

* A real number x>0. This initializes all parameters randomly between [-x, x]
on the unconstrained parameter space.;

* The number 0. This initializes all parameters to 0;

* A character vector of paths (one per chain) to JSON or Rdump files con-
taining initial values for all or some parameters. See write_stan_json()
to write R objects to JSON files compatible with CmdStan.

* A list of lists containing initial values for all or some parameters. For
MCMC the list should contain a sublist for each chain. For other model
fitting methods there should be just one sublist. The sublists should have
named elements corresponding to the parameters for which you are speci-
fying initial values. See Examples.

* A function that returns a single list with names corresponding to the param-
eters for which you are specifying initial values. The function can take no
arguments or a single argument chain_id. For MCMC, if the function has
argument chain_id it will be supplied with the chain id (from 1 to number
of chains) when called to generate the initial values. See Examples.

save_latent_dynamics

output_dir

algorithm
iter
grad_samples

elbo_samples

eta

adapt_engaged

(logical) Should auxiliary diagnostic information about the latent dynamics be
written to temporary diagnostic CSV files? This argument replaces CmdStan’s
diagnostic_file argument and the content written to CSV is controlled by the
user’s CmdStan installation and not CmdStanR (for some algorithms no content
may be written). The default is FALSE, which is appropriate for almost every use
case. To save the temporary files created when save_latent_dynamics=TRUE
see the $save_latent_dynamics_files() method.

(string) A path to a directory where CmdStan should write its output CSV files.
For interactive use this can typically be left at NULL (temporary directory) since
CmdStanR makes the CmdStan output (posterior draws and diagnostics) avail-
able in R via methods of the fitted model objects. The behavior of output_dir
is as follows:

o If NULL (the default), then the CSV files are written to a temporary directory
and only saved permanently if the user calls one of the $save_* methods of
the fitted model object (e.g., $save_output_files()). These temporary
files are removed when the fitted model object is garbage collected (manu-
ally or automatically).

* If a path, then the files are created in output_dir with names corresponding
to the defaults used by $save_output_files().

(string) The algorithm. Either "meanfield” or "fullrank”.
(positive integer) The maximum number of iterations.
(positive integer) The number of samples for Monte Carlo estimate of gradients.

(positive integer) The number of samples for Monte Carlo estimate of ELBO
(objective function).

(positive real) The step size weighting parameter for adaptive step size sequence.

(logical) Do warmup adaptation?

tar_stan_vb_rep_summary 119

adapt_iter (positive integer) The maximum number of adaptation iterations.
tol_rel_obj (positive real) Convergence tolerance on the relative norm of the objective.
eval_elbo (positive integer) Evaluate ELBO every Nth iteration.

output_samples (positive integer) Use draws argument instead. output_samples will be depre-
cated in the future.

sig_figs (positive integer) The number of significant figures used when storing the out-
put values. By default, CmdStan represent the output values with 6 significant
figures. The upper limit for sig_figs is 18. Increasing this value will result in
larger output CSV files and thus an increased usage of disk space.

data_copy Character vector of names of scalars in data. These values will be inserted as
columns in the output data frame for each rep. To join more than just scalars,
include a . join_data element of your Stan data list with names and dimen-
sions corresponding to those of the model. For details, read https://docs.
ropensci.org/stantargets/articles/simulation.html.

variables (character vector) Optionally, the names of the variables (parameters, trans-
formed parameters, and generated quantities) to read in.
e If NULL (the default) then all variables are included.
* If an empty string (variables="") then none are included.
* For non-scalar variables all elements or specific elements can be selected:
— variables = "theta"” selects all elements of theta;
— variables = c("thetal[1]", "theta[3]") selects only the 1st and 3rd
elements.

summaries Optional list of summary functions passed to . . . in posterior::summarize_draws()
through $summary () on the CmdStanFit object.

summary_args Optional list of summary function arguments passed to . args in posterior: : summarize_draws()
through $summary () on the CmdStanFit object.

tidy_eval Logical, whether to enable tidy evaluation when interpreting command and pattern.
If TRUE, you can use the "bang-bang" operator ! ! to programmatically insert the
values of global objects.

packages Character vector of packages to load right before the target runs or the output
data is reloaded for downstream targets. Use tar_option_set() to set pack-
ages globally for all subsequent targets you define.

library Character vector of library paths to try when loading packages.

format Character of length 1, storage format of the data frame of posterior summaries.
We recommend efficient data frame formats such as "feather" or "aws_parquet”.
For more on storage formats, see the help file of targets: :tar_target().

format_df Character of length 1, storage format of the data frame targets such as poste-
rior draws. We recommend efficient data frame formats such as "feather” or
"aws_parquet”. For more on storage formats, see the help file of targets: : tar_target().

repository Character of length 1, remote repository for target storage. Choices:

e "local”: file system of the local machine.

https://docs.ropensci.org/stantargets/articles/simulation.html
https://docs.ropensci.org/stantargets/articles/simulation.html

120 tar_stan_vb_rep_summary

e "aws”: Amazon Web Services (AWS) S3 bucket. Can be configured with a
non-AWS S3 bucket using the endpoint argument of tar_resources_aws(),
but versioning capabilities may be lost in doing so. See the cloud stor-
age section of https://books.ropensci.org/targets/data.html for
details for instructions.

e "gcp”: Google Cloud Platform storage bucket. See the cloud storage sec-
tion of https://books.ropensci.org/targets/data.html for details for
instructions.

Note: if repository is not "local” and format is "file” then the target
should create a single output file. That output file is uploaded to the cloud and
tracked for changes where it exists in the cloud. The local file is deleted after
the target runs.

error Character of length 1, what to do if the target stops and throws an error. Options:

* "stop": the whole pipeline stops and throws an error.

* "continue”: the whole pipeline keeps going.

e "abridge": any currently running targets keep running, but no new tar-
gets launch after that. (Visit https://books.ropensci.org/targets/
debugging.html to learn how to debug targets using saved workspaces.)

e "null"”: The errored target continues and returns NULL. The data hash is
deliberately wrong so the target is not up to date for the next run of the
pipeline.

memory Character of length 1, memory strategy. If "persistent”, the target stays in
memory until the end of the pipeline (unless storage is "worker”, in which case
targets unloads the value from memory right after storing it in order to avoid
sending copious data over a network). If "transient”, the target gets unloaded
after every new target completes. Either way, the target gets automatically
loaded into memory whenever another target needs the value. For cloud-based
dynamic files (e.g. format = "file" with repository = "aws"), this memory
strategy applies to the temporary local copy of the file: "persistent” means
it remains until the end of the pipeline and is then deleted, and "transient”
means it gets deleted as soon as possible. The former conserves bandwidth, and
the latter conserves local storage.

garbage_collection
Logical, whether to run base: : gc() just before the target runs.

deployment Character of length 1. If deployment is "main”, then the target will run on the
central controlling R process. Otherwise, if deployment is "worker” and you
set up the pipeline with distributed/parallel computing, then the target runs on a
parallel worker. For more on distributed/parallel computing in targets, please
visit https://books.ropensci.org/targets/crew.html.

priority Numeric of length 1 between 0 and 1. Controls which targets get deployed first
when multiple competing targets are ready simultaneously. Targets with priori-
ties closer to 1 get dispatched earlier (and polled earlier in tar_make_future()).

resources Object returned by tar_resources() with optional settings for high-performance
computing functionality, alternative data storage formats, and other optional ca-
pabilities of targets. See tar_resources() for details.

https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/data.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/debugging.html
https://books.ropensci.org/targets/crew.html

tar_stan_vb_rep_summary 121

storage Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s return value is sent back to the host machine and
saved/uploaded locally.

* "worker": the worker saves/uploads the value.

* "none”: almost never recommended. It is only for niche situations, e.g. the
data needs to be loaded explicitly from another language. If you do use it,
then the return value of the target is totally ignored when the target ends,
but each downstream target still attempts to load the data file (except when
retrieval = "none").

If you select storage = "none”, then the return value of the target’s com-
mand is ignored, and the data is not saved automatically. As with dynamic
files (format = "file") it is the responsibility of the user to write to the
data store from inside the target.

The distinguishing feature of storage = "none"” (as opposed to format =
"file") is that in the general case, downstream targets will automatically
try to load the data from the data store as a dependency. As a corollary,
storage = "none” is completely unnecessary if format is "file".

retrieval Character of length 1, only relevant to tar_make_clustermq() and tar_make_future().
Must be one of the following values:

* "main”: the target’s dependencies are loaded on the host machine and sent
to the worker before the target runs.

* "worker": the worker loads the targets dependencies.

* "none”: the dependencies are not loaded at all. This choice is almost never
recommended. It is only for niche situations, e.g. the data needs to be
loaded explicitly from another language.

cue An optional object from tar_cue() to customize the rules that decide whether
the target is up to date.

description Character of length 1, a custom free-form human-readable text description of the
target. Descriptions appear as target labels in functions like tar_manifest()
and tar_visnetwork(), and they let you select subsets of targets for the names
argument of functions like tar_make (). For example, tar_manifest(names =
tar_described_as(starts_with("survival model”))) lists all the targets
whose descriptions start with the character string "survival model”.

Details

Most of the arguments are passed to the $compile() and $variational () methods of the CmdStanModel
class. If you previously compiled the model in an upstream tar_stan_compile() target, then the
model should not recompile.

Value

tar_stan_vb_rep_summaries() returns a list of target objects. See the "Target objects" section
for background. The target names use the name argument as a prefix, and the individual elements
of stan_files appear in the suffixes where applicable. As an example, the specific target objects
returned by tar_stan_vb_rep_summary(name = x, stan_files = "y.stan") are as follows.

122 tar_stan_vb_rep_summary

» x_file_y: reproducibly track the Stan model file. Returns a character vector with paths to the
model file and compiled executable.

e x_lines_y: read the Stan model file for safe transport to parallel workers. Omitted if compile
="original”. Returns a character vector of lines in the model file.

* x_data: use dynamic branching to generate multiple datasets by repeatedly running the R
expression in the data argument. Each dynamic branch returns a batch of Stan data lists that
x_y supplies to the model.

* x_y: dynamic branching target to run variational Bayes once per dataset. Each dynamic branch
returns a tidy data frames of summaries corresponding to a batch of Stan data from x_data.

* x: combine all branches of x_y into a single non-dynamic target. Suppressed if combine is
FALSE. Returns a long tidy data frame of summaries.

Seeds

Rep-specific random number generator seeds for the data and models are automatically set based
on the seed argument, batch, rep, parent target name, and tar_option_get("seed"). This ensures
the rep-specific seeds do not change when you change the batching configuration (e.g. 40 batches
of 10 reps each vs 20 batches of 20 reps each). Each data seed is in the . seed list element of the
output, and each Stan seed is in the .seed column of each Stan model output.

Target objects

Most stantargets functions are target factories, which means they return target objects or lists
of target objects. Target objects represent skippable steps of the analysis pipeline as described
at https://books.ropensci.org/targets/. Please read the walkthrough at https://books.
ropensci.org/targets/walkthrough.html to understand the role of target objects in analysis
pipelines.

For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories
explains target factories (functions like this one which generate targets) and the design specifica-

tion at https://books.ropensci.org/targets-design/ details the structure and composition

of target objects.

See Also

Other variational Bayes: tar_stan_vb(), tar_stan_vb_rep_draws()

Examples

if (Sys.getenv("TAR_LONG_EXAMPLES") == "true") {

targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({

library(stantargets)

Do not use temporary storage for stan files in real projects

or else your targets will always rerun.

path <- tempfile(pattern = "", fileext = ".stan")
tar_stan_example_file(path = path)
list(

tar_stan_vb_rep_summary(
your_model,

https://books.ropensci.org/targets/
https://books.ropensci.org/targets/walkthrough.html
https://books.ropensci.org/targets/walkthrough.html
https://wlandau.github.io/targetopia/contributing.html#target-factories
https://books.ropensci.org/targets-design/

tar_stan_vb_rep_summary 123

stan_files = path,

data = tar_stan_example_data(),
batches = 2,

reps = 2,

stdout = R.utils::nullfile(),
stderr = R.utils::nullfile()

)
)
}, ask = FALSE)
targets: :tar_make()
»
3

Index

+ MCMC
tar_stan_mcmc, 31
tar_stan_mcmc_rep_diagnostics, 41
tar_stan_mcmc_rep_draws, 51
tar_stan_mcmc_rep_summary, 61
* examples
tar_stan_example_data, 7
tar_stan_example_file, 8
x generated quantities
tar_stan_gq, 9
tar_stan_gq_rep_draws, 16
tar_stan_gqg_rep_summary, 23
* optimization
tar_stan_mle, 71
tar_stan_mle_rep_draws, 79
tar_stan_mle_rep_summary, 87
* variational Bayes
tar_stan_vb, 99
tar_stan_vb_rep_draws, 107
tar_stan_vb_rep_summary, 115
$check_syntax(), 4, 11, 18, 26, 33,43, 53,
63,73,81,89, 101,109, 117
$compile(), 10, 18, 25, 33,43, 53,63, 72, 80,
88, 100, 108, 117
$diagnostic_summary(), 37,47, 56, 66
$draws(), 17,25
$output(), 36, 47, 56, 66
$sampler_diagnostics(), 37,47, 56, 66
$save_latent_dynamics_files(), 35, 45,
54,64,74,82,90, 102,110, 118
$save_output_files(), 11, 19, 26, 35, 45,
54,64,74,82,90, 102,110, 118
$summary (), 37,47, 57, 67

CmdStanMCMC, 17, 25, 37,47, 57
CmdStanVB, 17, 25
compiled, 12, 19, 27, 35,45, 55, 65

draws_to_csv(), 17,25

124

garbage collected, 11, 19, 26, 35, 45, 54,
64, 74,82, 90, 102, 110, 118

posterior::draws_array, 17,25
posterior::draws_matrix, 17,25

read_cmdstan_csv(), 37, 47, 56, 66
stantargets-package, 3

tar_make(), 6, 14, 22, 29, 40, 49, 59, 69, 77,
85,93,97,105,113, 121
tar_make_clustermq(), 5, 6, 14, 21, 29, 39,
48, 49, 58, 59, 68, 69, 76, 77, 84, 85,
92,93,97,104, 105,112, 113,121
tar_make_future(), 5, 6, 13, 14, 21, 29, 39,
48, 49, 58, 59, 68, 69, 76, 77, 84, 85,
92, 93,97, 104, 105, 112, 113, 120,
121
tar_manifest(), 6, 14, 22, 29, 40, 49, 59, 69,
77,85,93,97,105,113, 121
tar_resources_aws(), 13, 20, 28, 38,47, 57,
67,75,83,91,96, 103,111, 120
tar_seed_set(), 4
tar_stan_compile, 3
tar_stan_compile(), 14, 22, 29, 40, 49, 59,
69,77,85,93,105,113,121
tar_stan_example_data, 7, 8§
tar_stan_example_file, 8, 8
tar_stan_example_file(), 7, 8
tar_stan_gq, 9, 23, 30
tar_stan_gg_rep_draws, 15, 16, 30
tar_stan_gqg_rep_summary, 15, 23, 23
tar_stan_mcmc, 31, 50, 60, 70
tar_stan_mecmc(), 3, 10, 97
tar_stan_mcmc_rep_diagnostics, 41, 41,
60, 70
tar_stan_mcmc_rep_draws, 41, 50, 51, 70
tar_stan_mcmc_rep_summary, 41, 50, 60, 61
tar_stan_mcmc_rep_summary(), 8

INDEX

tar_stan_mle, 71, 86, 94
tar_stan_mle_rep_draws, 78, 79, 94
tar_stan_mle_rep_summary, 78, 86, 87
tar_stan_summary, 95
tar_stan_vb, 99, 114, 122
tar_stan_vb_rep_draws, 106, 107, 122
tar_stan_vb_rep_summary, 106, 114,115
tar_visnetwork(), 6, 14, 22, 29, 40, 49, 59,
69,77,85,93,97,105,113, 121

write_stan_file(), 4

write_stan_json(), 10, 17, 25, 34, 44, 54,
64,72,74, 80, 81,88, 89, 100, 101
108, 109, 116, 118

125

	stantargets-package
	tar_stan_compile
	tar_stan_example_data
	tar_stan_example_file
	tar_stan_gq
	tar_stan_gq_rep_draws
	tar_stan_gq_rep_summary
	tar_stan_mcmc
	tar_stan_mcmc_rep_diagnostics
	tar_stan_mcmc_rep_draws
	tar_stan_mcmc_rep_summary
	tar_stan_mle
	tar_stan_mle_rep_draws
	tar_stan_mle_rep_summary
	tar_stan_summary
	tar_stan_vb
	tar_stan_vb_rep_draws
	tar_stan_vb_rep_summary
	Index

