
Package: tidypolars (via r-universe)
January 21, 2026

Type Package

Title More Efficient Tidyverse Code, Using Polars in the Background

Version 0.16.0

Description Polars is a cross-language tool for manipulating very
large data. However, one drawback is that the R implementation
has a syntax that will look odd to many R users who are not
used to Python syntax. The objective of tidypolars is to
improve the ease-of-use of Polars in R by providing tidyverse
syntax to polars.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Roxygen list(markdown = TRUE)

URL https://tidypolars.etiennebacher.com,

https://etiennebacher.r-universe.dev/tidypolars

BugReports https://github.com/etiennebacher/tidypolars/issues

Depends R (>= 4.3.0)

Imports cli, dplyr, glue, lifecycle, polars (>= 1.6.0), rlang (>=
1.1.0), tidyr, tidyselect, vctrs

Suggests arrow, bench, data.table, fs, knitr, jsonlite, lubridate,
nanoparquet, patrick, quickcheck, rmarkdown, rstudioapi,
stringr, testthat (>= 3.0.0), tibble, withr

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel true

Config/pak/sysreqs libicu-dev

Repository https://test.r-universe.dev

Date/Publication 2026-01-21 21:38:40 UTC

1

https://tidypolars.etiennebacher.com
https://etiennebacher.r-universe.dev/tidypolars
https://github.com/etiennebacher/tidypolars/issues

2 Contents

RemoteUrl https://github.com/etiennebacher/tidypolars

RemoteRef v0.16.0

RemoteSha d29609f2a206088e57ccbfeb021017b40b7cf5c0

Contents
.tp . 3
arrange.polars_data_frame . 4
bind_cols_polars . 5
bind_rows_polars . 5
complete.polars_data_frame . 6
compute.polars_lazy_frame . 8
count.polars_data_frame . 10
cross_join.polars_data_frame . 11
describe . 13
describe_plan . 13
distinct.polars_data_frame . 14
drop_na.polars_data_frame . 15
explain.polars_lazy_frame . 15
fetch . 16
fill.polars_data_frame . 18
filter.polars_data_frame . 19
from_csv . 20
from_ipc . 24
from_ndjson . 26
from_parquet . 29
group_by.polars_data_frame . 32
group_split.polars_data_frame . 33
group_vars.polars_data_frame . 34
left_join.polars_data_frame . 35
make_unique_id . 39
mutate.polars_data_frame . 40
partitioned_output . 42
pivot_longer.polars_data_frame . 44
pivot_wider.polars_data_frame . 45
pull.polars_data_frame . 47
relocate.polars_data_frame . 48
rename.polars_data_frame . 49
replace_na.polars_data_frame . 50
rowwise.polars_data_frame . 50
select.polars_data_frame . 51
semi_join.polars_data_frame . 52
separate.polars_data_frame . 54
separate_longer . 55
sink_csv . 56
sink_ipc . 59
sink_ndjson . 62

.tp 3

sink_parquet . 64
slice_tail.polars_data_frame . 66
summarize.polars_data_frame . 68
summary.polars_data_frame . 69
tidypolars_options . 70
uncount.polars_data_frame . 71
unite.polars_data_frame . 72
unnest_longer_polars . 73
write_csv_polars . 75
write_ipc_polars . 77
write_json_polars . 78
write_ndjson_polars . 79
write_parquet_polars . 79

Index 82

.tp Get tidypolars function translation without loading their original
package

Description

Use .tp$function_name() to get access to the functions that are translated by tidypolars without
loading the package these functions originally come from.

This may be useful in cases where you want to benefit from the interface of these functions but
don’t want to add some tidyverse dependencies to your project (e.g. stringr because it might be
slow to build the package in some cases).

Note that the name of the package that originally provided the function must be appended to
the function name. For instance, if you want to use stringr::str_extract() without loading
stringr, you can do so with .tp$str_extract_stringr(). This is because multiple packages
may have a function named str_extract(), so we need to inform tidypolars of which transla-
tion we want exactly.

Note: using .tp will make it harder to convert tidypolars code to run with other tidyverse-
based backends because .tp will be unknown to those backends. If you expect to switch be-
tween tidypolars, the original tidyverse, and tidyverse-based backends, you should avoid
using .tpand load the original packages in the session instead.

This is similar to the dd object in duckplyr and to the .sql object in dbplyr.

Usage

.tp

4 arrange.polars_data_frame

Examples

List of all functions stored in this object
sort(names(.tp))

dat <- polars::pl$DataFrame(x = c("abc12", "def3"))
dat |>

mutate(y = .tp$str_extract_stringr(x, "\\d+"))

arrange.polars_data_frame

Order rows using column values

Description

Order rows using column values

Usage

S3 method for class 'polars_data_frame'
arrange(.data, ..., .by_group = FALSE)

Arguments

.data A Polars Data/LazyFrame

... Variables, or functions of variables. Use desc() to sort a variable in descending
order.

.by_group If TRUE, will sort data within groups.

Examples

pl_test <- polars::pl$DataFrame(
x1 = c("a", "a", "b", "a", "c"),
x2 = c(2, 1, 5, 3, 1),
value = sample(1:5)

)

arrange(pl_test, x1)
arrange(pl_test, x1, -x2)

if the data is grouped, you need to specify `.by_group = TRUE` to sort by
the groups first
pl_test |>

group_by(x1) |>
arrange(-x2, .by_group = TRUE)

bind_cols_polars 5

bind_cols_polars Append multiple Data/LazyFrames next to each other

Description

Append multiple Data/LazyFrames next to each other

Usage

bind_cols_polars(..., .name_repair = "unique")

Arguments

... Polars DataFrames or LazyFrames to combine. Each argument can either be a
Data/LazyFrame, or a list of Data/LazyFrames. Columns are matched by name.
All Data/LazyFrames must have the same number of rows and there mustn’t be
duplicated column names.

.name_repair Can be "unique", "universal", "check_unique", "minimal". See vctrs::vec_as_names()
for the explanations for each value.

Examples

p1 <- polars::pl$DataFrame(
x = sample(letters, 20),
y = sample(1:100, 20)

)
p2 <- polars::pl$DataFrame(

z = sample(letters, 20),
w = sample(1:100, 20)

)

bind_cols_polars(p1, p2)
bind_cols_polars(list(p1, p2))

bind_rows_polars Stack multiple Data/LazyFrames on top of each other

Description

Stack multiple Data/LazyFrames on top of each other

Usage

bind_rows_polars(..., .id = NULL)

6 complete.polars_data_frame

Arguments

... Polars DataFrames or LazyFrames to combine. Each argument can either be a
Data/LazyFrame, or a list of Data/LazyFrames. Columns are matched by name,
and any missing columns will be filled with NA.

.id The name of an optional identifier column. Provide a string to create an output
column that identifies each input. If all elements in ... are named, the identifier
will use their names. Otherwise, it will be a simple count.

Examples

library(polars)
p1 <- pl$DataFrame(

x = c("a", "b"),
y = 1:2

)
p2 <- pl$DataFrame(

y = 3:4,
z = c("c", "d")

)$with_columns(pl$col("y")$cast(pl$Int16))

bind_rows_polars(p1, p2)

this is equivalent
bind_rows_polars(list(p1, p2))

create an id colum
bind_rows_polars(p1, p2, .id = "id")

create an id colum with named elements
bind_rows_polars(p1 = p1, p2 = p2, .id = "id")

complete.polars_data_frame

Complete a data frame with missing combinations of data

Description

Turns implicit missing values into explicit missing values. This is useful for completing missing
combinations of data.

Usage

S3 method for class 'polars_data_frame'
complete(data, ..., fill = list(), explicit = TRUE)

S3 method for class 'polars_lazy_frame'
complete(data, ..., fill = list(), explicit = TRUE)

complete.polars_data_frame 7

Arguments

data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.
When used with continuous variables, you may need to fill in values that do not
appear in the data: to do so use expressions like year = 2010:2020 or year =
full_seq(year, 1).

fill A named list that for each variable supplies a single value to use instead of NA
for missing combinations.

explicit Should both implicit (newly created) and explicit (pre-existing) missing values
be filled by fill? By default, this is TRUE, but if set to FALSE this will limit the
fill to only implicit missing values.

Examples

df <- polars::pl$DataFrame(
group = c(1:2, 1, 2),
item_id = c(1:2, 2, 3),
item_name = c("a", "a", "b", "b"),
value1 = c(1, NA, 3, 4),
value2 = 4:7

)
df

df |> complete(group, item_id, item_name)

Use `fill` to replace NAs with some value. By default, affects both new
(implicit) and pre-existing (explicit) missing values.
df |>

complete(
group, item_id, item_name,
fill = list(value1 = 0, value2 = 99)

)

Limit the fill to only the newly created (i.e. previously implicit)
missing values with `explicit = FALSE`
df |>

complete(
group, item_id, item_name,
fill = list(value1 = 0, value2 = 99),
explicit = FALSE

)

df |>
group_by(group, maintain_order = TRUE) |>
complete(item_id, item_name)

8 compute.polars_lazy_frame

compute.polars_lazy_frame

Run computations on a LazyFrame

Description

collect() and compute() can be applied on a LazyFrame only. They both check the validity of
the query (for instance raising an error if a string operation would be applied on a numeric column),
optimize it in the background, and perform computations.

These two functions differ in their output type:

• compute() returns a Polars DataFrame;

• collect() returns a tibble::tibble. This operation consumes more memory and takes longer
than compute() because it also needs to convert the data from Polars to R.

Usage

S3 method for class 'polars_lazy_frame'
compute(
x,
...,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
comm_subplan_elim = TRUE,
comm_subexpr_elim = TRUE,
cluster_with_columns = TRUE,
no_optimization = FALSE,
engine = c("auto", "in-memory", "streaming"),
streaming = FALSE

)

S3 method for class 'polars_lazy_frame'
collect(
x,
...,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
comm_subplan_elim = TRUE,
comm_subexpr_elim = TRUE,
cluster_with_columns = TRUE,

compute.polars_lazy_frame 9

no_optimization = FALSE,
engine = c("auto", "in-memory", "streaming"),
streaming = FALSE,
.name_repair = "check_unique",
uint8 = "integer",
int64 = "double",
date = "Date",
time = "hms",
decimal = "double",
as_clock_class = FALSE,
ambiguous = "raise",
non_existent = "raise"

)

Arguments

x A Polars LazyFrame

... Dots which should be empty.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).
projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).
simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

comm_subplan_elim

Cache branching subplans that occur on self-joins or unions (default is TRUE).
comm_subexpr_elim

Cache common subexpressions (default is TRUE).
cluster_with_columns

Combine sequential independent calls to $with_columns().
no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

engine The engine name to use for processing the query. One of the followings:

• "auto" (default): Select the engine automatically. The "in-memory" en-
gine will be selected for most cases.

• "in-memory": Use the in-memory engine.
• "streaming": Use the streaming engine, usually faster and can handle

larger-than-memory data.

streaming [Deprecated] Deprecated, use engine instead.

10 count.polars_data_frame

.name_repair, uint8, int64, date, time, decimal, as_clock_class,
ambiguous, non_existent

Parameters to control the conversion from polars types to R. See ?polars:::as.data.frame.polars_lazy_frame
for explanations and accepted values.

Value

compute() returns a Polars DataFrame, collect() returns a tibble.

See Also

fetch() for applying a lazy query on a subset of the data.

Examples

dat_lazy <- polars::as_polars_df(iris)$lazy()

compute(dat_lazy)

you can build a query and add compute() as the last piece
dat_lazy |>

select(starts_with("Sepal")) |>
filter(between(Sepal.Length, 5, 6)) |>
compute()

call collect() instead to return a data.frame (note that this is more
expensive than compute())
dat_lazy |>

select(starts_with("Sepal")) |>
filter(between(Sepal.Length, 5, 6)) |>
collect()

count.polars_data_frame

Count the observations in each group

Description

Count the observations in each group

Usage

S3 method for class 'polars_data_frame'
count(x, ..., wt = NULL, sort = FALSE, name = "n")

S3 method for class 'polars_data_frame'
tally(x, wt = NULL, sort = FALSE, name = "n")

cross_join.polars_data_frame 11

S3 method for class 'polars_lazy_frame'
count(x, ..., wt = NULL, sort = FALSE, name = "n")

S3 method for class 'polars_lazy_frame'
tally(x, wt = NULL, sort = FALSE, name = "n")

S3 method for class 'polars_data_frame'
add_count(x, ..., wt = NULL, sort = FALSE, name = "n")

S3 method for class 'polars_lazy_frame'
add_count(x, ..., wt = NULL, sort = FALSE, name = "n")

Arguments

x A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

wt Not supported by tidypolars.

sort If TRUE, will show the largest groups at the top.

name Name of the new column.

Examples

test <- polars::as_polars_df(mtcars)

grouping variables must be specified in count() and add_count()
count(test, cyl)
count(test, cyl, am)
count(test, cyl, am, sort = TRUE, name = "count")

add_count(test, cyl, am, sort = TRUE, name = "count")

tally() directly uses grouping variables of the input
test |>

group_by(cyl) |>
tally()

test |>
group_by(cyl, am) |>
tally(sort = TRUE, name = "count")

cross_join.polars_data_frame

Cross join

12 cross_join.polars_data_frame

Description

Cross joins match each row in x to every row in y, resulting in a dataset with nrow(x) * nrow(y)
rows.

Usage

S3 method for class 'polars_data_frame'
cross_join(x, y, ..., suffix = c(".x", ".y"))

S3 method for class 'polars_lazy_frame'
cross_join(x, y, ..., suffix = c(".x", ".y"))

Arguments

x, y Two Polars Data/LazyFrames

... Dots which should be empty.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Unknown arguments

Arguments that are supported by the original implementation in the tidyverse but are not listed
above will throw a warning by default if they are specified. To change this behavior to error instead,
use options(tidypolars_unknown_args = "error").

Examples

test <- polars::pl$DataFrame(
origin = c("ALG", "FRA", "GER"),
year = c(2020, 2020, 2021)

)

test2 <- polars::pl$DataFrame(
destination = c("USA", "JPN", "BRA"),
language = c("english", "japanese", "portuguese")

)

test

test2

cross_join(test, test2)

describe 13

describe Summary statistics for a Polars DataFrame

Description

[Deprecated]

This function is deprecated as of tidypolars 0.10.0, it will be removed in a future update. Use
summary() with the same arguments instead.

Usage

describe(.data, percentiles = c(0.25, 0.5, 0.75))

Arguments

.data A Polars DataFrame.

percentiles One or more percentiles to include in the summary statistics. All values must be
between 0 and 1 (NULL are ignored).

describe_plan Show the optimized and non-optimized query plans

Description

[Deprecated]

Those functions are deprecated as of tidypolars 0.10.0, they will be removed in a future update.
Use explain() with optimized = FALSE to recover the output of describe_plan(), and with
optimized = TRUE (the default) to get the output of describe_optimized_plan().

Usage

describe_plan(.data)

describe_optimized_plan(.data)

Arguments

.data A Polars LazyFrame

14 distinct.polars_data_frame

distinct.polars_data_frame

Remove or keep only duplicated rows in a Data/LazyFrame

Description

By default, duplicates are looked for in all variables. It is possible to specify a subset of variables
where duplicates should be looked for. It is also possible to keep either the first occurrence, the last
occurence or remove all duplicates.

Usage

S3 method for class 'polars_data_frame'
distinct(.data, ..., .keep_all = FALSE, keep = "first", maintain_order = TRUE)

S3 method for class 'polars_lazy_frame'
distinct(.data, ..., .keep_all = FALSE, keep = "first", maintain_order = TRUE)

duplicated_rows(.data, ...)

Arguments

.data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

.keep_all If TRUE, keep all variables in .data after duplicated rows are removed.

keep Either "first" (keep the first occurrence of the duplicated row), "last" (last occur-
rence) or "none" (remove all ofccurences of duplicated rows).

maintain_order Maintain row order. This is the default but it can slow down the process with
large datasets and it prevents the use of streaming.

Examples

pl_test <- polars::pl$DataFrame(
iso_o = c(rep(c("AA", "AB"), each = 2), "AC", "DC"),
iso_d = rep(c("BA", "BB", "BC"), each = 2),
value = c(2, 2, 3, 4, 5, 6)

)

distinct(pl_test)
distinct(pl_test, iso_o)

duplicated_rows(pl_test)
duplicated_rows(pl_test, iso_o, iso_d)

drop_na.polars_data_frame 15

drop_na.polars_data_frame

Drop missing values

Description

By default, this will drop rows that contain any missing values. It is possible to specify a subset of
variables so that only missing values in these variables will be considered.

Usage

S3 method for class 'polars_data_frame'
drop_na(data, ...)

S3 method for class 'polars_lazy_frame'
drop_na(data, ...)

Arguments

data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

Examples

tmp <- mtcars
tmp[1:3, "mpg"] <- NA
tmp[4, "hp"] <- NA
pl_tmp <- as_polars_df(tmp)

drop_na(pl_tmp)
drop_na(pl_tmp, hp, mpg)

explain.polars_lazy_frame

Show the optimized and non-optimized query plans

Description

This function is available for LazyFrames only.

By default, explain() shows the query plan that is optimized and then run by Polars. Setting
optimized = FALSE shows the query plan as-is, without any optimization done, but this is not the
query performed. Note that the plans are read from bottom to top.

16 fetch

Usage

S3 method for class 'polars_lazy_frame'
explain(x, optimized = TRUE, ...)

Arguments

x A Polars LazyFrame.

optimized Logical. If TRUE (default), show the query optimized by Polars. Otherwise,
show the initial query.

... Ignored.

Examples

query <- mtcars |>
as_polars_lf() |>
arrange(drat) |>
filter(cyl == 3) |>
select(mpg)

unoptimized query plan:
no_opt <- explain(query, optimized = FALSE)
no_opt

better printing with cat():
cat(no_opt)

optimized query run by polars
cat(explain(query))

fetch Fetch n rows of a LazyFrame

Description

[Deprecated]
Use head() before collect() to only get a subset of the data.

Usage

fetch(
.data,
n_rows = 500,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,

fetch 17

slice_pushdown = TRUE,
comm_subplan_elim = TRUE,
comm_subexpr_elim = TRUE,
cluster_with_columns = TRUE,
no_optimization = FALSE,
engine = c("auto", "in-memory", "streaming"),
streaming = FALSE

)

Arguments

.data A Polars LazyFrame

n_rows Number of rows to fetch.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).
projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).
simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

comm_subplan_elim

Cache branching subplans that occur on self-joins or unions (default is TRUE).
comm_subexpr_elim

Cache common subexpressions (default is TRUE).
cluster_with_columns

Combine sequential independent calls to $with_columns().
no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

engine The engine name to use for processing the query. One of the followings:

• "auto" (default): Select the engine automatically. The "in-memory" en-
gine will be selected for most cases.

• "in-memory": Use the in-memory engine.
• "streaming": Use the streaming engine, usually faster and can handle

larger-than-memory data.

streaming [Deprecated] Deprecated, use engine instead.

Details

The parameter n_rows indicates how many rows from the LazyFrame should be used at the begin-
ning of the query, but it doesn’t guarantee that n_rows will be returned. For example, if the query

18 fill.polars_data_frame

contains a filter or join operations with other datasets, then the final number of rows can be lower
than n_rows. On the other hand, appending some rows during the query can lead to an output that
has more rows than n_rows.

See Also

dplyr::collect() for applying a lazy query on the full data.

fill.polars_data_frame

Fill in missing values with previous or next value

Description

Fills missing values in selected columns using the next or previous entry. This is useful in the
common output format where values are not repeated, and are only recorded when they change.

Usage

S3 method for class 'polars_data_frame'
fill(data, ..., .by = NULL, .direction = c("down", "up", "downup", "updown"))

Arguments

data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

.by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

.direction Direction in which to fill missing values. Either "down" (the default), "up",
"downup" (i.e. first down and then up) or "updown" (first up and then down).

Details

With grouped Data/LazyFrames, fill() will be applied within each group, meaning that it won’t fill
across group boundaries.

Examples

pl_test <- polars::pl$DataFrame(x = c(NA, 1), y = c(2, NA))

fill(pl_test, everything(), .direction = "down")
fill(pl_test, everything(), .direction = "up")

with grouped data, it doesn't use values from other groups
pl_grouped <- polars::pl$DataFrame(

filter.polars_data_frame 19

grp = rep(c("A", "B"), each = 3),
x = c(1, NA, NA, NA, 2, NA),
y = c(3, NA, 4, NA, 3, 1)

) |>
group_by(grp)

fill(pl_grouped, x, y, .direction = "down")

filter.polars_data_frame

Keep rows that match a condition

Description

This function is used to subset a data frame, retaining all rows that satisfy your conditions. To be
retained, the row must produce a value of TRUE for all conditions. Note that when a condition
evaluates to NA the row will be dropped, unlike base subsetting with [.

Usage

S3 method for class 'polars_data_frame'
filter(.data, ..., .by = NULL)

S3 method for class 'polars_lazy_frame'
filter(.data, ..., .by = NULL)

Arguments

.data A Polars Data/LazyFrame

... Expressions that return a logical value, and are defined in terms of the variables
in the data. If multiple expressions are included, they will be combined with the
& operator. Only rows for which all conditions evaluate to TRUE are kept.

.by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

Examples

pl_iris <- polars::as_polars_df(iris)

filter(pl_iris, Sepal.Length < 5, Species == "setosa")

filter(pl_iris, Sepal.Length < Sepal.Width + Petal.Length)

filter(pl_iris, Species == "setosa" | is.na(Species))

iris2 <- iris

20 from_csv

iris2$Species <- as.character(iris2$Species)
iris2 |>

as_polars_df() |>
filter(Species %in% c("setosa", "virginica"))

filter by group
pl_iris |>

group_by(Species) |>
filter(Sepal.Length == max(Sepal.Length)) |>
ungroup()

an alternative syntax for grouping is to use `.by`
pl_iris |>

filter(Sepal.Length == max(Sepal.Length), .by = Species)

from_csv Import data from CSV file(s)

Description

read_csv_polars() imports the data as a Polars DataFrame.

scan_csv_polars() imports the data as a Polars LazyFrame.

Usage

read_csv_polars(
source,
...,
has_header = TRUE,
separator = ",",
comment_prefix = NULL,
quote_char = "\"",
skip_rows = 0,
schema = NULL,
schema_overrides = NULL,
null_values = NULL,
ignore_errors = FALSE,
cache = FALSE,
infer_schema_length = 100,
n_rows = NULL,
encoding = "utf8",
low_memory = FALSE,
rechunk = TRUE,
skip_rows_after_header = 0,
row_index_name = NULL,
row_index_offset = 0,
try_parse_dates = FALSE,

from_csv 21

eol_char = "\n",
raise_if_empty = TRUE,
truncate_ragged_lines = FALSE,
include_file_paths = NULL,
dtypes,
reuse_downloaded

)

scan_csv_polars(
source,
...,
has_header = TRUE,
separator = ",",
comment_prefix = NULL,
quote_char = "\"",
skip_rows = 0,
schema = NULL,
schema_overrides = NULL,
null_values = NULL,
ignore_errors = FALSE,
cache = FALSE,
infer_schema_length = 100,
n_rows = NULL,
encoding = "utf8",
low_memory = FALSE,
rechunk = TRUE,
skip_rows_after_header = 0,
row_index_name = NULL,
row_index_offset = 0,
try_parse_dates = FALSE,
eol_char = "\n",
raise_if_empty = TRUE,
truncate_ragged_lines = FALSE,
include_file_paths = NULL,
dtypes,
reuse_downloaded

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning cloud
locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.

has_header Indicate if the first row of dataset is a header or not.If FALSE, column names
will be autogenerated in the following format: "column_x" with x being an
enumeration over every column in the dataset starting at 1.

separator Single byte character to use as separator in the file.

22 from_csv

comment_prefix A string, which can be up to 5 symbols in length, used to indicate the start of a
comment line. For instance, it can be set to # or //.

quote_char Single byte character used for quoting. Set to NULL to turn off special handling
and escaping of quotes.

skip_rows Start reading after a particular number of rows. The header will be parsed at this
offset.

schema Provide the schema. This means that polars doesn’t do schema inference. This
argument expects the complete schema, whereas schema_overrides can be
used to partially overwrite a schema. This must be a list. Names of list ele-
ments are used to match to inferred columns.

schema_overrides

Overwrite dtypes during inference. This must be a list. Names of list elements
are used to match to inferred columns.

null_values Character vector specifying the values to interpret as NA values. It can be named,
in which case names specify the columns in which this replacement must be
made (e.g. c(col1 = "a")).

ignore_errors Keep reading the file even if some lines yield errors. You can also use infer_schema
= FALSE to read all columns as UTF8 to check which values might cause an is-
sue.

cache Cache the result after reading.
infer_schema_length

The maximum number of rows to scan for schema inference. If NULL, the full
data may be scanned (this is slow). Set infer_schema = FALSE to read all
columns as pl$String.

n_rows Stop reading from the source after reading n_rows.

encoding Either "utf8" or "utf8-lossy". Lossy means that invalid UTF8 values are
replaced with "?" characters.

low_memory Reduce memory pressure at the expense of performance.

rechunk Reallocate to contiguous memory when all chunks/files are parsed.
skip_rows_after_header

Skip this number of rows when the header is parsed.

row_index_name If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by row_index_name).
try_parse_dates

Try to automatically parse dates. Most ISO8601-like formats can be inferred, as
well as a handful of others. If this does not succeed, the column remains of data
type pl$String.

eol_char Single byte end of line character (default: "\n"). When encountering a file with
Windows line endings ("\r\n"), one can go with the default "\n". The extra
"\r" will be removed when processed.

raise_if_empty If FALSE, parsing an empty file returns an empty DataFrame or LazyFrame.
truncate_ragged_lines

Truncate lines that are longer than the schema.

from_csv 23

include_file_paths

Include the path of the source file(s) as a column with this name.

dtypes [Deprecated] Deprecated, use schema_overrides instead.
reuse_downloaded

[Deprecated] Deprecated with no replacement.

Value

The scan function returns a LazyFrame, the read function returns a DataFrame.

Examples

Read or scan a single CSV file ------------------------

Setup: create a CSV file
dest <- withr::local_tempfile(fileext = ".csv")
write.csv(mtcars, dest, row.names = FALSE)

Import this file as a DataFrame for eager evaluation
read_csv_polars(dest) |>

arrange(mpg)

Import this file as a LazyFrame for lazy evaluation
scan_csv_polars(dest) |>

arrange(mpg) |>
compute()

Change the datatype of some columns when reading the file ------------------------

scan_csv_polars(
dest,
schema_overrides = list(gear = polars::pl$String, carb = polars::pl$Float32)

) |>
arrange(mpg) |>
compute()

Read or scan several all CSV files in a folder ------------------------

Setup: create a folder "output" that contains two CSV files
dest_folder <- withr::local_tempdir(tmpdir = "output")
dir.create(dest_folder, showWarnings = FALSE)
dest1 <- file.path(dest_folder, "output_1.csv")
dest2 <- file.path(dest_folder, "output_2.csv")

write.csv(mtcars[1:16,], dest1, row.names = FALSE)
write.csv(mtcars[17:32,], dest2, row.names = FALSE)
list.files(dest_folder)

Import all files as a LazyFrame
scan_csv_polars(dest_folder) |>

24 from_ipc

arrange(mpg) |>
compute()

Include the file path to know where each row comes from
scan_csv_polars(dest_folder, include_file_paths = "file_path") |>

arrange(mpg) |>
compute()

Read or scan all CSV files that match a glob pattern ------------------------

Setup: create a folder "output_glob" that contains three CSV files,
two of which follow the pattern "output_XXX.csv"
dest_folder <- withr::local_tempdir(tmpdir = "output_glob")
dir.create(dest_folder, showWarnings = FALSE)
dest1 <- file.path(dest_folder, "output_1.csv")
dest2 <- file.path(dest_folder, "output_2.csv")
dest3 <- file.path(dest_folder, "other_output.csv")

write.csv(mtcars[1:16,], dest1, row.names = FALSE)
write.csv(mtcars[17:32,], dest2, row.names = FALSE)
write.csv(iris, dest3, row.names = FALSE)
list.files(dest_folder)

Import only the files whose name match "output_XXX.csv" as a LazyFrame
scan_csv_polars(paste0(dest_folder, "/output_*.csv")) |>

arrange(mpg) |>
compute()

from_ipc Import data from IPC file(s)

Description

read_ipc_polars() imports the data as a Polars DataFrame.

scan_ipc_polars() imports the data as a Polars LazyFrame.

Usage

read_ipc_polars(
source,
...,
n_rows = NULL,
row_index_name = NULL,
row_index_offset = 0L,
rechunk = FALSE,
cache = TRUE,
include_file_paths = NULL,

from_ipc 25

memory_map
)

scan_ipc_polars(
source,
...,
n_rows = NULL,
row_index_name = NULL,
row_index_offset = 0L,
rechunk = FALSE,
cache = TRUE,
include_file_paths = NULL,
memory_map

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning cloud
locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.

n_rows Stop reading from the source after reading n_rows.

row_index_name If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by row_index_name).

rechunk Reallocate to contiguous memory when all chunks/files are parsed.

cache Cache the result after reading.
include_file_paths

Include the path of the source file(s) as a column with this name.

memory_map [Deprecated] Deprecated with no replacement.

Value

The scan function returns a LazyFrame, the read function returns a DataFrame.

Examples

Read or scan a single IPC file ------------------------

Setup: create an IPC file
dest <- withr::local_tempfile(fileext = ".ipc")
arrow::write_ipc_file(mtcars, file(dest))

Import this file as a DataFrame for eager evaluation
read_ipc_polars(dest) |>

arrange(mpg)

Import this file as a LazyFrame for lazy evaluation
scan_ipc_polars(dest) |>

26 from_ndjson

arrange(mpg) |>
compute()

Read or scan several all IPC files in a folder ------------------------

Setup: create a folder "output" that contains two IPC files
dest_folder <- withr::local_tempdir(tmpdir = "output")
dir.create(dest_folder, showWarnings = FALSE)
dest1 <- file.path(dest_folder, "output_1.ipc")
dest2 <- file.path(dest_folder, "output_2.ipc")

arrow::write_ipc_file(mtcars[1:16,], dest1)
arrow::write_ipc_file(mtcars[17:32,], dest2)
list.files(dest_folder)

Import all files as a LazyFrame
scan_ipc_polars(dest_folder) |>

arrange(mpg) |>
compute()

Read or scan all IPC files that match a glob pattern ------------------------

Setup: create a folder "output_glob" that contains three IPC files,
two of which follow the pattern "output_XXX.ipc"
dest_folder <- withr::local_tempdir(tmpdir = "output_glob")
dir.create(dest_folder, showWarnings = FALSE)
dest1 <- file.path(dest_folder, "output_1.ipc")
dest2 <- file.path(dest_folder, "output_2.ipc")
dest3 <- file.path(dest_folder, "other_output.ipc")

arrow::write_ipc_file(mtcars[1:16,], dest1)
arrow::write_ipc_file(mtcars[17:32,], dest2)
arrow::write_ipc_file(iris, dest3)
list.files(dest_folder)

Import only the files whose name match "output_XXX.ipc" as a LazyFrame
scan_ipc_polars(paste0(dest_folder, "/output_*.ipc")) |>

arrange(mpg) |>
compute()

from_ndjson Import data from NDJSON file(s)

Description

read_ndjson_polars() imports the data as a Polars DataFrame.

scan_ndjson_polars() imports the data as a Polars LazyFrame.

from_ndjson 27

Usage

read_ndjson_polars(
source,
...,
infer_schema_length = 100,
batch_size = NULL,
n_rows = NULL,
low_memory = FALSE,
rechunk = FALSE,
row_index_name = NULL,
row_index_offset = 0,
ignore_errors = FALSE,
reuse_downloaded

)

scan_ndjson_polars(
source,
...,
infer_schema_length = 100,
batch_size = NULL,
n_rows = NULL,
low_memory = FALSE,
rechunk = FALSE,
row_index_name = NULL,
row_index_offset = 0,
ignore_errors = FALSE,
reuse_downloaded

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning cloud
locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.
infer_schema_length

The maximum number of rows to scan for schema inference. If NULL, the full
data may be scanned (this is slow). Set infer_schema = FALSE to read all
columns as pl$String.

batch_size Number of rows to read in each batch.

n_rows Stop reading from the source after reading n_rows.

low_memory Reduce memory pressure at the expense of performance.

rechunk Reallocate to contiguous memory when all chunks/files are parsed.

row_index_name If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by row_index_name).

28 from_ndjson

ignore_errors Keep reading the file even if some lines yield errors. You can also use infer_schema
= FALSE to read all columns as UTF8 to check which values might cause an is-
sue.

reuse_downloaded

[Deprecated] Deprecated with no replacement.

Value

The scan function returns a LazyFrame, the read function returns a DataFrame.

Examples

Read or scan a single NDJSON file ------------------------

Setup: create a NDJSON file
dest <- withr::local_tempfile(fileext = ".json")
jsonlite::stream_out(mtcars, file(dest), verbose = FALSE)

Import this file as a DataFrame for eager evaluation
read_ndjson_polars(dest) |>

arrange(mpg)

Import this file as a LazyFrame for lazy evaluation
scan_ndjson_polars(dest) |>

arrange(mpg) |>
compute()

Read or scan several all NDJSON files in a folder ------------------------

Setup: create a folder "output" that contains two NDJSON files
dest_folder <- withr::local_tempdir(tmpdir = "output")
dir.create(dest_folder, showWarnings = FALSE)
dest1 <- file.path(dest_folder, "output_1.json")
dest2 <- file.path(dest_folder, "output_2.json")

jsonlite::stream_out(mtcars[1:16,], file(dest1), verbose = FALSE)
jsonlite::stream_out(mtcars[17:32,], file(dest2), verbose = FALSE)
list.files(dest_folder)

Import all files as a LazyFrame
scan_ndjson_polars(dest_folder) |>

arrange(mpg) |>
compute()

Read or scan all NDJSON files that match a glob pattern ------------------------

Setup: create a folder "output_glob" that contains three NDJSON files,
two of which follow the pattern "output_XXX.json"
dest_folder <- withr::local_tempdir(tmpdir = "output_glob")
dir.create(dest_folder, showWarnings = FALSE)

from_parquet 29

dest1 <- file.path(dest_folder, "output_1.json")
dest2 <- file.path(dest_folder, "output_2.json")
dest3 <- file.path(dest_folder, "other_output.json")

jsonlite::stream_out(mtcars[1:16,], file(dest1), verbose = FALSE)
jsonlite::stream_out(mtcars[17:32,], file(dest2), verbose = FALSE)
jsonlite::stream_out(iris, file(dest3), verbose = FALSE)
list.files(dest_folder)

Import only the files whose name match "output_XXX.json" as a LazyFrame
scan_ndjson_polars(paste0(dest_folder, "/output_*.json")) |>

arrange(mpg) |>
compute()

from_parquet Import data from Parquet file(s)

Description

read_parquet_polars() imports the data as a Polars DataFrame.

scan_parquet_polars() imports the data as a Polars LazyFrame.

Usage

read_parquet_polars(
source,
...,
n_rows = NULL,
row_index_name = NULL,
row_index_offset = 0L,
parallel = "auto",
hive_partitioning = NULL,
hive_schema = NULL,
try_parse_hive_dates = TRUE,
glob = TRUE,
rechunk = TRUE,
low_memory = FALSE,
storage_options = NULL,
use_statistics = TRUE,
cache = TRUE,
include_file_paths = NULL

)

scan_parquet_polars(
source,
...,
n_rows = NULL,

30 from_parquet

row_index_name = NULL,
row_index_offset = 0L,
parallel = "auto",
hive_partitioning = NULL,
hive_schema = NULL,
try_parse_hive_dates = TRUE,
glob = TRUE,
rechunk = FALSE,
low_memory = FALSE,
storage_options = NULL,
use_statistics = TRUE,
cache = TRUE,
include_file_paths = NULL

)

Arguments

source Path(s) to a file or directory. When needing to authenticate for scanning cloud
locations, see the storage_options parameter.

... These dots are for future extensions and must be empty.

n_rows Stop reading from the source after reading n_rows.

row_index_name If not NULL, this will insert a row index column with the given name.
row_index_offset

Offset to start the row index column (only used if the name is set by row_index_name).

parallel This determines the direction and strategy of parallelism.

• "auto" (default): Will try to determine the optimal direction.
• "prefiltered": [Experimental] Strategy first evaluates the pushed-down

predicates in parallel and determines a mask of which rows to read. Then,
it parallelizes over both the columns and the row groups while filtering out
rows that do not need to be read. This can provide significant speedups
for large files (i.e. many row-groups) with a predicate that filters clustered
rows or filters heavily. In other cases, prefiltered may slow down the scan
compared other strategies. Falls back to "auto" if no predicate is given.

• "columns", "row_groups": Use the specified direction.
• "none": No parallelism.

hive_partitioning

Infer statistics and schema from Hive partitioned sources and use them to prune
reads. If NULL (default), it is automatically enabled when a single directory is
passed, and otherwise disabled.

hive_schema [Experimental] A list containing the column names and data types of the columns
by which the data is partitioned, e.g. list(a = pl$String, b = pl$Float32).
If NULL (default), the schema of the Hive partitions is inferred.

try_parse_hive_dates

Whether to try parsing hive values as date / datetime types.

glob Expand path given via globbing rules.

from_parquet 31

rechunk Reallocate to contiguous memory when all chunks/files are parsed.

low_memory Reduce memory pressure at the expense of performance
storage_options

Named vector containing options that indicate how to connect to a cloud provider.
The cloud providers currently supported are AWS, GCP, and Azure. See sup-
ported keys here:

• aws
• gcp
• azure
• Hugging Face (hf://): Accepts an API key under the token parameter
c(token = YOUR_TOKEN) or by setting the HF_TOKEN environment variable.

If storage_options is not provided, Polars will try to infer the information
from environment variables.

use_statistics Use statistics in the parquet to determine if pages can be skipped from reading.

cache Cache the result after reading.
include_file_paths

Include the path of the source file(s) as a column with this name.

Value

The scan function returns a LazyFrame, the read function returns a DataFrame.

Examples

Read or scan a single Parquet file ------------------------

Setup: create a Parquet file
dest <- withr::local_tempfile(fileext = ".parquet")
dat <- as_polars_df(mtcars)
write_parquet_polars(dat, dest)

Import this file as a DataFrame for eager evaluation
read_parquet_polars(dest) |>

arrange(mpg)

Import this file as a LazyFrame for lazy evaluation
scan_parquet_polars(dest) |>

arrange(mpg) |>
compute()

Read or scan several all Parquet files in a folder ------------------------

Setup: create a folder "output" that contains two Parquet files
dest_folder <- withr::local_tempdir(tmpdir = "output")
dir.create(dest_folder, showWarnings = FALSE)
dest1 <- file.path(dest_folder, "output_1.parquet")
dest2 <- file.path(dest_folder, "output_2.parquet")

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

32 group_by.polars_data_frame

write_parquet_polars(as_polars_df(mtcars[1:16,]), dest1)
write_parquet_polars(as_polars_df(mtcars[17:32,]), dest2)
list.files(dest_folder)

Import all files as a LazyFrame
scan_parquet_polars(dest_folder) |>

arrange(mpg) |>
compute()

Include the file path to know where each row comes from
scan_parquet_polars(dest_folder, include_file_paths = "file_path") |>

arrange(mpg) |>
compute()

Read or scan all Parquet files that match a glob pattern ------------------------

Setup: create a folder "output_glob" that contains three Parquet files,
two of which follow the pattern "output_XXX.parquet"
dest_folder <- withr::local_tempdir(tmpdir = "output_glob")
dir.create(dest_folder, showWarnings = FALSE)
dest1 <- file.path(dest_folder, "output_1.parquet")
dest2 <- file.path(dest_folder, "output_2.parquet")
dest3 <- file.path(dest_folder, "other_output.parquet")

write_parquet_polars(as_polars_df(mtcars[1:16,]), dest1)
write_parquet_polars(as_polars_df(mtcars[17:32,]), dest2)
write_parquet_polars(as_polars_df(iris), dest3)
list.files(dest_folder)

Import only the files whose name match "output_XXX.parquet" as a LazyFrame
scan_parquet_polars(paste0(dest_folder, "/output_*.parquet")) |>

arrange(mpg) |>
compute()

group_by.polars_data_frame

Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes an existing Polars
Data/LazyFrame and converts it into a grouped one where operations are performed "by group".
ungroup() removes grouping.

Usage

S3 method for class 'polars_data_frame'
group_by(.data, ..., maintain_order = FALSE, .add = FALSE, .drop = TRUE)

group_split.polars_data_frame 33

S3 method for class 'polars_data_frame'
ungroup(x, ...)

S3 method for class 'polars_lazy_frame'
group_by(.data, ..., maintain_order = FALSE, .add = FALSE, .drop = TRUE)

S3 method for class 'polars_lazy_frame'
ungroup(x, ...)

Arguments

.data A Polars Data/LazyFrame

... Variables to group by (used in group_by() only). Not used in ungroup().

maintain_order Maintain row order. For performance reasons, this is FALSE by default). Setting
it to TRUE can slow down the process with large datasets and prevents the use of
streaming.

.add When FALSE (default), group_by() will override existing groups. To add to the
existing groups, use .add = TRUE.

.drop Unsupported. It is only present to provide a good error message if specified by
the user.

x A Polars Data/LazyFrame

Examples

by_cyl <- mtcars |>
as_polars_df() |>
group_by(cyl)

by_cyl

by_cyl |> summarise(
disp = mean(disp),
hp = mean(hp)

)
by_cyl |> filter(disp == max(disp))

group_split.polars_data_frame

Grouping metadata

Description

group_vars() returns a character vector with the names of the grouping variables. group_keys()
returns a data frame with one row per group.

34 group_vars.polars_data_frame

Usage

S3 method for class 'polars_data_frame'
group_split(.tbl, ..., .keep = TRUE)

Arguments

.tbl A Polars Data/LazyFrame

... If .tbl is not grouped, variables to group by. If .tbl is already grouped, this is
ignored.

.keep Should the grouping columns be kept?

Examples

pl_g <- polars::as_polars_df(iris) |>
group_by(Species)

group_split(pl_g)

group_vars.polars_data_frame

Grouping metadata

Description

group_vars() returns a character vector with the names of the grouping variables. group_keys()
returns a data frame with one row per group.

Usage

S3 method for class 'polars_data_frame'
group_vars(x)

S3 method for class 'polars_lazy_frame'
group_vars(x)

S3 method for class 'polars_data_frame'
group_keys(.tbl, ...)

S3 method for class 'polars_lazy_frame'
group_keys(.tbl, ...)

Arguments

x, .tbl A Polars Data/LazyFrame

... These dots are for future extensions and must be empty.

left_join.polars_data_frame 35

Examples

pl_g <- polars::as_polars_df(mtcars) |>
group_by(cyl, am)

group_vars(pl_g)

group_keys(pl_g)

left_join.polars_data_frame

Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys.

Usage

S3 method for class 'polars_data_frame'
left_join(

x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'polars_data_frame'
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'polars_data_frame'
full_join(

36 left_join.polars_data_frame

x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'polars_data_frame'
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'polars_lazy_frame'
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'polars_lazy_frame'
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

left_join.polars_data_frame 37

)

S3 method for class 'polars_lazy_frame'
full_join(

x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'polars_lazy_frame'
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

Arguments

x, y Two Polars Data/LazyFrames

by Variables to join by. If NULL (default), *_join() will perform a natural join,
using all variables in common across x and y. A message lists the variables
so that you can check they’re correct; suppress the message by supplying by
explicitly.
by can take a character vector, like c("x", "y") if x and y are in both datasets.
To join on variables that don’t have the same name, use equalities in the charac-
ter vector, like c("x1" = "x2", "y"). If you use a character vector, the join can
only be done using strict equality.
by can also be a specification created by dplyr::join_by(). Contrary to the in-
put as character vector shown above, join_by() uses unquoted column names,
e.g join_by(x1 == x2, y).
Finally, inner_join() also supports inequality joins, e.g. join_by(x1 >= x2),
and the helpers between(), overlaps(), and within(). See the documentation
of dplyr::join_by() for more information. Other join types will likely support
inequality joins in the future.

copy, keep Not supported.

38 left_join.polars_data_frame

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Dots which should be empty.

na_matches Should two NA values match?

• "na", the default, treats two NA values as equal.
• "never" treats two NA values as different and will never match them to-

gether or to any other values.

Note that when joining Polars Data/LazyFrames, NaN are always considered
equal, no matter the value of na_matches. This differs from the original dplyr
implementation.

relationship Handling of the expected relationship between the keys of x and y. Must be one
of the following:

• NULL, the default, is equivalent to "many-to-many". It doesn’t expect any
relationship between x and y.

• "one-to-one" expects each row in x to match at most 1 row in y and each
row in y to match at most 1 row in x.

• "one-to-many" expects each row in y to match at most 1 row in x.
• "many-to-one" expects each row in x matches at most 1 row in y.

Unknown arguments

Arguments that are supported by the original implementation in the tidyverse but are not listed
above will throw a warning by default if they are specified. To change this behavior to error instead,
use options(tidypolars_unknown_args = "error").

Examples

test <- polars::pl$DataFrame(
x = c(1, 2, 3),
y1 = c(1, 2, 3),
z = c(1, 2, 3)

)

test2 <- polars::pl$DataFrame(
x = c(1, 2, 4),
y2 = c(1, 2, 4),
z2 = c(4, 5, 7)

)

test

test2

default is to use common columns, here "x" only
left_join(test, test2)

we can specify the columns on which to join with join_by()...
left_join(test, test2, by = join_by(x, y1 == y2))

make_unique_id 39

... or with a character vector
left_join(test, test2, by = c("x", "y1" = "y2"))

we can customize the suffix of common column names not used to join
test2 <- polars::pl$DataFrame(

x = c(1, 2, 4),
y1 = c(1, 2, 4),
z = c(4, 5, 7)

)

left_join(test, test2, by = "x", suffix = c("_left", "_right"))

the argument "relationship" ensures the join matches the expectation
country <- polars::pl$DataFrame(

iso = c("FRA", "DEU"),
value = 1:2

)
country

country_year <- polars::pl$DataFrame(
iso = rep(c("FRA", "DEU"), each = 2),
year = rep(2019:2020, 2),
value2 = 3:6

)
country_year

We expect that each row in "x" matches only one row in "y" but, it's not
true as each row of "x" matches two rows of "y"
tryCatch(

left_join(country, country_year, join_by(iso), relationship = "one-to-one"),
error = function(e) e

)

A correct expectation would be "one-to-many":
left_join(country, country_year, join_by(iso), relationship = "one-to-many")

make_unique_id Create a column with unique id per row values

Description

Create a column with unique id per row values

Usage

make_unique_id(.data, ..., new_col = "hash")

40 mutate.polars_data_frame

Arguments

.data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

new_col Name of the new column

Examples

mtcars |>
as_polars_df() |>
make_unique_id(am, gear)

mutate.polars_data_frame

Create, modify, and delete columns

Description

This creates new columns that are functions of existing variables. It can also modify (if the name is
the same as an existing column) and delete columns (by setting their value to NULL).

Usage

S3 method for class 'polars_data_frame'
mutate(.data, ..., .by = NULL, .keep = c("all", "used", "unused", "none"))

S3 method for class 'polars_lazy_frame'
mutate(.data, ..., .by = NULL, .keep = c("all", "used", "unused", "none"))

Arguments

.data A Polars Data/LazyFrame

... Name-value pairs. The name gives the name of the column in the output. The
value can be:

• A vector the same length as the current group (or the whole data frame if
ungrouped).

• NULL, to remove the column.

across() is mostly supported, except in a few cases. In particular, if the .cols
argument is where(...), it will not select variables that were created before
across(). Other select helpers are supported. See the examples.

.by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

mutate.polars_data_frame 41

.keep Control which columns from .data are retained in the output. Grouping columns
and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns. This

is useful for checking your work, as it displays inputs and outputs side-by-
side.

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the columns
used to generate them.

• "none" doesn’t retain any extra columns from .data. Only the grouping
variables and columns created by ... are kept.

Details

A lot of functions available in base R (cos, mean, multiplying, etc.) or in other packages (dplyr::lag(),
etc.) are implemented in an efficient way in Polars. These functions are automatically translated to
Polars syntax under the hood so that you can continue using the classic R syntax and functions.

If a Polars built-in replacement doesn’t exist (for example for custom functions), then tidypolars
will throw an error. See the vignette on Polars expressions to know how to write custom functions
that are accepted by tidypolars.

Examples

pl_iris <- polars::as_polars_df(iris)

classic operation
mutate(pl_iris, x = Sepal.Width + Sepal.Length)

logical operation
mutate(pl_iris, x = Sepal.Width > Sepal.Length & Petal.Width > Petal.Length)

overwrite existing variable
mutate(pl_iris, Sepal.Width = Sepal.Width * 2)

grouped computation
pl_iris |>

group_by(Species) |>
mutate(foo = mean(Sepal.Length))

an alternative syntax for grouping is to use `.by`
pl_iris |>

mutate(foo = mean(Sepal.Length), .by = Species)

across() is available
pl_iris |>

mutate(
across(.cols = contains("Sepal"), .fns = mean, .names = "{.fn}_of_{.col}")

)
#
It can receive several types of functions:

42 partitioned_output

pl_iris |>
mutate(
across(

.cols = contains("Sepal"),

.fns = list(mean = mean, sd = ~ sd(.x)),

.names = "{.fn}_of_{.col}"
)

)

Be careful when using across(.cols = where(...), ...) as it will not include
variables created in the same `...` (this is only the case for `where()`):
Not run:
pl_iris |>

mutate(
foo = 1,
across(

.cols = where(is.numeric),
\(x) x - 1000 # <<<<<<<<< this will not be applied on variable "foo"

)
)

End(Not run)
Warning message:
In `across()`, the argument `.cols = where(is.numeric)` will not take into account
variables created in the same `mutate()`/`summarize` call.

Embracing an external variable works
some_value <- 1
mutate(pl_iris, x = {{ some_value }})

partitioned_output Helper functions to export data as a partitioned output

Description

[Experimental]

Partitioning schemes are used to write multiple files with sink_*() and write_*_polars() func-
tions.

• partition_by(): Configuration for writing to multiple output files. Supports partitioning by
key, file size limits, or both.

The following functions are deprecated and will be removed in a future release:

• [Deprecated] partition_by_key(): use partition_by(key = ...) instead.

• [Deprecated] partition_by_max_size(): use partition_by(max_rows_per_file = ...)
instead.

partitioned_output 43

Usage

partition_by(
base_path,
...,
key = NULL,
include_key = NULL,
max_rows_per_file = NULL,
approximate_bytes_per_file = NULL

)

partition_by_key(
base_path,
...,
by,
include_key = TRUE,
per_partition_sort_by = NULL

)

partition_by_max_size(base_path, ..., max_size, per_partition_sort_by = NULL)

Arguments

base_path The base path for the output files. Use the mkdir option of the sink_* or
write_*_polars() functions to ensure directories in the path are created.

... These dots are for future extensions and must be empty.

key Something can be coerced to a list of Polars expressions. Used to partition by.

include_key A bool indicating whether to include the key columns in the output files. Can
only be used if key is specified, otherwise should be NULL.

max_rows_per_file

An integer-ish value indicating the maximum size in rows of each of the gener-
ated files.

approximate_bytes_per_file

An integer-ish value indicating approximate number of bytes to write to each
file, or NULL. This is measured as the estimated size of the DataFrame in mem-
ory. Defaults to approximately 4GB when key is specified without max_rows_per_file,
otherwise unlimited.

by [Deprecated] Something can be coerced to a list of Polars expressions. Used to
partition by. Use the key property of partition_by() instead.

per_partition_sort_by

[Deprecated] Something that can be coerced to a list of Polars expressions, or
NULL (default). Used to sort over within each partition. Use the per_partition_sort_by
property of partition_by() instead.

max_size [Deprecated] An integer-ish value indicating the maximum size in rows of each
of the generated files. Use the max_rows_per_file property of partition_by()
instead.

44 pivot_longer.polars_data_frame

pivot_longer.polars_data_frame

Pivot a Data/LazyFrame from wide to long

Description

Pivot a Data/LazyFrame from wide to long

Usage

S3 method for class 'polars_data_frame'
pivot_longer(

data,
cols,
...,
names_to = "name",
names_prefix = NULL,
values_to = "value"

)

S3 method for class 'polars_lazy_frame'
pivot_longer(
data,
cols,
...,
names_to = "name",
names_prefix = NULL,
values_to = "value"

)

Arguments

data A Polars Data/LazyFrame
cols Columns to pivot into longer format. Can be anything accepted by dplyr::select().
... Dots which should be empty.
names_to The (quoted) name of the column that will contain the column names specified

by cols.
names_prefix A regular expression used to remove matching text from the start of each vari-

able name.
values_to A string specifying the name of the column to create from the data stored in cell

values.

Unknown arguments

Arguments that are supported by the original implementation in the tidyverse but are not listed
above will throw a warning by default if they are specified. To change this behavior to error instead,
use options(tidypolars_unknown_args = "error").

pivot_wider.polars_data_frame 45

Examples

pl_relig_income <- as_polars_df(tidyr::relig_income)
pl_relig_income

pl_relig_income |>
pivot_longer(!religion, names_to = "income", values_to = "count")

pl_billboard <- as_polars_df(tidyr::billboard)
pl_billboard

pl_billboard |>
pivot_longer(

cols = starts_with("wk"),
names_to = "week",
names_prefix = "wk",
values_to = "rank",

)

pivot_wider.polars_data_frame

Pivot a DataFrame from long to wide

Description

Pivot a DataFrame from long to wide

Usage

S3 method for class 'polars_data_frame'
pivot_wider(

data,
...,
id_cols = NULL,
names_from = name,
values_from = value,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
values_fill = NULL

)

Arguments

data A Polars DataFrame (LazyFrames are not supported).

... Dots which should be empty.

46 pivot_wider.polars_data_frame

id_cols A set of columns that uniquely identify each observation. Typically used when
you have redundant variables, i.e. variables whose values are perfectly corre-
lated with existing variables.
Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evaluated on
data after removing the columns specified through names_from and values_from.

names_from The (quoted or unquoted) column names whose values will be used for the
names of the new columns.

values_from The (quoted or unquoted) column names whose values will be used to fill the
new columns.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns to create custom column names.

values_fill A scalar that will be used to replace missing values in the new columns. Note
that the type of this value will be applied to new columns. For example, if you
provide a character value to fill numeric columns, then all these columns will be
converted to character.

Unknown arguments

Arguments that are supported by the original implementation in the tidyverse but are not listed
above will throw a warning by default if they are specified. To change this behavior to error instead,
use options(tidypolars_unknown_args = "error").

Examples

pl_fish_encounters <- as_polars_df(tidyr::fish_encounters)

pl_fish_encounters |>
pivot_wider(names_from = station, values_from = seen)

pl_fish_encounters |>
pivot_wider(names_from = station, values_from = seen, values_fill = 0)

be careful about the type of the replacement value!
pl_fish_encounters |>

pivot_wider(names_from = station, values_from = seen, values_fill = "a")

using "names_glue" to specify the names of new columns
production <- expand.grid(

product = c("A", "B"),
country = c("AI", "EI"),
year = 2000:2014

) |>
filter((product == "A" & country == "AI") | product == "B") |>

pull.polars_data_frame 47

mutate(production = 1:45) |>
as_polars_df()

production

production |>
pivot_wider(

names_from = c(product, country),
values_from = production,
names_glue = "prod_{product}_{country}"

)

pull.polars_data_frame

Extract a variable of a Data/LazyFrame

Description

This returns an R vector and not a Polars Series.

Usage

S3 method for class 'polars_data_frame'
pull(.data, var, ...)

S3 method for class 'polars_lazy_frame'
pull(.data, var, ...)

Arguments

.data A Polars Data/LazyFrame

var A quoted or unquoted variable name, or a variable index.

... Dots which should be empty.

Examples

pl_test <- as_polars_df(iris)
pull(pl_test, Sepal.Length)
pull(pl_test, "Sepal.Length")

48 relocate.polars_data_frame

relocate.polars_data_frame

Change column order

Description

Use relocate() to change column positions, using the same syntax as select() to make it easy
to move blocks of columns at once.

Usage

S3 method for class 'polars_data_frame'
relocate(.data, ..., .before = NULL, .after = NULL)

S3 method for class 'polars_lazy_frame'
relocate(.data, ..., .before = NULL, .after = NULL)

Arguments

.data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

.before, .after Column name (either quoted or unquoted) that indicates the destination of columns
selected by Supplying neither will move columns to the left-hand side;
specifying both is an error.

Examples

dat <- as_polars_df(mtcars)

dat |>
relocate(hp, vs, .before = cyl)

if .before and .after are not specified, selected columns are moved to the
first positions
dat |>

relocate(hp, vs)

.before and .after can be quoted or unquoted
dat |>

relocate(hp, vs, .after = "gear")

select helpers are also available
dat |>

relocate(contains("[aeiou]"))

dat |>
relocate(hp, vs, .after = last_col())

rename.polars_data_frame 49

rename.polars_data_frame

Rename columns

Description

Rename columns

Usage

S3 method for class 'polars_data_frame'
rename(.data, ...)

S3 method for class 'polars_lazy_frame'
rename(.data, ...)

S3 method for class 'polars_data_frame'
rename_with(.data, .fn, .cols = tidyselect::everything(), ...)

S3 method for class 'polars_lazy_frame'
rename_with(.data, .fn, .cols = tidyselect::everything(), ...)

Arguments

.data A Polars Data/LazyFrame

... For rename(), use new_name = old_name to rename selected variables. It is also
possible to use quotation marks, e.g "new_name" = "old_name".
For rename_with, additional arguments passed to fn.

.fn Function to apply on column names

.cols Columns on which to apply fn. Can be anything accepted by dplyr::select().

Examples

pl_test <- polars::as_polars_df(mtcars)

rename(pl_test, miles_per_gallon = mpg, horsepower = "hp")

rename(pl_test, `Miles per gallon` = "mpg", `Horse power` = "hp")

rename_with(pl_test, toupper, .cols = contains("p"))

pl_test_2 <- polars::as_polars_df(iris)

rename_with(pl_test_2, function(x) tolower(gsub(".", "_", x, fixed = TRUE)))

rename_with(pl_test_2, \(x) tolower(gsub(".", "_", x, fixed = TRUE)))

50 rowwise.polars_data_frame

replace_na.polars_data_frame

Replace NAs with specified values

Description

Replace NAs with specified values

Usage

S3 method for class 'polars_data_frame'
replace_na(data, replace, ...)

S3 method for class 'polars_lazy_frame'
replace_na(data, replace, ...)

Arguments

data A Polars Data/LazyFrame

replace Either a scalar that will be used to replace NA in all columns, or a named list with
the column name and the value that will be used to replace NA in it.

... Dots which should be empty.

Examples

pl_test <- polars::pl$DataFrame(x = c(NA, 1), y = c(2, NA))

replace all NA with 0
replace_na(pl_test, 0)

custom replacement per column
replace_na(pl_test, list(x = 0, y = 999))

rowwise.polars_data_frame

Group input by rows

Description

[EXPERIMENTAL]

rowwise() allows you to compute on a Data/LazyFrame a row-at-a-time. This is most useful when
a vectorised function doesn’t exist. rowwise() produces another type of grouped data, and therefore
can be removed with ungroup().

select.polars_data_frame 51

Usage

S3 method for class 'polars_data_frame'
rowwise(data, ...)

S3 method for class 'polars_lazy_frame'
rowwise(data, ...)

Arguments

data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

Value

A Polars Data/LazyFrame.

Examples

df <- polars::pl$DataFrame(x = c(1, 3, 4), y = c(2, 1, 5), z = c(2, 3, 1))

Compute the mean of x, y, z in each row
df |>
rowwise() |>
mutate(m = mean(c(x, y, z)))

Compute the min and max of x and y in each row
df |>
rowwise() |>
mutate(min = min(c(x, y)), max = max(c(x, y)))

select.polars_data_frame

Select columns from a Data/LazyFrame

Description

Select columns from a Data/LazyFrame

Usage

S3 method for class 'polars_data_frame'
select(.data, ...)

S3 method for class 'polars_lazy_frame'
select(.data, ...)

52 semi_join.polars_data_frame

Arguments

.data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc. Renaming is also possible.

Examples

pl_iris <- polars::as_polars_df(iris)

select(pl_iris, c("Sepal.Length", "Sepal.Width"))
select(pl_iris, Sepal.Length, Sepal.Width)
select(pl_iris, 1:3)
select(pl_iris, starts_with("Sepal"))
select(pl_iris, -ends_with("Length"))

Renaming while selecting is also possible
select(pl_iris, foo1 = Sepal.Length, Sepal.Width)

semi_join.polars_data_frame

Filtering joins

Description

Filtering joins filter rows from x based on the presence or absence of matches in y:

• semi_join() return all rows from x with a match in y.

• anti_join() return all rows from x without a match in y.

Usage

S3 method for class 'polars_data_frame'
semi_join(x, y, by = NULL, ..., na_matches = "na")

S3 method for class 'polars_data_frame'
anti_join(x, y, by = NULL, ..., na_matches = "na")

S3 method for class 'polars_lazy_frame'
semi_join(x, y, by = NULL, ..., na_matches = "na")

S3 method for class 'polars_lazy_frame'
anti_join(x, y, by = NULL, ..., na_matches = "na")

semi_join.polars_data_frame 53

Arguments

x, y Two Polars Data/LazyFrames

by Variables to join by. If NULL (default), *_join() will perform a natural join,
using all variables in common across x and y. A message lists the variables
so that you can check they’re correct; suppress the message by supplying by
explicitly.
by can take a character vector, like c("x", "y") if x and y are in both datasets.
To join on variables that don’t have the same name, use equalities in the charac-
ter vector, like c("x1" = "x2", "y"). If you use a character vector, the join can
only be done using strict equality.
by can also be a specification created by dplyr::join_by(). Contrary to the in-
put as character vector shown above, join_by() uses unquoted column names,
e.g join_by(x1 == x2, y).
Finally, inner_join() also supports inequality joins, e.g. join_by(x1 >= x2),
and the helpers between(), overlaps(), and within(). See the documentation
of dplyr::join_by() for more information. Other join types will likely support
inequality joins in the future.

... Dots which should be empty.

na_matches Should two NA values match?

• "na", the default, treats two NA values as equal.
• "never" treats two NA values as different and will never match them to-

gether or to any other values.

Note that when joining Polars Data/LazyFrames, NaN are always considered
equal, no matter the value of na_matches. This differs from the original dplyr
implementation.

Unknown arguments

Arguments that are supported by the original implementation in the tidyverse but are not listed
above will throw a warning by default if they are specified. To change this behavior to error instead,
use options(tidypolars_unknown_args = "error").

Examples

test <- polars::pl$DataFrame(
x = c(1, 2, 3),
y = c(1, 2, 3),
z = c(1, 2, 3)

)

test2 <- polars::pl$DataFrame(
x = c(1, 2, 4),
y = c(1, 2, 4),
z2 = c(1, 2, 4)

)

test

54 separate.polars_data_frame

test2

only keep the rows of `test` that have matching keys in `test2`
semi_join(test, test2, by = c("x", "y"))

only keep the rows of `test` that don't have matching keys in `test2`
anti_join(test, test2, by = c("x", "y"))

separate.polars_data_frame

Separate a character column into multiple columns based on a sub-
string

Description

Currently, splitting a column on a regular expression or position is not possible.

Usage

S3 method for class 'polars_data_frame'
separate(data, col, into, sep = " ", remove = TRUE, ...)

S3 method for class 'polars_lazy_frame'
separate(data, col, into, sep = " ", remove = TRUE, ...)

Arguments

data A Polars Data/LazyFrame

col Column to split

into Character vector containing the names of new variables to create. Use NA to omit
the variable in the output.

sep String that is used to split the column. Regular expressions are not supported
yet.

remove If TRUE, remove input column from output data frame.

... Dots which should be empty.

Examples

test <- polars::pl$DataFrame(
x = c(NA, "x.y", "x.z", "y.z")

)
separate(test, x, into = c("foo", "foo2"), sep = ".")

separate_longer 55

separate_longer Split a string column into rows

Description

Each of these functions takes a string and splits it into multiple rows:

• separate_longer_delim_polars() splits by delimiter. It is the polars equivalent of tidyr::separate_longer_delim().

• separate_longer_position_polars() splits by fixed width. It is the polars equivalent of
tidyr::separate_longer_position().

Usage

separate_longer_delim_polars(data, cols, delim, ...)

separate_longer_position_polars(data, cols, width, ..., keep_empty = FALSE)

Arguments

data A Polars DataFrame or LazyFrame.

cols <tidy-select> Column(s) to separate.

delim The delimiter string to split on. For separate_longer_delim_polars() only.

... These dots are for future extensions and must be empty.

width The width of each piece. For separate_longer_position_polars() only.

keep_empty If TRUE, empty strings are kept in the output. If FALSE (the default), empty
strings are dropped. NA values are always kept.

Value

A Polars DataFrame or LazyFrame with the specified column(s) split into rows.

See Also

tidyr::separate_longer_delim(), tidyr::separate_longer_position()

Examples

library(polars)
library(tidypolars)

separate_longer_delim_polars: split by delimiter
df <- pl$DataFrame(

id = 1:3,
x = c("a,b,c", "d,e", "f")

)
separate_longer_delim_polars(df, x, delim = ",")

56 sink_csv

Multiple columns with broadcasting, the same as `tidyr` behavior
df2 <- pl$DataFrame(

id = 1:2,
x = c("a,b", "c,d"),
y = c("1,2", "3,4")

)
separate_longer_delim_polars(df2, c(x, y), delim = ",")

Multiple columns with broadcasting
df3 <- pl$DataFrame(

id = 1:5,
x = c("a,b", NA, "", "c", ""),
y = c("1", "2,3", "4,5", NA, "")

)
separate_longer_delim_polars(df3, c(x, y), delim = ",")

separate_longer_position_polars: split by fixed width
df4 <- pl$DataFrame(

id = 1:3,
x = c("abcd", "efg", "hi")

)
separate_longer_position_polars(df4, x, width = 2)

keep_empty example: control whether empty strings are preserved
df5 <- pl$DataFrame(

id = 1:4,
x = c("ab", "", "ef", NA)

)
separate_longer_position_polars(df5, x, width = 2)
separate_longer_position_polars(df5, x, width = 2, keep_empty = TRUE)

Multiple columns with broadcasting
df6 <- pl$DataFrame(

id = 1:3,
x = c("a", "bc", "def"),
y = c("12", "345", "67")

)
Shorter strings are recycled to match the longest in each row
separate_longer_position_polars(df6, c(x, y), width = 2)

sink_csv Stream output to a CSV file

Description

This function allows to stream a LazyFrame that is larger than RAM directly to a .csv file without
collecting it in the R session, thus preventing crashes because of too small memory.

sink_csv 57

Usage

sink_csv(
.data,
path,
...,
include_bom = FALSE,
include_header = TRUE,
separator = ",",
line_terminator = "\n",
quote_char = "\"",
batch_size = 1024,
datetime_format = NULL,
date_format = NULL,
time_format = NULL,
float_precision = NULL,
null_value = "",
quote_style = "necessary",
maintain_order = TRUE,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
no_optimization = FALSE,
mkdir = FALSE,
quote,
null_values

)

Arguments

.data A Polars LazyFrame.

path Output file. Can also be a partition_*() function to export the output to mul-
tiple files (see Details section below).

... Ignored.

include_bom Whether to include UTF-8 BOM (byte order mark) in the CSV output.

include_header Whether to include header in the CSV output.

separator Separate CSV fields with this symbol.
line_terminator

String used to end each row.

quote_char Byte to use as quoting character.

batch_size Number of rows that will be processed per thread.
datetime_format, date_format, time_format

A format string used to format date and time values. See ?strptime() for
accepted values. If no format specified, the default fractional-second precision
is inferred from the maximum time unit found in the Datetime cols (if any).

58 sink_csv

float_precision

Number of decimal places to write, applied to both Float32 and Float64 datatypes.

null_value A string representing null values (defaulting to the empty string).

quote_style Determines the quoting strategy used:

• "necessary" (default): This puts quotes around fields only when neces-
sary. They are necessary when fields contain a quote, delimiter or record
terminator. Quotes are also necessary when writing an empty record (which
is indistinguishable from a record with one empty field).

• "always": This puts quotes around every field.
• "non_numeric": This puts quotes around all fields that are non-numeric.

Namely, when writing a field that does not parse as a valid float or integer,
then quotes will be used even if they aren’t strictly necessary.

maintain_order Whether maintain the order the data was processed (default is TRUE). Setting this
to FALSE will be slightly faster.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).

projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).

simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

mkdir Recursively create all the directories in the path.

quote [Deprecated] Deprecated, use quote_char instead.

null_values [Deprecated] Deprecated, use null_value instead.

Details

Partitioned output:
It is possible to export data to multiple files based on various parameters, such as the values of
some variables, or such that each file has a maximum number of rows. See partition_by() for
more details.

Value

The input LazyFrame.

sink_ipc 59

Examples

This is an example workflow where sink_csv() is not very useful because
the data would fit in memory. It simply is an example of using it at the
end of a piped workflow.

Create files for the CSV input and output:
file_csv <- tempfile(fileext = ".csv")
file_csv2 <- tempfile(fileext = ".csv")

Write some data in a CSV file
fake_data <- do.call("rbind", rep(list(mtcars), 1000))
write.csv(fake_data, file = file_csv, row.names = FALSE)

In a new R session, we could read this file as a LazyFrame, do some operations,
and write it to another CSV file without ever collecting it in the R session:
scan_csv_polars(file_csv) |>

filter(cyl %in% c(4, 6), mpg > 22) |>
mutate(
hp_gear_ratio = hp / gear

) |>
sink_csv(path = file_csv2)

#--
Write a LazyFrame to multiple files depending on various strategies.
my_lf <- as_polars_lf(mtcars)

Split the LazyFrame by key(s) and write each split to a different file:
out_path <- withr::local_tempdir()
sink_csv(my_lf, partition_by_key(out_path, by = c("am", "cyl")), mkdir = TRUE)
fs::dir_tree(out_path)

Split the LazyFrame by max number of rows per file:
out_path <- withr::local_tempdir()
sink_csv(my_lf, partition_by_max_size(out_path, max_size = 5), mkdir = TRUE)
fs::dir_tree(out_path) # mtcars has 32 rows so we have 7 output files

sink_ipc Stream output to an IPC file

Description

This function allows to stream a LazyFrame that is larger than RAM directly to an IPC file without
collecting it in the R session, thus preventing crashes because of too small memory.

Usage

sink_ipc(

60 sink_ipc

.data,
path,
...,
compression = "zstd",
compat_level = "newest",
maintain_order = TRUE,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
no_optimization = FALSE,
mkdir = FALSE

)

Arguments

.data A Polars LazyFrame.

path Output file. Can also be a partition_*() function to export the output to mul-
tiple files (see Details section below).

... Ignored.

compression NULL or a character of the compression method, "uncompressed" or "lz4" or
"zstd". NULL is equivalent to "uncompressed". Choose "zstd" for good com-
pression performance. Choose "lz4" for fast compression/decompression.

compat_level Determines the compatibility level when exporting Polars’ internal data struc-
tures. When specifying a new compatibility level, Polars exports its internal
data structures that might not be interpretable by other Arrow implementations.
The level can be specified as the name (e.g., "newest") or as a scalar integer
(currently, 0 or 1 is supported).

• "newest" (default): Use the highest level, currently same as 1 (Low com-
patibility).

• "oldest": Same as 0 (High compatibility).

maintain_order Whether maintain the order the data was processed (default is TRUE). Setting this
to FALSE will be slightly faster.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).
projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).
simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

sink_ipc 61

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

mkdir Recursively create all the directories in the path.

Details

Partitioned output:
It is possible to export data to multiple files based on various parameters, such as the values of
some variables, or such that each file has a maximum number of rows. See partition_by() for
more details.

Value

The input LazyFrame.

Examples

This is an example workflow where sink_ipc() is not very useful because
the data would fit in memory. It simply is an example of using it at the
end of a piped workflow.

Create files for the IPC input and output:
file_ipc <- tempfile(fileext = ".ipc")
file_ipc2 <- tempfile(fileext = ".ipc")

Write some data in an IPC file
fake_data <- do.call("rbind", rep(list(mtcars), 1000))
arrow::write_ipc_file(fake_data, file_ipc)

In a new R session, we could read this file as a LazyFrame, do some operations,
and write it to another IPC file without ever collecting it in the R session:
scan_ipc_polars(file_ipc) |>

filter(cyl %in% c(4, 6), mpg > 22) |>
mutate(
hp_gear_ratio = hp / gear

) |>
sink_ipc(path = file_ipc2)

#--
Write a LazyFrame to multiple files depending on various strategies.
my_lf <- as_polars_lf(mtcars)

Split the LazyFrame by key(s) and write each split to a different file:
out_path <- withr::local_tempdir()
sink_ipc(my_lf, partition_by_key(out_path, by = c("am", "cyl")), mkdir = TRUE)
fs::dir_tree(out_path)

Split the LazyFrame by max number of rows per file:
out_path <- withr::local_tempdir()
sink_ipc(my_lf, partition_by_max_size(out_path, max_size = 5), mkdir = TRUE)

62 sink_ndjson

fs::dir_tree(out_path) # mtcars has 32 rows so we have 7 output files

sink_ndjson Stream output to a NDJSON file

Description

This writes the output of a query directly to a NDJSON file without collecting it in the R session
first. This is useful if the output of the query is still larger than RAM as it would crash the R session
if it was collected into R.

Usage

sink_ndjson(
.data,
path,
...,
maintain_order = TRUE,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
no_optimization = FALSE,
mkdir = FALSE

)

Arguments

.data A Polars LazyFrame.

path Output file. Can also be a partition_*() function to export the output to mul-
tiple files (see Details section below).

... Ignored.

maintain_order Whether maintain the order the data was processed (default is TRUE). Setting this
to FALSE will be slightly faster.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).
projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).
simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

sink_ndjson 63

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

mkdir Recursively create all the directories in the path.

Details

Partitioned output:
It is possible to export data to multiple files based on various parameters, such as the values of
some variables, or such that each file has a maximum number of rows. See partition_by() for
more details.

Value

The input LazyFrame.

Examples

This is an example workflow where sink_ndjson() is not very useful because
the data would fit in memory. It simply is an example of using it at the
end of a piped workflow.

Create files for the NDJSON input and output:
file_ndjson <- tempfile(fileext = ".ndjson")
file_ndjson2 <- tempfile(fileext = ".ndjson")

Write some data in a CSV file
fake_data <- do.call("rbind", rep(list(mtcars), 1000))
jsonlite::stream_out(fake_data, file(file_ndjson), verbose = FALSE)

In a new R session, we could read this file as a LazyFrame, do some operations,
and write it to another NDJSON file without ever collecting it in the R session:
scan_ndjson_polars(file_ndjson) |>

filter(cyl %in% c(4, 6), mpg > 22) |>
mutate(
hp_gear_ratio = hp / gear

) |>
sink_ndjson(path = file_ndjson2)

#--
Write a LazyFrame to multiple files depending on various strategies.
my_lf <- as_polars_lf(mtcars)

Split the LazyFrame by key(s) and write each split to a different file:
out_path <- withr::local_tempdir()
sink_ndjson(my_lf, partition_by_key(out_path, by = c("am", "cyl")), mkdir = TRUE)
fs::dir_tree(out_path)

64 sink_parquet

Split the LazyFrame by max number of rows per file:
out_path <- withr::local_tempdir()
sink_ndjson(my_lf, partition_by_max_size(out_path, max_size = 5), mkdir = TRUE)
fs::dir_tree(out_path) # mtcars has 32 rows so we have 7 output files

sink_parquet Stream output to a parquet file

Description

This function allows to stream a LazyFrame that is larger than RAM directly to a .parquet file
without collecting it in the R session, thus preventing crashes because of too small memory.

Usage

sink_parquet(
.data,
path,
...,
compression = "zstd",
compression_level = 3,
statistics = FALSE,
row_group_size = NULL,
data_page_size = NULL,
maintain_order = TRUE,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
no_optimization = FALSE,
mkdir = FALSE

)

Arguments

.data A Polars LazyFrame.

path Output file. Can also be a partition_*() function to export the output to mul-
tiple files (see Details section below).

... Ignored.

compression The compression method. One of :

• "uncompressed"
• "zstd" (default): good compression performance
• "lz4": fast compression / decompression

sink_parquet 65

• "snappy": more backwards compatibility guarantees when you deal with
older parquet readers.

• "gzip", "lzo", "brotli"
compression_level

The level of compression to use (default is 3). Only used if compression is one
of "gzip", "brotli", or "zstd". Higher compression means smaller files on disk.

• "gzip" : min-level = 0, max-level = 10
• "brotli" : min-level = 0, max-level = 11
• "zstd" : min-level = 1, max-level = 22.

statistics Whether to compute and write column statistics (default is FALSE). This requires
more computations.

row_group_size Size of the row groups in number of rows. If NULL (default), the chunks of the
DataFrame are used. Writing in smaller chunks may reduce memory pressure
and improve writing speeds.

data_page_size If NULL (default), the limit will be around 1MB.

maintain_order Whether maintain the order the data was processed (default is TRUE). Setting this
to FALSE will be slightly faster.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).
projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).
simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

mkdir Recursively create all the directories in the path.

Details

Partitioned output:
It is possible to export data to multiple files based on various parameters, such as the values of
some variables, or such that each file has a maximum number of rows. See partition_by() for
more details.

Value

The input LazyFrame.

66 slice_tail.polars_data_frame

Examples

This is an example workflow where sink_parquet() is not very useful because
the data would fit in memory. It simply is an example of using it at the
end of a piped workflow.

Create files for the CSV input and the Parquet output:
file_csv <- tempfile(fileext = ".csv")
file_parquet <- tempfile(fileext = ".parquet")

Write some data in a CSV file
fake_data <- do.call("rbind", rep(list(mtcars), 1000))
write.csv(fake_data, file = file_csv, row.names = FALSE)

In a new R session, we could read this file as a LazyFrame, do some operations,
and write it to a parquet file without ever collecting it in the R session:
scan_csv_polars(file_csv) |>

filter(cyl %in% c(4, 6), mpg > 22) |>
mutate(

hp_gear_ratio = hp / gear
) |>
sink_parquet(path = file_parquet)

#--
Write a LazyFrame to multiple files depending on various strategies.
my_lf <- as_polars_lf(mtcars)

Split the LazyFrame by key(s) and write each split to a different file:
out_path <- withr::local_tempdir()
sink_parquet(my_lf, partition_by_key(out_path, by = c("am", "cyl")), mkdir = TRUE)
fs::dir_tree(out_path)

Split the LazyFrame by max number of rows per file:
out_path <- withr::local_tempdir()
sink_parquet(my_lf, partition_by_max_size(out_path, max_size = 5), mkdir = TRUE)
fs::dir_tree(out_path) # mtcars has 32 rows so we have 7 output files

slice_tail.polars_data_frame

Subset rows of a Data/LazyFrame

Description

Subset rows of a Data/LazyFrame

Usage

S3 method for class 'polars_data_frame'

slice_tail.polars_data_frame 67

slice_tail(.data, ..., n, by = NULL)

S3 method for class 'polars_lazy_frame'
slice_tail(.data, ..., n, by = NULL)

S3 method for class 'polars_data_frame'
slice_head(.data, ..., n, by = NULL)

S3 method for class 'polars_lazy_frame'
slice_head(.data, ..., n, by = NULL)

S3 method for class 'polars_data_frame'
slice_sample(.data, ..., n = NULL, prop = NULL, by = NULL, replace = FALSE)

Arguments

.data A Polars Data/LazyFrame

... Dots which should be empty.

n The number of rows to select from the start or the end of the data. Cannot be
used with prop.

by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

prop Proportion of rows to select. Cannot be used with n.

replace Perform the sampling with replacement (TRUE) or without (FALSE).

Unknown arguments

Arguments that are supported by the original implementation in the tidyverse but are not listed
above will throw a warning by default if they are specified. To change this behavior to error instead,
use options(tidypolars_unknown_args = "error").

Examples

pl_test <- polars::as_polars_df(iris)
slice_head(pl_test, n = 3)
slice_tail(pl_test, n = 3)
slice_sample(pl_test, n = 5)
slice_sample(pl_test, prop = 0.1)

68 summarize.polars_data_frame

summarize.polars_data_frame

Summarize each group down to one row

Description

summarize() returns one row for each combination of grouping variables (one difference with
dplyr::summarize() is that summarize() only accepts grouped data). It will contain one col-
umn for each grouping variable and one column for each of the summary statistics that you have
specified.

Usage

S3 method for class 'polars_data_frame'
summarize(.data, ..., .by = NULL, .groups = "drop_last")

S3 method for class 'polars_data_frame'
summarise(.data, ..., .by = NULL, .groups = "drop_last")

S3 method for class 'polars_lazy_frame'
summarize(.data, ..., .by = NULL, .groups = "drop_last")

S3 method for class 'polars_lazy_frame'
summarise(.data, ..., .by = NULL, .groups = "drop_last")

Arguments

.data A Polars Data/LazyFrame

... Name-value pairs. The name gives the name of the column in the output. The
value can be:

• A vector the same length as the current group (or the whole data frame if
ungrouped).

• NULL, to remove the column.

across() is mostly supported, except in a few cases. In particular, if the .cols
argument is where(...), it will not select variables that were created before
across(). Other select helpers are supported. See the examples.

.by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

.groups Grouping structure of the result. Must be one of:

• "drop_last" (default): drop the last level of grouping;
• "drop": all levels of grouping are dropped;
• "keep": keep the same grouping structure as .data.

summary.polars_data_frame 69

For now, "rowwise" is not supported. Note that dplyr uses .groups = NULL by
default, whose behavior depends on the number of rows by group in the output.
However, returning several rows by group in summarize() is deprecated (one
should use reframe() instead), which is why .groups = NULL is not supported
by tidypolars.

Examples

mtcars |>
as_polars_df() |>
group_by(cyl) |>
summarize(m_gear = mean(gear), sd_gear = sd(gear))

an alternative syntax is to use `.by`
mtcars |>

as_polars_df() |>
summarize(m_gear = mean(gear), sd_gear = sd(gear), .by = cyl)

summary.polars_data_frame

Summary statistics for a Polars DataFrame

Description

Summary statistics for a Polars DataFrame

Usage

S3 method for class 'polars_data_frame'
summary(object, percentiles = c(0.25, 0.5, 0.75), ...)

Arguments

object A Polars DataFrame.

percentiles One or more percentiles to include in the summary statistics. All values must be
between 0 and 1 (NULL are ignored).

... Ignored.

Examples

mtcars |>
as_polars_df() |>
summary(percentiles = c(0.2, 0.4, 0.6, 0.8))

70 tidypolars_options

tidypolars_options tidypolars global options

Description

tidypolars has the following global options:

• tidypolars_unknown_args controls what happens when some arguments passed in an ex-
pression are unknown, e.g the argument prob in sample(). The default ("warn") only warns
the user that some arguments are ignored by tidypolars. The only other accepted value is
"error" to throw an error when this happens.

• tidypolars_fallback_to_r controls what happens when an unknown function (that isn’t
translated to use polars syntax) is passed in an expression. The default is FALSE, meaning that
unknown functions will trigger an error. Setting this option to TRUE will convert the data to R,
apply the unknown function, and convert the output back to polars. Using the fallback to R
has several drawbacks:

– it loses some of polars built-in parallelism and other optimizations;
– the session may crash or experience a severe slowdown when the data is converted to R

(especially if the input is a LazyFrame).

The package polars also contains several global options that may be useful, such as changing the
default behavior when converting Int64 values to R: https://pola-rs.github.io/r-polars/
man/polars_options.html.

Examples

Unknown arguments

options(tidypolars_unknown_args = "warn")
test <- polars::pl$DataFrame(x = c(2, 1, 5, 3, 1))

The default is to warn the user
mutate(test, x2 = sample(x, prob = 0.5))

But one can make this stricter and throw an error when this happens
options(tidypolars_unknown_args = "error")
try(mutate(test, x2 = sample(x, prob = 0.5)))

options(tidypolars_unknown_args = "warn")

Fallback to R

test <- polars::pl$DataFrame(x = c(2, 1, 5, 3, 1))

The default is to error because mad() isn't translated internally
try(mutate(test, x2 = mad(x)))

But one can allow fallback to R to apply this function and then convert
the output back to polars (see drawbacks in the "description" section

https://pola-rs.github.io/r-polars/man/polars_options.html
https://pola-rs.github.io/r-polars/man/polars_options.html

uncount.polars_data_frame 71

above)
options(tidypolars_fallback_to_r = TRUE)
mutate(test, x2 = mad(x))

options(tidypolars_fallback_to_r = FALSE)

uncount.polars_data_frame

Uncount a Data/LazyFrame

Description

This duplicates rows according to a weighting variable (or expression). This is the opposite of
count().

Usage

S3 method for class 'polars_data_frame'
uncount(data, weights, ..., .remove = TRUE, .id = NULL)

S3 method for class 'polars_lazy_frame'
uncount(data, weights, ..., .remove = TRUE, .id = NULL)

Arguments

data A Polars Data/LazyFrame
weights A vector of weights. Evaluated in the context of data.
... Dots which should be empty.
.remove If TRUE, and weights is the name of a column in data, then this column is re-

moved.
.id Supply a string to create a new variable which gives a unique identifier for each

created row.

Examples

test <- polars::pl$DataFrame(x = c("a", "b"), y = 100:101, n = c(1, 2))
test

uncount(test, n)

uncount(test, n, .id = "id")

using constants
uncount(test, 2)

using expressions
uncount(test, 2 / n)

72 unite.polars_data_frame

unite.polars_data_frame

Unite multiple columns into one by pasting strings together

Description

Unite multiple columns into one by pasting strings together

Usage

S3 method for class 'polars_data_frame'
unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

S3 method for class 'polars_lazy_frame'
unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

Arguments

data A Polars Data/LazyFrame

col The name of the new column, as a string or symbol.

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

sep Separator to use between values.

remove If TRUE, remove input columns from the output Data/LazyFrame.

na.rm If TRUE, missing values will be replaced with an empty string prior to uniting
each value.

Examples

test <- polars::pl$DataFrame(
year = 2009:2011,
month = 10:12,
day = c(11L, 22L, 28L),
name_day = c("Monday", "Thursday", "Wednesday")

)

By default, united columns are dropped
unite(test, col = "full_date", year, month, day, sep = "-")
unite(test, col = "full_date", year, month, day, sep = "-", remove = FALSE)

test2 <- polars::pl$DataFrame(
name = c("John", "Jack", "Thomas"),
middlename = c("T.", NA, "F."),
surname = c("Smith", "Thompson", "Jones")

)

By default, NA values are kept in the character output

unnest_longer_polars 73

unite(test2, col = "full_name", everything(), sep = " ")
unite(test2, col = "full_name", everything(), sep = " ", na.rm = TRUE)

unnest_longer_polars Unnest a list-column into rows

Description

unnest_longer_polars() turns each element of a list-column into a row. This is the equivalent of
tidyr::unnest_longer().

Usage

unnest_longer_polars(
data,
col,
...,
values_to = NULL,
indices_to = NULL,
keep_empty = FALSE

)

Arguments

data A Polars DataFrame or LazyFrame.

col <tidy-select> Column(s) to unnest. Can be bare column names, character
strings, or tidyselect expressions. When selecting multiple columns, the list
elements in each row must have the same length across all selected columns.

... These dots are for future extensions and must be empty.

values_to A string giving the column name to store the unnested values in. If NULL (the
default), the original column name is used. When multiple columns are selected,
this can be a glue string containing "{col}" to provide a template for the column
names (e.g., values_to = "{col}_val").

indices_to A string giving the column name to store the index of the values. If NULL (the
default), no index column is created. When multiple columns are selected, this
can be a glue string containing "{col}" to create separate index columns for
each unnested column (e.g., indices_to = "{col}_idx").

keep_empty If TRUE, empty values (NULL or empty lists) are kept as NA in the output. If
FALSE (the default), empty values are dropped.

74 unnest_longer_polars

Details

When multiple columns are selected, the corresponding list elements from each row are expanded
together. This requires that all selected columns have lists of the same length in each row.

The indices_to parameter creates an integer column with the position (1-indexed) of each element
within the original list. Named elements in the list are not currently supported for index names (they
will use integer positions).

When using "{col}" templates with multiple columns, the template is applied to each column name
to generate the output column names.

Value

A Polars DataFrame or LazyFrame with the list-column(s) unnested into rows.

See Also

tidyr::unnest_longer() for the tidyr equivalent.

Examples

library(polars)

Basic example with a list column
df <- pl$DataFrame(

id = 1:3,
values = list(c(1, 2), c(3, 4, 5), 6)

)
df

unnest_longer_polars(df, values)

With indices
unnest_longer_polars(df, values, indices_to = "idx")

Rename the output column
unnest_longer_polars(df, values, values_to = "val")

Multiple columns - list elements must have same length per row
df2 <- pl$DataFrame(

id = 1:2,
a = list(c(1, 2), c(3, 4)),
b = list(c("x", "y"), c("z", "w"))

)
unnest_longer_polars(df2, c(a, b))

Multiple columns with values_to template
unnest_longer_polars(df2, c(a, b), values_to = "{col}_val")

Multiple columns with indices_to template
unnest_longer_polars(df2, c(a, b), indices_to = "{col}_idx")

keep_empty example

write_csv_polars 75

df4 <- pl$DataFrame(
id = 1:3,
values = list(c(1, 2), NULL, 3)

)

By default, NULL/empty values are dropped
unnest_longer_polars(df4, values)

Use keep_empty = TRUE to keep them as NA
unnest_longer_polars(df4, values, keep_empty = TRUE)

write_csv_polars Export data to CSV file(s)

Description

Export data to CSV file(s)

Usage

write_csv_polars(
.data,
file,
...,
include_bom = FALSE,
include_header = TRUE,
separator = ",",
line_terminator = "\n",
quote_char = "\"",
batch_size = 1024,
datetime_format = NULL,
date_format = NULL,
time_format = NULL,
float_precision = NULL,
null_value = "",
quote_style = "necessary",
quote,
null_values

)

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

... Ignored.

include_bom Whether to include UTF-8 BOM (byte order mark) in the CSV output.

76 write_csv_polars

include_header Whether to include header in the CSV output.

separator Separate CSV fields with this symbol.
line_terminator

String used to end each row.

quote_char Byte to use as quoting character.

batch_size Number of rows that will be processed per thread.
datetime_format

A format string, with the specifiers defined by the chrono Rust crate. If no format
specified, the default fractional-second precision is inferred from the maximum
timeunit found in the frame’s Datetime cols (if any).

date_format A format string, with the specifiers defined by the chrono Rust crate.

time_format A format string, with the specifiers defined by the chrono Rust crate.
float_precision

Number of decimal places to write, applied to both Float32 and Float64 datatypes.

null_value A string representing null values (defaulting to the empty string).

quote_style Determines the quoting strategy used.

• "necessary" (default): This puts quotes around fields only when neces-
sary. They are necessary when fields contain a quote, delimiter or record
terminator. Quotes are also necessary when writing an empty record (which
is indistinguishable from a record with one empty field). This is the default.

• "always": This puts quotes around every field.
• "non_numeric": This puts quotes around all fields that are non-numeric.

Namely, when writing a field that does not parse as a valid float or integer,
then quotes will be used even if they aren‘t strictly necessary.

• "never": This never puts quotes around fields, even if that results in invalid
CSV data (e.g. by not quoting strings containing the separator).

quote [Deprecated] Deprecated, use quote_char instead.

null_values [Deprecated] Deprecated, use null_value instead.

Details

Partitioned output:
It is possible to export data to multiple files based on various parameters, such as the values of
some variables, or such that each file has a maximum number of rows. See partition_by() for
more details.

Value

The input DataFrame.

Examples

dest <- tempfile(fileext = ".csv")
mtcars |>

as_polars_df() |>

write_ipc_polars 77

write_csv_polars(dest)

read.csv(dest)

write_ipc_polars Export data to IPC file(s)

Description

Export data to IPC file(s)

Usage

write_ipc_polars(
.data,
file,
compression = "uncompressed",
...,
compat_level = "newest",
future

)

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

compression NULL or a character of the compression method, "uncompressed" or "lz4" or
"zstd". NULL is equivalent to "uncompressed". Choose "zstd" for good com-
pression performance. Choose "lz4" for fast compression/decompression.

... Ignored.

compat_level Determines the compatibility level when exporting Polars’ internal data struc-
tures. When specifying a new compatibility level, Polars exports its internal
data structures that might not be interpretable by other Arrow implementations.
The level can be specified as the name (e.g., "newest") or as a scalar integer
(currently, 0 or 1 is supported).

• "newest" (default): Use the highest level, currently same as 1 (Low com-
patibility).

• "oldest": Same as 0 (High compatibility).

future [Deprecated] Deprecated, use compat_level instead.

Details

Partitioned output:
It is possible to export data to multiple files based on various parameters, such as the values of
some variables, or such that each file has a maximum number of rows. See partition_by() for
more details.

78 write_json_polars

Value

The input DataFrame.

write_json_polars Export data to JSON file(s)

Description

Export data to JSON file(s)

Usage

write_json_polars(.data, file, ..., pretty = FALSE, row_oriented = FALSE)

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

... Ignored.

pretty [Deprecated] Deprecated with no replacement.

row_oriented [Deprecated] Deprecated with no replacement.

Value

The input DataFrame.

Examples

dest <- tempfile(fileext = ".json")
mtcars |>

as_polars_df() |>
write_json_polars(dest)

jsonlite::fromJSON(dest)

write_ndjson_polars 79

write_ndjson_polars Export data to NDJSON file(s)

Description

Export data to NDJSON file(s)

Usage

write_ndjson_polars(.data, file)

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

Details

Partitioned output:
It is possible to export data to multiple files based on various parameters, such as the values of
some variables, or such that each file has a maximum number of rows. See partition_by() for
more details.

Value

The input DataFrame.

Examples

dest <- tempfile(fileext = ".ndjson")
mtcars |>

as_polars_df() |>
write_ndjson_polars(dest)

jsonlite::stream_in(file(dest), verbose = FALSE)

write_parquet_polars Export data to Parquet file(s)

Description

Export data to Parquet file(s)

80 write_parquet_polars

Usage

write_parquet_polars(
.data,
file,
...,
compression = "zstd",
compression_level = 3,
statistics = TRUE,
row_group_size = NULL,
data_page_size = NULL,
partition_by = NULL,
partition_chunk_size_bytes = 4294967296,
mkdir = FALSE

)

Arguments

.data A Polars DataFrame.
file File path to which the result should be written.
... Ignored.
compression The compression method. One of :

• "uncompressed"
• "zstd" (default): good compression performance
• "lz4": fast compression / decompression
• "snappy": more backwards compatibility guarantees when you deal with

older parquet readers.
• "gzip", "lzo", "brotli"

compression_level

The level of compression to use (default is 3). Only used if compression is one
of "gzip", "brotli", or "zstd". Higher compression means smaller files on disk.

• "gzip" : min-level = 0, max-level = 10
• "brotli" : min-level = 0, max-level = 11
• "zstd" : min-level = 1, max-level = 22.

statistics Whether to compute and write column statistics (default is FALSE). This requires
more computations.

row_group_size Size of the row groups in number of rows. If NULL (default), the chunks of the
DataFrame are used. Writing in smaller chunks may reduce memory pressure
and improve writing speeds.

data_page_size If NULL (default), the limit will be around 1MB.
partition_by Column(s) to partition by. A partitioned dataset will be written if this is speci-

fied.
partition_chunk_size_bytes

Approximate size to split DataFrames within a single partition when writing.
Note this is calculated using the size of the DataFrame in memory - the size of
the output file may differ depending on the file format / compression.

mkdir Recursively create all the directories in the path.

write_parquet_polars 81

Details

Partitioned output:
It is possible to export data to multiple files based on various parameters, such as the values of
some variables, or such that each file has a maximum number of rows. See partition_by() for
more details.

Value

The input DataFrame.

Examples

dest <- tempfile(fileext = ".parquet")
mtcars |>

as_polars_df() |>
write_parquet_polars(dest)

nanoparquet::read_parquet(dest)

Index

∗ datasets
.tp, 3

.tp, 3

add_count.polars_data_frame
(count.polars_data_frame), 10

add_count.polars_lazy_frame
(count.polars_data_frame), 10

anti_join.polars_data_frame
(semi_join.polars_data_frame),
52

anti_join.polars_lazy_frame
(semi_join.polars_data_frame),
52

arrange.polars_data_frame, 4

bind_cols_polars, 5
bind_rows_polars, 5

collect.polars_lazy_frame
(compute.polars_lazy_frame), 8

complete.polars_data_frame, 6
complete.polars_lazy_frame

(complete.polars_data_frame), 6
compute.polars_lazy_frame, 8
count.polars_data_frame, 10
count.polars_lazy_frame

(count.polars_data_frame), 10
cross_join.polars_data_frame, 11
cross_join.polars_lazy_frame

(cross_join.polars_data_frame),
11

describe, 13
describe_optimized_plan

(describe_plan), 13
describe_plan, 13
distinct.polars_data_frame, 14
distinct.polars_lazy_frame

(distinct.polars_data_frame),
14

dplyr::collect(), 18
dplyr::join_by(), 37, 53
drop_na.polars_data_frame, 15
drop_na.polars_lazy_frame

(drop_na.polars_data_frame), 15
duplicated_rows

(distinct.polars_data_frame),
14

explain.polars_lazy_frame, 15

fetch, 16
fetch(), 10
fill.polars_data_frame, 18
filter.polars_data_frame, 19
filter.polars_lazy_frame

(filter.polars_data_frame), 19
from_csv, 20
from_ipc, 24
from_ndjson, 26
from_parquet, 29
full_join.polars_data_frame

(left_join.polars_data_frame),
35

full_join.polars_lazy_frame
(left_join.polars_data_frame),
35

group_by.polars_data_frame, 32
group_by.polars_lazy_frame

(group_by.polars_data_frame),
32

group_keys.polars_data_frame
(group_vars.polars_data_frame),
34

group_keys.polars_lazy_frame
(group_vars.polars_data_frame),
34

group_split.polars_data_frame, 33
group_vars.polars_data_frame, 34

82

INDEX 83

group_vars.polars_lazy_frame
(group_vars.polars_data_frame),
34

inner_join.polars_data_frame
(left_join.polars_data_frame),
35

inner_join.polars_lazy_frame
(left_join.polars_data_frame),
35

left_join.polars_data_frame, 35
left_join.polars_lazy_frame

(left_join.polars_data_frame),
35

make_unique_id, 39
mutate.polars_data_frame, 40
mutate.polars_lazy_frame

(mutate.polars_data_frame), 40

partition_by (partitioned_output), 42
partition_by(), 58, 61, 63, 65, 76, 77, 79, 81
partition_by_key (partitioned_output),

42
partition_by_max_size

(partitioned_output), 42
partitioned_output, 42
pivot_longer.polars_data_frame, 44
pivot_longer.polars_lazy_frame

(pivot_longer.polars_data_frame),
44

pivot_wider.polars_data_frame, 45
Polars DataFrame, 8
pull.polars_data_frame, 47
pull.polars_lazy_frame

(pull.polars_data_frame), 47

read_csv_polars (from_csv), 20
read_ipc_polars (from_ipc), 24
read_ndjson_polars (from_ndjson), 26
read_parquet_polars (from_parquet), 29
relocate.polars_data_frame, 48
relocate.polars_lazy_frame

(relocate.polars_data_frame),
48

rename.polars_data_frame, 49
rename.polars_lazy_frame

(rename.polars_data_frame), 49

rename_with.polars_data_frame
(rename.polars_data_frame), 49

rename_with.polars_lazy_frame
(rename.polars_data_frame), 49

replace_na.polars_data_frame, 50
replace_na.polars_lazy_frame

(replace_na.polars_data_frame),
50

right_join.polars_data_frame
(left_join.polars_data_frame),
35

right_join.polars_lazy_frame
(left_join.polars_data_frame),
35

rowwise.polars_data_frame, 50
rowwise.polars_lazy_frame

(rowwise.polars_data_frame), 50

scan_csv_polars (from_csv), 20
scan_ipc_polars (from_ipc), 24
scan_ndjson_polars (from_ndjson), 26
scan_parquet_polars (from_parquet), 29
select.polars_data_frame, 51
select.polars_lazy_frame

(select.polars_data_frame), 51
semi_join.polars_data_frame, 52
semi_join.polars_lazy_frame

(semi_join.polars_data_frame),
52

separate.polars_data_frame, 54
separate.polars_lazy_frame

(separate.polars_data_frame),
54

separate_longer, 55
separate_longer_delim_polars

(separate_longer), 55
separate_longer_position_polars

(separate_longer), 55
sink_csv, 56
sink_ipc, 59
sink_ndjson, 62
sink_parquet, 64
slice_head.polars_data_frame

(slice_tail.polars_data_frame),
66

slice_head.polars_lazy_frame
(slice_tail.polars_data_frame),
66

84 INDEX

slice_sample.polars_data_frame
(slice_tail.polars_data_frame),
66

slice_tail.polars_data_frame, 66
slice_tail.polars_lazy_frame

(slice_tail.polars_data_frame),
66

summarise.polars_data_frame
(summarize.polars_data_frame),
68

summarise.polars_lazy_frame
(summarize.polars_data_frame),
68

summarize.polars_data_frame, 68
summarize.polars_lazy_frame

(summarize.polars_data_frame),
68

summary.polars_data_frame, 69

tally.polars_data_frame
(count.polars_data_frame), 10

tally.polars_lazy_frame
(count.polars_data_frame), 10

tibble::tibble, 8
tidypolars_options, 70
tidyr::separate_longer_delim(), 55
tidyr::separate_longer_position(), 55
tidyr::unnest_longer(), 74

uncount.polars_data_frame, 71
uncount.polars_lazy_frame

(uncount.polars_data_frame), 71
ungroup.polars_data_frame

(group_by.polars_data_frame),
32

ungroup.polars_lazy_frame
(group_by.polars_data_frame),
32

unite.polars_data_frame, 72
unite.polars_lazy_frame

(unite.polars_data_frame), 72
unnest_longer_polars, 73

vctrs::vec_as_names(), 5

write_csv_polars, 75
write_ipc_polars, 77
write_json_polars, 78
write_ndjson_polars, 79
write_parquet_polars, 79

	.tp
	arrange.polars_data_frame
	bind_cols_polars
	bind_rows_polars
	complete.polars_data_frame
	compute.polars_lazy_frame
	count.polars_data_frame
	cross_join.polars_data_frame
	describe
	describe_plan
	distinct.polars_data_frame
	drop_na.polars_data_frame
	explain.polars_lazy_frame
	fetch
	fill.polars_data_frame
	filter.polars_data_frame
	from_csv
	from_ipc
	from_ndjson
	from_parquet
	group_by.polars_data_frame
	group_split.polars_data_frame
	group_vars.polars_data_frame
	left_join.polars_data_frame
	make_unique_id
	mutate.polars_data_frame
	partitioned_output
	pivot_longer.polars_data_frame
	pivot_wider.polars_data_frame
	pull.polars_data_frame
	relocate.polars_data_frame
	rename.polars_data_frame
	replace_na.polars_data_frame
	rowwise.polars_data_frame
	select.polars_data_frame
	semi_join.polars_data_frame
	separate.polars_data_frame
	separate_longer
	sink_csv
	sink_ipc
	sink_ndjson
	sink_parquet
	slice_tail.polars_data_frame
	summarize.polars_data_frame
	summary.polars_data_frame
	tidypolars_options
	uncount.polars_data_frame
	unite.polars_data_frame
	unnest_longer_polars
	write_csv_polars
	write_ipc_polars
	write_json_polars
	write_ndjson_polars
	write_parquet_polars
	Index

