
Package: tidypolars (via r-universe)
October 17, 2024

Type Package

Title Get the Power of Polars with the Syntax of the Tidyverse

Version 0.11.0

Description Polars is an amazing cross-language tool for manipulating
very large data. However, one drawback is that the R
implementation has a syntax that will look odd to many R users
who are not used to Python syntax. The objective of tidypolars
is to improve the ease-of-use of Polars in R by providing
tidyverse syntax to polars.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

URL https://tidypolars.etiennebacher.com,

https://etiennebacher.r-universe.dev/tidypolars

BugReports https://github.com/etiennebacher/tidypolars/issues

Depends R (>= 4.1.0)

Imports dplyr, glue, lifecycle, polars (>= 0.20.0), rlang, tidyr,
tidyselect, utils, vctrs

Suggests arrow, bench, data.table, knitr, jsonlite, lubridate,
nanoparquet, patrick, quickcheck, rmarkdown, rstudioapi,
stringr, testthat (>= 3.0.0), tibble, withr

VignetteBuilder knitr

Config/testthat/edition 3

Config/testthat/parallel true

Repository https://test.r-universe.dev

RemoteUrl https://github.com/etiennebacher/tidypolars

RemoteRef v0.11.0

RemoteSha 9144fbf40ca20f30509bad27068d4fca47a81b2e

1

https://tidypolars.etiennebacher.com
https://etiennebacher.r-universe.dev/tidypolars
https://github.com/etiennebacher/tidypolars/issues

2 Contents

Contents
arrange.RPolarsDataFrame . 3
as_tibble.tidypolars . 4
bind_cols_polars . 4
bind_rows_polars . 5
complete.RPolarsDataFrame . 6
compute.RPolarsLazyFrame . 7
count.RPolarsDataFrame . 9
cross_join.RPolarsDataFrame . 10
describe . 11
describe_plan . 12
distinct.RPolarsDataFrame . 12
drop_na.RPolarsDataFrame . 13
explain.RPolarsLazyFrame . 14
fetch . 15
fill.RPolarsDataFrame . 16
filter.RPolarsDataFrame . 17
from_csv . 18
from_ipc . 21
from_ndjson . 23
from_parquet . 24
group_by.RPolarsDataFrame . 26
group_split.RPolarsDataFrame . 27
group_vars.RPolarsDataFrame . 28
left_join.RPolarsDataFrame . 29
make_unique_id . 33
mutate.RPolarsDataFrame . 34
pivot_longer.RPolarsDataFrame . 36
pivot_wider.RPolarsDataFrame . 37
pull.RPolarsDataFrame . 39
relocate.RPolarsDataFrame . 40
rename.RPolarsDataFrame . 41
replace_na.RPolarsDataFrame . 42
rowwise.RPolarsDataFrame . 43
select.RPolarsDataFrame . 44
semi_join.RPolarsDataFrame . 44
separate.RPolarsDataFrame . 46
sink_csv . 47
sink_ipc . 49
sink_ndjson . 50
sink_parquet . 51
slice_tail.RPolarsDataFrame . 54
summarize.RPolarsDataFrame . 55
summary.RPolarsDataFrame . 56
tidypolars-options . 56
uncount.RPolarsDataFrame . 57
unite.RPolarsDataFrame . 58

arrange.RPolarsDataFrame 3

write_csv_polars . 59
write_ipc_polars . 61
write_json_polars . 61
write_ndjson_polars . 62
write_parquet_polars . 63

Index 65

arrange.RPolarsDataFrame

Order rows using column values

Description

Order rows using column values

Usage

S3 method for class 'RPolarsDataFrame'
arrange(.data, ..., .by_group = FALSE)

Arguments

.data A Polars Data/LazyFrame

... Variables, or functions of variables. Use desc() to sort a variable in descending
order.

.by_group If TRUE, will sort data within groups.

Examples

pl_test <- polars::pl$DataFrame(
x1 = c("a", "a", "b", "a", "c"),
x2 = c(2, 1, 5, 3, 1),
value = sample(1:5)

)

arrange(pl_test, x1)
arrange(pl_test, x1, -x2)

if the data is grouped, you need to specify `.by_group = TRUE` to sort by
the groups first
pl_test |>

group_by(x1) |>
arrange(-x2, .by_group = TRUE)

4 bind_cols_polars

as_tibble.tidypolars Convert a Polars DataFrame to an R data.frame or to a tibble

Description

This makes it easier to convert a polars DataFrame or LazyFrame to a tibble in a pipe workflow.

Usage

S3 method for class 'tidypolars'
as_tibble(x, int64_conversion = polars::polars_options()$int64_conversion, ...)

Arguments

x A Polars Data/LazyFrame
int64_conversion

How should Int64 values be handled when converting a polars object to R? See
the documentation in polars::as.data.frame.RPolarsDataFrame.

... Options passed to polars::as.data.frame.RPolarsDataFrame.

About int64

Int64 is a format accepted in Polars but not natively in R (the package bit64 helps with that).

Since tidypolars is simply a wrapper around polars, the behavior of int64 values will depend
on the options set in polars. Use options(polars.int64_conversion =) to specify how int64
variables should be handled. See the documentation in polars for the possible options.

Examples

iris |>
as_polars_df() |>
filter(Sepal.Length > 6) |>
as_tibble()

bind_cols_polars Append multiple Data/LazyFrames next to each other

Description

Append multiple Data/LazyFrames next to each other

Usage

bind_cols_polars(..., .name_repair = "unique")

https://rpolars.github.io/man/polars_options.html#details

bind_rows_polars 5

Arguments

... Polars DataFrames or LazyFrames to combine. Each argument can either be a
Data/LazyFrame, or a list of Data/LazyFrames. Columns are matched by name.
All Data/LazyFrames must have the same number of rows and there mustn’t be
duplicated column names.

.name_repair Can be "unique", "universal", "check_unique", "minimal". See vctrs::vec_as_names()
for the explanations for each value.

Examples

p1 <- polars::pl$DataFrame(
x = sample(letters, 20),
y = sample(1:100, 20)

)
p2 <- polars::pl$DataFrame(

z = sample(letters, 20),
w = sample(1:100, 20)

)

bind_cols_polars(p1, p2)
bind_cols_polars(list(p1, p2))

bind_rows_polars Stack multiple Data/LazyFrames on top of each other

Description

Stack multiple Data/LazyFrames on top of each other

Usage

bind_rows_polars(..., .id = NULL)

Arguments

... Polars DataFrames or LazyFrames to combine. Each argument can either be a
Data/LazyFrame, or a list of Data/LazyFrames. Columns are matched by name,
and any missing columns will be filled with NA.

.id The name of an optional identifier column. Provide a string to create an output
column that identifies each input. If all elements in ... are named, the identifier
will use their names. Otherwise, it will be a simple count.

6 complete.RPolarsDataFrame

Examples

library(polars)
p1 <- pl$DataFrame(

x = c("a", "b"),
y = 1:2

)
p2 <- pl$DataFrame(

y = 3:4,
z = c("c", "d")

)$with_columns(pl$col("y")$cast(pl$Int16))

bind_rows_polars(p1, p2)

this is equivalent
bind_rows_polars(list(p1, p2))

create an id colum
bind_rows_polars(p1, p2, .id = "id")

create an id colum with named elements
bind_rows_polars(p1 = p1, p2 = p2, .id = "id")

complete.RPolarsDataFrame

Complete a data frame with missing combinations of data

Description

Turns implicit missing values into explicit missing values. This is useful for completing missing
combinations of data.

Usage

S3 method for class 'RPolarsDataFrame'
complete(data, ..., fill = list())

S3 method for class 'RPolarsLazyFrame'
complete(data, ..., fill = list())

Arguments

data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

fill A named list that for each variable supplies a single value to use instead of NA
for missing combinations.

compute.RPolarsLazyFrame 7

Examples

df <- polars::pl$DataFrame(
group = c(1:2, 1, 2),
item_id = c(1:2, 2, 3),
item_name = c("a", "a", "b", "b"),
value1 = c(1, NA, 3, 4),
value2 = 4:7

)
df

df |> complete(group, item_id, item_name)

df |>
complete(
group, item_id, item_name,
fill = list(value1 = 0, value2 = 99)

)

df |>
group_by(group, maintain_order = TRUE) |>
complete(item_id, item_name)

compute.RPolarsLazyFrame

Collect a LazyFrame

Description

compute() checks the query, optimizes it in the background, and runs it. The output is a Polars
DataFrame. collect() is similar to compute() but converts the output to an R data.frame, which
consumes more memory.

Until tidypolars 0.7.0, there was only collect() and it was used to collect a LazyFrame into a
Polars DataFrame. This usage is still valid for now but will change in 0.8.0 to automatically convert
a DataFrame to a data.frame. Use compute() to have a Polars DataFrame as output.

Usage

S3 method for class 'RPolarsLazyFrame'
compute(
x,
...,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
comm_subplan_elim = TRUE,

8 compute.RPolarsLazyFrame

comm_subexpr_elim = TRUE,
cluster_with_columns = TRUE,
no_optimization = FALSE,
streaming = FALSE,
collect_in_background = FALSE

)

S3 method for class 'RPolarsLazyFrame'
collect(
x,
...,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
comm_subplan_elim = TRUE,
comm_subexpr_elim = TRUE,
cluster_with_columns = TRUE,
no_optimization = FALSE,
streaming = FALSE,
collect_in_background = FALSE

)

Arguments

x A Polars LazyFrame

... Not used.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).

projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).

simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

comm_subplan_elim

Cache branching subplans that occur on self-joins or unions (default is TRUE).

comm_subexpr_elim

Cache common subexpressions (default is TRUE).

cluster_with_columns

Combine sequential independent calls to $with_columns().

count.RPolarsDataFrame 9

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

streaming Run parts of the query in a streaming fashion (this is in an alpha state). Default
is FALSE.

collect_in_background

Detach this query from the R session. Computation will start in background.
Get a handle which later can be converted into the resulting DataFrame. Useful
in interactive mode to not lock R session (default is FALSE).

See Also

fetch() for applying a lazy query on a subset of the data.

Examples

dat_lazy <- polars::pl$DataFrame(iris)$lazy()

compute(dat_lazy)

you can build a query and add compute() as the last piece
dat_lazy |>

select(starts_with("Sepal")) |>
filter(between(Sepal.Length, 5, 6)) |>
compute()

call collect() instead to return a data.frame (note that this is more
expensive than compute())
dat_lazy |>

select(starts_with("Sepal")) |>
filter(between(Sepal.Length, 5, 6)) |>
collect()

count.RPolarsDataFrame

Count the observations in each group

Description

Count the observations in each group

Usage

S3 method for class 'RPolarsDataFrame'
count(x, ..., sort = FALSE, name = "n")

S3 method for class 'RPolarsLazyFrame'
count(x, ..., sort = FALSE, name = "n")

10 cross_join.RPolarsDataFrame

S3 method for class 'RPolarsDataFrame'
add_count(x, ..., sort = FALSE, name = "n")

S3 method for class 'RPolarsLazyFrame'
add_count(x, ..., sort = FALSE, name = "n")

Arguments

x A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

sort If TRUE, will show the largest groups at the top.

name Name of the new column.

Examples

test <- polars::pl$DataFrame(mtcars)
count(test, cyl)

count(test, cyl, am)

count(test, cyl, am, sort = TRUE, name = "count")

add_count(test, cyl, am, sort = TRUE, name = "count")

cross_join.RPolarsDataFrame

Cross join

Description

Cross joins match each row in x to every row in y, resulting in a dataset with nrow(x) * nrow(y)
rows.

Usage

S3 method for class 'RPolarsDataFrame'
cross_join(x, y, suffix = c(".x", ".y"), ...)

S3 method for class 'RPolarsLazyFrame'
cross_join(x, y, suffix = c(".x", ".y"), ...)

describe 11

Arguments

x, y Two Polars Data/LazyFrames

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Not used.

Examples

test <- polars::pl$DataFrame(
origin = c("ALG", "FRA", "GER"),
year = c(2020, 2020, 2021)

)

test2 <- polars::pl$DataFrame(
destination = c("USA", "JPN", "BRA"),
language = c("english", "japanese", "portuguese")

)

test

test2

cross_join(test, test2)

describe Summary statistics for a Polars DataFrame

Description

[Deprecated]

This function is deprecated as of tidypolars 0.10.0, it will be removed in a future update. Use
summary() with the same arguments instead.

Usage

describe(.data, percentiles = c(0.25, 0.75))

Arguments

.data A Polars DataFrame.

percentiles One or more percentiles to include in the summary statistics. All values must be
between 0 and 1 (NULL are ignored).

12 distinct.RPolarsDataFrame

describe_plan Show the optimized and non-optimized query plans

Description

[Deprecated]

Those functions are deprecated as of tidypolars 0.10.0, they will be removed in a future update.
Use explain() with optimized = FALSE to recover the output of describe_plan(), and with
optimized = TRUE (the default) to get the output of describe_optimized_plan().

Usage

describe_plan(.data)

describe_optimized_plan(.data)

Arguments

.data A Polars LazyFrame

distinct.RPolarsDataFrame

Remove or keep only duplicated rows in a Data/LazyFrame

Description

By default, duplicates are looked for in all variables. It is possible to specify a subset of variables
where duplicates should be looked for. It is also possible to keep either the first occurrence, the last
occurence or remove all duplicates.

Usage

S3 method for class 'RPolarsDataFrame'
distinct(.data, ..., keep = "first", maintain_order = TRUE)

S3 method for class 'RPolarsLazyFrame'
distinct(.data, ..., keep = "first", maintain_order = TRUE)

duplicated_rows(.data, ...)

drop_na.RPolarsDataFrame 13

Arguments

.data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

keep Either "first" (keep the first occurrence of the duplicated row), "last" (last occur-
rence) or "none" (remove all ofccurences of duplicated rows).

maintain_order Maintain row order. This is the default but it can slow down the process with
large datasets and it prevents the use of streaming.

Examples

pl_test <- polars::pl$DataFrame(
iso_o = c(rep(c("AA", "AB"), each = 2), "AC", "DC"),
iso_d = rep(c("BA", "BB", "BC"), each = 2),
value = c(2, 2, 3, 4, 5, 6)

)

distinct(pl_test)
distinct(pl_test, iso_o)

duplicated_rows(pl_test)
duplicated_rows(pl_test, iso_o, iso_d)

drop_na.RPolarsDataFrame

Drop missing values

Description

By default, this will drop rows that contain any missing values. It is possible to specify a subset of
variables so that only missing values in these variables will be considered.

Usage

S3 method for class 'RPolarsDataFrame'
drop_na(data, ...)

S3 method for class 'RPolarsLazyFrame'
drop_na(data, ...)

Arguments

data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

14 explain.RPolarsLazyFrame

Examples

tmp <- mtcars
tmp[1:3, "mpg"] <- NA
tmp[4, "hp"] <- NA
pl_tmp <- polars::pl$DataFrame(tmp)

drop_na(pl_tmp)
drop_na(pl_tmp, hp, mpg)

explain.RPolarsLazyFrame

Show the optimized and non-optimized query plans

Description

This function is available for LazyFrames only.

By default, explain() shows the query plan that is optimized and then run by Polars. Setting
optimized = FALSE shows the query plan as-is, without any optimization done, but this not the
query performed. Note that the plans are read from bottom to top.

Usage

S3 method for class 'RPolarsLazyFrame'
explain(x, optimized = TRUE, ...)

Arguments

x A Polars LazyFrame.

optimized Logical. If TRUE (default), show the query optimized by Polars. Otherwise,
show the initial query.

... Ignored.

Examples

query <- mtcars |>
as_polars_lf() |>
arrange(drat) |>
filter(cyl == 3) |>
select(mpg)

unoptimized query plan:
no_opt <- explain(query, optimized = FALSE)
no_opt

better printing with cat():
cat(no_opt)

fetch 15

optimized query run by polars
cat(explain(query))

fetch Fetch n rows of a LazyFrame

Description

Fetch is a way to collect only the first n rows of a LazyFrame. It is mainly used to test that a query
runs as expected on a subset of the data before using collect() on the full query. Note that fetching
n rows doesn’t mean that the output will actually contain n rows, see the section ’Details’ for more
information.

Usage

fetch(
.data,
n_rows = 500,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
comm_subplan_elim = TRUE,
comm_subexpr_elim = TRUE,
cluster_with_columns = TRUE,
no_optimization = FALSE,
streaming = FALSE

)

Arguments

.data A Polars LazyFrame

n_rows Number of rows to fetch.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).
projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).
simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

16 fill.RPolarsDataFrame

comm_subplan_elim

Cache branching subplans that occur on self-joins or unions (default is TRUE).
comm_subexpr_elim

Cache common subexpressions (default is TRUE).
cluster_with_columns

Combine sequential independent calls to $with_columns().
no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

streaming Run parts of the query in a streaming fashion (this is in an alpha state). Default
is FALSE.

Details

The parameter n_rows indicates how many rows from the LazyFrame should be used at the begin-
ning of the query, but it doesn’t guarantee that n_rows will be returned. For example, if the query
contains a filter or join operations with other datasets, then the final number of rows can be lower
than n_rows. On the other hand, appending some rows during the query can lead to an output that
has more rows than n_rows.

See Also

collect() for applying a lazy query on the full data.

Examples

dat_lazy <- polars::pl$DataFrame(iris)$lazy()

this will return 30 rows
fetch(dat_lazy, 30)

this will return less than 30 rows because there are less than 30 matches
for this filter in the whole dataset
dat_lazy |>

filter(Sepal.Length > 7.0) |>
fetch(30)

fill.RPolarsDataFrame Fill in missing values with previous or next value

Description

Fills missing values in selected columns using the next or previous entry. This is useful in the
common output format where values are not repeated, and are only recorded when they change.

filter.RPolarsDataFrame 17

Usage

S3 method for class 'RPolarsDataFrame'
fill(data, ..., .direction = c("down", "up", "downup", "updown"))

Arguments

data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

.direction Direction in which to fill missing values. Either "down" (the default), "up",
"downup" (i.e. first down and then up) or "updown" (first up and then down).

Details

With grouped Data/LazyFrames, fill() will be applied within each group, meaning that it won’t fill
across group boundaries.

Examples

pl_test <- polars::pl$DataFrame(x = c(NA, 1), y = c(2, NA))

fill(pl_test, everything(), .direction = "down")
fill(pl_test, everything(), .direction = "up")

with grouped data, it doesn't use values from other groups
pl_grouped <- polars::pl$DataFrame(

grp = rep(c("A", "B"), each = 3),
x = c(1, NA, NA, NA, 2, NA),
y = c(3, NA, 4, NA, 3, 1)

) |>
group_by(grp)

fill(pl_grouped, x, y, .direction = "down")

filter.RPolarsDataFrame

Keep rows that match a condition

Description

This function is used to subset a data frame, retaining all rows that satisfy your conditions. To be
retained, the row must produce a value of TRUE for all conditions. Note that when a condition
evaluates to NA the row will be dropped, unlike base subsetting with [.

18 from_csv

Usage

S3 method for class 'RPolarsDataFrame'
filter(.data, ..., .by = NULL)

S3 method for class 'RPolarsLazyFrame'
filter(.data, ..., .by = NULL)

Arguments

.data A Polars Data/LazyFrame

... Expressions that return a logical value, and are defined in terms of the variables
in the data. If multiple expressions are included, they will be combined with the
& operator. Only rows for which all conditions evaluate to TRUE are kept.

.by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

Examples

pl_iris <- polars::pl$DataFrame(iris)

filter(pl_iris, Sepal.Length < 5, Species == "setosa")

filter(pl_iris, Sepal.Length < Sepal.Width + Petal.Length)

filter(pl_iris, Species == "setosa" | is.na(Species))

iris2 <- iris
iris2$Species <- as.character(iris2$Species)
iris2 |>

as_polars_df() |>
filter(Species %in% c("setosa", "virginica"))

filter by group
pl_iris |>

group_by(Species) |>
filter(Sepal.Length == max(Sepal.Length)) |>
ungroup()

an alternative syntax for grouping is to use `.by`
pl_iris |>

filter(Sepal.Length == max(Sepal.Length), .by = Species)

from_csv Import data from CSV file(s)

from_csv 19

Description

read_csv_polars() imports the data as a Polars DataFrame.

scan_csv_polars() imports the data as a Polars LazyFrame.

Usage

read_csv_polars(
source,
...,
has_header = TRUE,
separator = ",",
comment_prefix = NULL,
quote_char = "\"",
skip_rows = 0,
dtypes = NULL,
null_values = NULL,
ignore_errors = FALSE,
cache = FALSE,
infer_schema_length = 100,
n_rows = NULL,
encoding = "utf8",
low_memory = FALSE,
rechunk = TRUE,
skip_rows_after_header = 0,
row_index_name = NULL,
row_index_offset = 0,
try_parse_dates = FALSE,
eol_char = "\n",
raise_if_empty = TRUE,
truncate_ragged_lines = FALSE,
reuse_downloaded = TRUE

)

scan_csv_polars(
source,
...,
has_header = TRUE,
separator = ",",
comment_prefix = NULL,
quote_char = "\"",
skip_rows = 0,
dtypes = NULL,
null_values = NULL,
ignore_errors = FALSE,
cache = FALSE,
infer_schema_length = 100,
n_rows = NULL,
encoding = "utf8",

20 from_csv

low_memory = FALSE,
rechunk = TRUE,
skip_rows_after_header = 0,
row_index_name = NULL,
row_index_offset = 0,
try_parse_dates = FALSE,
eol_char = "\n",
raise_if_empty = TRUE,
truncate_ragged_lines = FALSE,
reuse_downloaded = TRUE

)

Arguments

source Path to a file or URL. It is possible to provide multiple paths provided that all
CSV files have the same schema. It is not possible to provide several URLs.

... Ignored.

has_header Indicate if the first row of dataset is a header or not.If FALSE, column names will
be autogenerated in the following format: "column_x" x being an enumeration
over every column in the dataset starting at 1.

separator Single byte character to use as separator in the file.

comment_prefix A string, which can be up to 5 symbols in length, used to indicate the start of a
comment line. For instance, it can be set to # or //.

quote_char Single byte character used for quoting. Set to NULL to turn off special handling
and escaping of quotes.

skip_rows Start reading after a particular number of rows. The header will be parsed at this
offset.

dtypes Named list of column names - dtypes or dtype - column names. This list is used
while reading to overwrite dtypes. Supported types so far are:

• "Boolean" or "logical" for DataType::Boolean,
• "Categorical" or "factor" for DataType::Categorical,
• "Float32" or "double" for DataType::Float32,
• "Float64" or "float64" for DataType::Float64,
• "Int32" or "integer" for DataType::Int32,
• "Int64" or "integer64" for DataType::Int64,
• "String" or "character" for DataType::String,

null_values Values to interpret as NA values. Can be:

• a character vector: all values that match one of the values in this vector will
be NA;

• a named list with column names and null values.

ignore_errors Keep reading the file even if some lines yield errors. You can also use infer_schema_length
= 0 to read all columns as UTF8 to check which values might cause an issue.

cache Cache the result after reading.

from_ipc 21

infer_schema_length

Maximum number of rows to read to infer the column types. If set to 0, all
columns will be read as UTF-8. If NULL, a full table scan will be done (slow).

n_rows Maximum number of rows to read.

encoding Either "utf8" or "utf8-lossy". Lossy means that invalid UTF8 values are
replaced with "?" characters.

low_memory Reduce memory usage (will yield a lower performance).

rechunk Reallocate to contiguous memory when all chunks / files are parsed.
skip_rows_after_header

Parse the first row as headers, and then skip this number of rows.

row_index_name If not NULL, this will insert a row index column with the given name into the
DataFrame.

row_index_offset

Offset to start the row index column (only used if the name is set).
try_parse_dates

Try to automatically parse dates. Most ISO8601-like formats can be inferred, as
well as a handful of others. If this does not succeed, the column remains of data
type pl$String.

eol_char Single byte end of line character (default: \n). When encountering a file with
Windows line endings (\r\n), one can go with the default \n. The extra \r will
be removed when processed.

raise_if_empty If FALSE, parsing an empty file returns an empty DataFrame or LazyFrame.
truncate_ragged_lines

Truncate lines that are longer than the schema.
reuse_downloaded

If TRUE(default) and a URL was provided, cache the downloaded files in session
for an easy reuse.

from_ipc Import data from IPC file(s)

Description

read_ipc_polars() imports the data as a Polars DataFrame.

scan_ipc_polars() imports the data as a Polars LazyFrame.

Usage

read_ipc_polars(
source,
...,
n_rows = NULL,
memory_map = TRUE,
row_index_name = NULL,

22 from_ipc

row_index_offset = 0L,
rechunk = FALSE,
cache = TRUE,
include_file_paths = NULL

)

scan_ipc_polars(
source,
...,
n_rows = NULL,
memory_map = TRUE,
row_index_name = NULL,
row_index_offset = 0L,
rechunk = FALSE,
cache = TRUE,
include_file_paths = NULL

)

Arguments

source Path to a file. You can use globbing with * to scan/read multiple files in the same
directory (see examples).

... Ignored.

n_rows Maximum number of rows to read.

memory_map A logical. If TRUE, try to memory map the file. This can greatly improve per-
formance on repeated queries as the OS may cache pages. Only uncompressed
Arrow IPC files can be memory mapped.

row_index_name If not NULL, this will insert a row index column with the given name into the
DataFrame.

row_index_offset

Offset to start the row index column (only used if the name is set).

rechunk In case of reading multiple files via a glob pattern, rechunk the final DataFrame
into contiguous memory chunks.

cache Cache the result after reading.

include_file_paths

Character value indicating the column name that will include the path of the
source file(s).

Details

Hive-style partitioning is not supported yet.

from_ndjson 23

from_ndjson Import data from NDJSON file(s)

Description

read_ndjson_polars() imports the data as a Polars DataFrame.

scan_ndjson_polars() imports the data as a Polars LazyFrame.

Usage

read_ndjson_polars(
source,
...,
infer_schema_length = 100,
batch_size = NULL,
n_rows = NULL,
low_memory = FALSE,
rechunk = FALSE,
row_index_name = NULL,
row_index_offset = 0,
reuse_downloaded = TRUE,
ignore_errors = FALSE

)

scan_ndjson_polars(
source,
...,
infer_schema_length = 100,
batch_size = NULL,
n_rows = NULL,
low_memory = FALSE,
rechunk = FALSE,
row_index_name = NULL,
row_index_offset = 0,
reuse_downloaded = TRUE,
ignore_errors = FALSE

)

Arguments

source Path to a file or URL. It is possible to provide multiple paths provided that all
NDJSON files have the same schema. It is not possible to provide several URLs.

... Ignored.
infer_schema_length

Maximum number of rows to read to infer the column types. If set to 0, all
columns will be read as UTF-8. If NULL, a full table scan will be done (slow).

24 from_parquet

batch_size Number of rows that will be processed per thread.

n_rows Maximum number of rows to read.

low_memory Reduce memory usage (will yield a lower performance).

rechunk Reallocate to contiguous memory when all chunks / files are parsed.

row_index_name If not NULL, this will insert a row index column with the given name into the
DataFrame.

row_index_offset

Offset to start the row index column (only used if the name is set).
reuse_downloaded

If TRUE(default) and a URL was provided, cache the downloaded files in session
for an easy reuse.

ignore_errors Keep reading the file even if some lines yield errors. You can also use infer_schema_length
= 0 to read all columns as UTF8 to check which values might cause an issue.

from_parquet Import data from Parquet file(s)

Description

read_parquet_polars() imports the data as a Polars DataFrame.

scan_parquet_polars() imports the data as a Polars LazyFrame.

Usage

read_parquet_polars(
source,
...,
n_rows = NULL,
row_index_name = NULL,
row_index_offset = 0L,
parallel = "auto",
hive_partitioning = NULL,
hive_schema = NULL,
try_parse_hive_dates = TRUE,
glob = TRUE,
rechunk = TRUE,
low_memory = FALSE,
storage_options = NULL,
use_statistics = TRUE,
cache = TRUE,
include_file_paths = NULL

)

scan_parquet_polars(
source,

from_parquet 25

...,
n_rows = NULL,
row_index_name = NULL,
row_index_offset = 0L,
parallel = "auto",
hive_partitioning = NULL,
hive_schema = NULL,
try_parse_hive_dates = TRUE,
glob = TRUE,
rechunk = FALSE,
low_memory = FALSE,
storage_options = NULL,
use_statistics = TRUE,
cache = TRUE,
include_file_paths = NULL

)

Arguments

source Path to a file. You can use globbing with * to scan/read multiple files in the same
directory (see examples).

... Ignored.

n_rows Maximum number of rows to read.

row_index_name If not NULL, this will insert a row index column with the given name into the
DataFrame.

row_index_offset

Offset to start the row index column (only used if the name is set).

parallel This determines the direction of parallelism. "auto" will try to determine the
optimal direction. Can be "auto", "columns", "row_groups", "prefiltered",
or "none". See ’Details’.

hive_partitioning

Infer statistics and schema from Hive partitioned URL and use them to prune
reads. If NULL (default), it is automatically enabled when a single directory is
passed, and otherwise disabled.

hive_schema A list containing the column names and data types of the columns by which
the data is partitioned, e.g. list(a = pl$String, b = pl$Float32). If NULL
(default), the schema of the Hive partitions is inferred.

try_parse_hive_dates

Whether to try parsing hive values as date/datetime types.

glob Expand path given via globbing rules.

rechunk In case of reading multiple files via a glob pattern, rechunk the final DataFrame
into contiguous memory chunks.

low_memory Reduce memory usage (will yield a lower performance).
storage_options

Experimental. List of options necessary to scan parquet files from different
cloud storage providers (GCP, AWS, Azure). See the ’Details’ section.

26 group_by.RPolarsDataFrame

use_statistics Use statistics in the parquet file to determine if pages can be skipped from read-
ing.

cache Cache the result after reading.
include_file_paths

Character value indicating the column name that will include the path of the
source file(s).

Details

On parallel strategies:
The prefiltered strategy first evaluates the pushed-down predicates in parallel and determines a
mask of which rows to read. Then, it parallelizes over both the columns and the row groups while
filtering out rows that do not need to be read. This can provide significant speedups for large files
(i.e. many row-groups) with a predicate that filters clustered rows or filters heavily. In other cases,
prefiltered may slow down the scan compared other strategies.
The prefiltered settings falls back to auto if no predicate is given.

Connecting to cloud providers:
Polars supports scanning parquet files from different cloud providers. The cloud providers cur-
rently supported are AWS, GCP, and Azure. The supported keys to pass to the storage_options
argument can be found here:

• aws
• gcp
• azure

Implementation details:
• Currently it is impossible to scan public parquet files from GCP without a valid service

account. Be sure to always include a service account in the storage_options argument.

group_by.RPolarsDataFrame

Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes an existing Polars
Data/LazyFrame and converts it into a grouped one where operations are performed "by group".
ungroup() removes grouping.

Usage

S3 method for class 'RPolarsDataFrame'
group_by(.data, ..., maintain_order = FALSE, .add = FALSE)

S3 method for class 'RPolarsDataFrame'
ungroup(x, ...)

https://docs.rs/object_store/latest/object_store/aws/enum.AmazonS3ConfigKey.html
https://docs.rs/object_store/latest/object_store/gcp/enum.GoogleConfigKey.html
https://docs.rs/object_store/latest/object_store/azure/enum.AzureConfigKey.html

group_split.RPolarsDataFrame 27

S3 method for class 'RPolarsLazyFrame'
group_by(.data, ..., maintain_order = FALSE, .add = FALSE)

S3 method for class 'RPolarsLazyFrame'
ungroup(x, ...)

Arguments

.data A Polars Data/LazyFrame

... Variables to group by (used in group_by() only). Not used in ungroup().

maintain_order Maintain row order. For performance reasons, this is FALSE by default). Setting
it to TRUE can slow down the process with large datasets and prevents the use of
streaming.

.add When FALSE (default), group_by() will override existing groups. To add to the
existing groups, use .add = TRUE.

x A Polars Data/LazyFrame

Examples

by_cyl <- mtcars |>
as_polars_df() |>
group_by(cyl)

by_cyl

by_cyl |> summarise(
disp = mean(disp),
hp = mean(hp)

)
by_cyl |> filter(disp == max(disp))

group_split.RPolarsDataFrame

Grouping metadata

Description

group_vars() returns a character vector with the names of the grouping variables. group_keys()
returns a data frame with one row per group.

Usage

S3 method for class 'RPolarsDataFrame'
group_split(.tbl, ..., .keep = TRUE)

28 group_vars.RPolarsDataFrame

Arguments

.tbl A Polars Data/LazyFrame

... If .tbl is not grouped, variables to group by. If .tbl is already grouped, this is
ignored.

.keep Should the grouping columns be kept?

Examples

pl_g <- polars::as_polars_df(iris) |>
group_by(Species)

group_split(pl_g)

group_vars.RPolarsDataFrame

Grouping metadata

Description

group_vars() returns a character vector with the names of the grouping variables. group_keys()
returns a data frame with one row per group.

Usage

S3 method for class 'RPolarsDataFrame'
group_vars(x)

S3 method for class 'RPolarsLazyFrame'
group_vars(x)

S3 method for class 'RPolarsDataFrame'
group_keys(.tbl, ...)

S3 method for class 'RPolarsLazyFrame'
group_keys(.tbl, ...)

Arguments

x, .tbl A Polars Data/LazyFrame

... Not used.

left_join.RPolarsDataFrame 29

Examples

pl_g <- polars::as_polars_df(mtcars) |>
group_by(cyl, am)

group_vars(pl_g)

group_keys(pl_g)

left_join.RPolarsDataFrame

Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys.

Usage

S3 method for class 'RPolarsDataFrame'
left_join(
x,
y,
by = NULL,
copy = NULL,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'RPolarsDataFrame'
right_join(
x,
y,
by = NULL,
copy = NULL,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'RPolarsDataFrame'
full_join(

30 left_join.RPolarsDataFrame

x,
y,
by = NULL,
copy = NULL,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'RPolarsDataFrame'
inner_join(
x,
y,
by = NULL,
copy = NULL,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'RPolarsLazyFrame'
left_join(
x,
y,
by = NULL,
copy = NULL,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'RPolarsLazyFrame'
right_join(
x,
y,
by = NULL,
copy = NULL,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

left_join.RPolarsDataFrame 31

)

S3 method for class 'RPolarsLazyFrame'
full_join(
x,
y,
by = NULL,
copy = NULL,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

S3 method for class 'RPolarsLazyFrame'
inner_join(
x,
y,
by = NULL,
copy = NULL,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = "na",
relationship = NULL

)

Arguments

x, y Two Polars Data/LazyFrames

by Variables to join by. If NULL (default), *_join() will perform a natural join,
using all variables in common across x and y. A message lists the variables
so that you can check they’re correct; suppress the message by supplying by
explicitly.
by can take a character vector, like c("x", "y") if x and y are in both datasets.
To join on variables that don’t have the same name, use equalities in the charac-
ter vector, like c("x1" = "x2", "y"). If you use a character vector, the join can
only be done using strict equality.
by can also be a specification created by dplyr::join_by(). Contrary to the in-
put as character vector shown above, join_by() uses unquoted column names,
e.g join_by(x1 == x2, y).
Finally, inner_join() also supports inequality joins, e.g. join_by(x1 >= x2),
and the helpers between(), overlaps(), and within(). See the documentation
of dplyr::join_by() for more information. Other join types will likely support
inequality joins in the future.

copy, keep Not used.

32 left_join.RPolarsDataFrame

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Not used.

na_matches Should two NA values match?

• "na", the default, treats two NA values as equal.
• "never" treats two NA values as different and will never match them to-

gether or to any other values.

Note that when joining Polars Data/LazyFrames, NaN are always considered
equal, no matter the value of na_matches. This differs from the original dplyr
implementation.

relationship Handling of the expected relationship between the keys of x and y. Must be one
of the following:

• NULL, the default, is equivalent to "many-to-many". It doesn’t expect any
relationship between x and y.

• "one-to-one" expects each row in x to match at most 1 row in y and each
row in y to match at most 1 row in x.

• "one-to-many" expects each row in y to match at most 1 row in x.
• "many-to-one" expects each row in x matches at most 1 row in y.

Examples

test <- polars::pl$DataFrame(
x = c(1, 2, 3),
y1 = c(1, 2, 3),
z = c(1, 2, 3)

)

test2 <- polars::pl$DataFrame(
x = c(1, 2, 4),
y2 = c(1, 2, 4),
z2 = c(4, 5, 7)

)

test

test2

default is to use common columns, here "x" only
left_join(test, test2)

we can specify the columns on which to join with join_by()...
left_join(test, test2, by = join_by(x, y1 == y2))

... or with a character vector
left_join(test, test2, by = c("x", "y1" = "y2"))

we can customize the suffix of common column names not used to join
test2 <- polars::pl$DataFrame(

x = c(1, 2, 4),

make_unique_id 33

y1 = c(1, 2, 4),
z = c(4, 5, 7)

)

left_join(test, test2, by = "x", suffix = c("_left", "_right"))

the argument "relationship" ensures the join matches the expectation
country <- polars::pl$DataFrame(

iso = c("FRA", "DEU"),
value = 1:2

)
country

country_year <- polars::pl$DataFrame(
iso = rep(c("FRA", "DEU"), each = 2),
year = rep(2019:2020, 2),
value2 = 3:6

)
country_year

We expect that each row in "x" matches only one row in "y" but, it's not
true as each row of "x" matches two rows of "y"
tryCatch(

left_join(country, country_year, join_by(iso), relationship = "one-to-one"),
error = function(e) e

)

A correct expectation would be "one-to-many":
left_join(country, country_year, join_by(iso), relationship = "one-to-many")

make_unique_id Create a column with unique id per row values

Description

Create a column with unique id per row values

Usage

make_unique_id(.data, ..., new_col = "hash")

Arguments

.data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

new_col Name of the new column

34 mutate.RPolarsDataFrame

Examples

mtcars |>
as_polars_df() |>
make_unique_id(am, gear)

mutate.RPolarsDataFrame

Create, modify, and delete columns

Description

This creates new columns that are functions of existing variables. It can also modify (if the name is
the same as an existing column) and delete columns (by setting their value to NULL).

Usage

S3 method for class 'RPolarsDataFrame'
mutate(.data, ..., .by = NULL, .keep = c("all", "used", "unused", "none"))

S3 method for class 'RPolarsLazyFrame'
mutate(.data, ..., .by = NULL, .keep = c("all", "used", "unused", "none"))

Arguments

.data A Polars Data/LazyFrame

... Name-value pairs. The name gives the name of the column in the output. The
value can be:

• A vector the same length as the current group (or the whole data frame if
ungrouped).

• NULL, to remove the column.

across() is mostly supported, except in a few cases. In particular, if the .cols
argument is where(...), it will not select variables that were created before
across(). Other select helpers are supported. See the examples.

.by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

.keep Control which columns from .data are retained in the output. Grouping columns
and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns. This

is useful for checking your work, as it displays inputs and outputs side-by-
side.

mutate.RPolarsDataFrame 35

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the columns
used to generate them.

• "none" doesn’t retain any extra columns from .data. Only the grouping
variables and columns created by ... are kept.

Details

A lot of functions available in base R (cos, mean, multiplying, etc.) or in other packages (dplyr::lag(),
etc.) are implemented in an efficient way in Polars. These functions are automatically translated to
Polars syntax under the hood so that you can continue using the classic R syntax and functions.

If a Polars built-in replacement doesn’t exist (for example for custom functions), then tidypolars
will throw an error. See the vignette on Polars expressions to know how to write custom functions
that are accepted by tidypolars.

Examples

pl_iris <- polars::pl$DataFrame(iris)

classic operation
mutate(pl_iris, x = Sepal.Width + Sepal.Length)

logical operation
mutate(pl_iris, x = Sepal.Width > Sepal.Length & Petal.Width > Petal.Length)

overwrite existing variable
mutate(pl_iris, Sepal.Width = Sepal.Width*2)

grouped computation
pl_iris |>

group_by(Species) |>
mutate(foo = mean(Sepal.Length))

an alternative syntax for grouping is to use `.by`
pl_iris |>

mutate(foo = mean(Sepal.Length), .by = Species)

across() is available
pl_iris |>

mutate(
across(.cols = contains("Sepal"), .fns = mean, .names = "{.fn}_of_{.col}")

)
It can receive several types of functions:
pl_iris |>

mutate(
across(

.cols = contains("Sepal"),

.fns = list(mean = mean, sd = ~ sd(.x)),

.names = "{.fn}_of_{.col}"
)

)

36 pivot_longer.RPolarsDataFrame

Be careful when using across(.cols = where(...), ...) as it will not include
variables created in the same `...` (this is only the case for `where()`):
Not run:
pl_iris |>

mutate(
foo = 1,
across(

.cols = where(is.numeric),
\(x) x - 1000 # <<<<<<<<< this will not be applied on variable "foo"

)
)

End(Not run)
Warning message:
In `across()`, the argument `.cols = where(is.numeric)` will not take into account
variables created in the same `mutate()`/`summarize` call.

Embracing an external variable works
some_value <- 1
mutate(pl_iris, x = {{ some_value }})

pivot_longer.RPolarsDataFrame

Pivot a Data/LazyFrame from wide to long

Description

Pivot a Data/LazyFrame from wide to long

Usage

S3 method for class 'RPolarsDataFrame'
pivot_longer(
data,
cols,
...,
names_to = "name",
names_prefix = NULL,
values_to = "value"

)

S3 method for class 'RPolarsLazyFrame'
pivot_longer(
data,
cols,
...,
names_to = "name",

pivot_wider.RPolarsDataFrame 37

names_prefix = NULL,
values_to = "value"

)

Arguments

data A Polars Data/LazyFrame

cols Columns to pivot into longer format. Can be anything accepted by dplyr::select().

... Not used.

names_to The (quoted) name of the column that will contain the column names specified
by cols.

names_prefix A regular expression used to remove matching text from the start of each vari-
able name.

values_to A string specifying the name of the column to create from the data stored in cell
values.

Examples

pl_relig_income <- polars::pl$DataFrame(tidyr::relig_income)
pl_relig_income

pl_relig_income |>
pivot_longer(!religion, names_to = "income", values_to = "count")

pl_billboard <- polars::pl$DataFrame(tidyr::billboard)
pl_billboard

pl_billboard |>
pivot_longer(

cols = starts_with("wk"),
names_to = "week",
names_prefix = "wk",
values_to = "rank",

)

pivot_wider.RPolarsDataFrame

Pivot a DataFrame from long to wide

Description

Pivot a DataFrame from long to wide

38 pivot_wider.RPolarsDataFrame

Usage

S3 method for class 'RPolarsDataFrame'
pivot_wider(
data,
...,
id_cols = NULL,
names_from = name,
values_from = value,
names_prefix = "",
names_sep = "_",
names_glue = NULL,
values_fill = NULL

)

Arguments

data A Polars DataFrame (LazyFrames are not supported).

... Not used.

id_cols A set of columns that uniquely identify each observation. Typically used when
you have redundant variables, i.e. variables whose values are perfectly corre-
lated with existing variables.
Defaults to all columns in data except for the columns specified through names_from
and values_from. If a tidyselect expression is supplied, it will be evaluated on
data after removing the columns specified through names_from and values_from.

names_from The (quoted or unquoted) column names whose values will be used for the
names of the new columns.

values_from The (quoted or unquoted) column names whose values will be used to fill the
new columns.

names_prefix String added to the start of every variable name. This is particularly useful
if names_from is a numeric vector and you want to create syntactic variable
names.

names_sep If names_from or values_from contains multiple variables, this will be used to
join their values together into a single string to use as a column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue specification
that uses the names_from columns to create custom column names.

values_fill A scalar that will be used to replace missing values in the new columns. Note
that the type of this value will be applied to new columns. For example, if you
provide a character value to fill numeric columns, then all these columns will be
converted to character.

Examples

pl_fish_encounters <- polars::pl$DataFrame(tidyr::fish_encounters)

pl_fish_encounters |>
pivot_wider(names_from = station, values_from = seen)

pull.RPolarsDataFrame 39

pl_fish_encounters |>
pivot_wider(names_from = station, values_from = seen, values_fill = 0)

be careful about the type of the replacement value!
pl_fish_encounters |>

pivot_wider(names_from = station, values_from = seen, values_fill = "a")

using "names_glue" to specify the names of new columns
production <- expand.grid(

product = c("A", "B"),
country = c("AI", "EI"),
year = 2000:2014

) |>
filter((product == "A" & country == "AI") | product == "B") |>
mutate(production = 1:45) |>
as_polars_df()

production

production |>
pivot_wider(
names_from = c(product, country),
values_from = production,
names_glue = "prod_{product}_{country}"

)

pull.RPolarsDataFrame Extract a variable of a Data/LazyFrame

Description

This returns an R vector and not a Polars Series.

Usage

S3 method for class 'RPolarsDataFrame'
pull(.data, var, ...)

S3 method for class 'RPolarsLazyFrame'
pull(.data, var, ...)

Arguments

.data A Polars Data/LazyFrame

var A quoted or unquoted variable name, or a variable index.

... Not used.

40 relocate.RPolarsDataFrame

Examples

pl_test <- as_polars_df(iris)
pull(pl_test, Sepal.Length)
pull(pl_test, "Sepal.Length")

relocate.RPolarsDataFrame

Change column order

Description

Use relocate() to change column positions, using the same syntax as select() to make it easy
to move blocks of columns at once.

Usage

S3 method for class 'RPolarsDataFrame'
relocate(.data, ..., .before = NULL, .after = NULL)

S3 method for class 'RPolarsLazyFrame'
relocate(.data, ..., .before = NULL, .after = NULL)

Arguments

.data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

.before, .after Column name (either quoted or unquoted) that indicates the destination of columns
selected by Supplying neither will move columns to the left-hand side;
specifying both is an error.

Examples

dat <- as_polars_df(mtcars)

dat |>
relocate(hp, vs, .before = cyl)

if .before and .after are not specified, selected columns are moved to the
first positions
dat |>

relocate(hp, vs)

.before and .after can be quoted or unquoted
dat |>

relocate(hp, vs, .after = "gear")

rename.RPolarsDataFrame 41

select helpers are also available
dat |>

relocate(contains("[aeiou]"))

dat |>
relocate(hp, vs, .after = last_col())

rename.RPolarsDataFrame

Rename columns

Description

Rename columns

Usage

S3 method for class 'RPolarsDataFrame'
rename(.data, ...)

S3 method for class 'RPolarsLazyFrame'
rename(.data, ...)

S3 method for class 'RPolarsDataFrame'
rename_with(.data, .fn, .cols = tidyselect::everything(), ...)

S3 method for class 'RPolarsLazyFrame'
rename_with(.data, .fn, .cols = tidyselect::everything(), ...)

Arguments

.data A Polars Data/LazyFrame

... For rename(), use new_name = old_name to rename selected variables. It is also
possible to use quotation marks, e.g "new_name" = "old_name".
For rename_with, additional arguments passed to fn.

.fn Function to apply on column names

.cols Columns on which to apply fn. Can be anything accepted by dplyr::select().

Examples

pl_test <- polars::pl$DataFrame(mtcars)

rename(pl_test, miles_per_gallon = mpg, horsepower = "hp")

rename(pl_test, `Miles per gallon` = "mpg", `Horse power` = "hp")

42 replace_na.RPolarsDataFrame

rename_with(pl_test, toupper, .cols = contains("p"))

pl_test_2 <- polars::pl$DataFrame(iris)

rename_with(pl_test_2, function(x) tolower(gsub(".", "_", x, fixed = TRUE)))

rename_with(pl_test_2, \(x) tolower(gsub(".", "_", x, fixed = TRUE)))

replace_na.RPolarsDataFrame

Replace NAs with specified values

Description

Replace NAs with specified values

Usage

S3 method for class 'RPolarsDataFrame'
replace_na(data, replace, ...)

S3 method for class 'RPolarsLazyFrame'
replace_na(data, replace, ...)

Arguments

data A Polars Data/LazyFrame

replace Either a scalar that will be used to replace NA in all columns, or a named list with
the column name and the value that will be used to replace NA in it.

... Not used.

Examples

pl_test <- polars::pl$DataFrame(x = c(NA, 1), y = c(2, NA))

replace all NA with 0
replace_na(pl_test, 0)

custom replacement per column
replace_na(pl_test, list(x = 0, y = 999))

rowwise.RPolarsDataFrame 43

rowwise.RPolarsDataFrame

Group input by rows

Description

[EXPERIMENTAL]

rowwise() allows you to compute on a Data/LazyFrame a row-at-a-time. This is most useful when
a vectorised function doesn’t exist. rowwise() produces another type of grouped data, and therefore
can be removed with ungroup().

Usage

S3 method for class 'RPolarsDataFrame'
rowwise(data, ...)

S3 method for class 'RPolarsLazyFrame'
rowwise(data, ...)

Arguments

data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

Value

A Polars Data/LazyFrame.

Examples

df <- polars::pl$DataFrame(x = c(1, 3, 4), y = c(2, 1, 5), z = c(2, 3, 1))

Compute the mean of x, y, z in each row
df |>
rowwise() |>
mutate(m = mean(c(x, y, z)))

Compute the min and max of x and y in each row
df |>
rowwise() |>
mutate(min = min(c(x, y)), max = max(c(x, y)))

44 semi_join.RPolarsDataFrame

select.RPolarsDataFrame

Select columns from a Data/LazyFrame

Description

Select columns from a Data/LazyFrame

Usage

S3 method for class 'RPolarsDataFrame'
select(.data, ...)

S3 method for class 'RPolarsLazyFrame'
select(.data, ...)

Arguments

.data A Polars Data/LazyFrame

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc. Renaming is also possible.

Examples

pl_iris <- polars::pl$DataFrame(iris)

select(pl_iris, c("Sepal.Length", "Sepal.Width"))
select(pl_iris, Sepal.Length, Sepal.Width)
select(pl_iris, 1:3)
select(pl_iris, starts_with("Sepal"))
select(pl_iris, -ends_with("Length"))

Renaming while selecting is also possible
select(pl_iris, foo1 = Sepal.Length, Sepal.Width)

semi_join.RPolarsDataFrame

Filtering joins

Description

Filtering joins filter rows from x based on the presence or absence of matches in y:

• semi_join() return all rows from x with a match in y.

• anti_join() return all rows from x without a match in y.

semi_join.RPolarsDataFrame 45

Usage

S3 method for class 'RPolarsDataFrame'
semi_join(x, y, by = NULL, ..., na_matches = "na")

S3 method for class 'RPolarsDataFrame'
anti_join(x, y, by = NULL, ..., na_matches = "na")

S3 method for class 'RPolarsLazyFrame'
semi_join(x, y, by = NULL, ..., na_matches = "na")

S3 method for class 'RPolarsLazyFrame'
anti_join(x, y, by = NULL, ..., na_matches = "na")

Arguments

x, y Two Polars Data/LazyFrames

by Variables to join by. If NULL (default), *_join() will perform a natural join,
using all variables in common across x and y. A message lists the variables
so that you can check they’re correct; suppress the message by supplying by
explicitly.
by can take a character vector, like c("x", "y") if x and y are in both datasets.
To join on variables that don’t have the same name, use equalities in the charac-
ter vector, like c("x1" = "x2", "y"). If you use a character vector, the join can
only be done using strict equality.
by can also be a specification created by dplyr::join_by(). Contrary to the in-
put as character vector shown above, join_by() uses unquoted column names,
e.g join_by(x1 == x2, y).
Finally, inner_join() also supports inequality joins, e.g. join_by(x1 >= x2),
and the helpers between(), overlaps(), and within(). See the documentation
of dplyr::join_by() for more information. Other join types will likely support
inequality joins in the future.

... Not used.

na_matches Should two NA values match?

• "na", the default, treats two NA values as equal.
• "never" treats two NA values as different and will never match them to-

gether or to any other values.

Note that when joining Polars Data/LazyFrames, NaN are always considered
equal, no matter the value of na_matches. This differs from the original dplyr
implementation.

Examples

test <- polars::pl$DataFrame(
x = c(1, 2, 3),
y = c(1, 2, 3),
z = c(1, 2, 3)

)

46 separate.RPolarsDataFrame

test2 <- polars::pl$DataFrame(
x = c(1, 2, 4),
y = c(1, 2, 4),
z2 = c(1, 2, 4)

)

test

test2

only keep the rows of `test` that have matching keys in `test2`
semi_join(test, test2, by = c("x", "y"))

only keep the rows of `test` that don't have matching keys in `test2`
anti_join(test, test2, by = c("x", "y"))

separate.RPolarsDataFrame

Separate a character column into multiple columns based on a sub-
string

Description

Currently, splitting a column on a regular expression or position is not possible.

Usage

S3 method for class 'RPolarsDataFrame'
separate(data, col, into, sep = " ", remove = TRUE, ...)

S3 method for class 'RPolarsLazyFrame'
separate(data, col, into, sep = " ", remove = TRUE, ...)

Arguments

data A Polars Data/LazyFrame

col Column to split

into Character vector containing the names of new variables to create. Use NA to omit
the variable in the output.

sep String that is used to split the column. Regular expressions are not supported
yet.

remove If TRUE, remove input column from output data frame.

... Not used.

sink_csv 47

Examples

test <- polars::pl$DataFrame(
x = c(NA, "x.y", "x.z", "y.z")

)
separate(test, x, into = c("foo", "foo2"), sep = ".")

sink_csv Stream output to a CSV file

Description

This function allows to stream a LazyFrame that is larger than RAM directly to a .csv file without
collecting it in the R session, thus preventing crashes because of too small memory.

Usage

sink_csv(
.data,
path,
...,
include_bom = FALSE,
include_header = TRUE,
separator = ",",
line_terminator = "\n",
quote = "\"",
batch_size = 1024,
datetime_format = NULL,
date_format = NULL,
time_format = NULL,
float_precision = NULL,
null_values = "",
quote_style = "necessary",
maintain_order = TRUE,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
no_optimization = FALSE

)

Arguments

.data A Polars LazyFrame.

path Output file (must be a .csv file).

48 sink_csv

... Ignored.

include_bom Whether to include UTF-8 BOM (byte order mark) in the CSV output.

include_header Whether to include header in the CSV output.

separator Separate CSV fields with this symbol.
line_terminator

String used to end each row.

quote Byte to use as quoting character.

batch_size Number of rows that will be processed per thread.
datetime_format, date_format, time_format

A format string used to format date and time values. See ?strptime() for
accepted values. If no format specified, the default fractional-second precision
is inferred from the maximum time unit found in the Datetime cols (if any).

float_precision

Number of decimal places to write, applied to both Float32 and Float64 datatypes.

null_values A string representing null values (defaulting to the empty string).

quote_style Determines the quoting strategy used:

• "necessary" (default): This puts quotes around fields only when neces-
sary. They are necessary when fields contain a quote, delimiter or record
terminator. Quotes are also necessary when writing an empty record (which
is indistinguishable from a record with one empty field).

• "always": This puts quotes around every field.
• "non_numeric": This puts quotes around all fields that are non-numeric.

Namely, when writing a field that does not parse as a valid float or integer,
then quotes will be used even if they aren’t strictly necessary.

maintain_order Whether maintain the order the data was processed (default is TRUE). Setting this
to FALSE will be slightly faster.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).
projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).
simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

Value

The input LazyFrame.

sink_ipc 49

Examples

Not run:
This is an example workflow where sink_csv() is not very useful because
the data would fit in memory. It simply is an example of using it at the
end of a piped workflow.

Create files for the CSV input and output:
file_csv <- tempfile(fileext = ".csv")
file_csv2 <- tempfile(fileext = ".csv")

Write some data in a CSV file
fake_data <- do.call("rbind", rep(list(mtcars), 1000))
write.csv(fake_data, file = file_csv, row.names = FALSE)

In a new R session, we could read this file as a LazyFrame, do some operations,
and write it to another CSV file without ever collecting it in the R session:
scan_csv_polars(file_csv) |>

filter(cyl %in% c(4, 6), mpg > 22) |>
mutate(
hp_gear_ratio = hp / gear

) |>
sink_csv(path = file_csv2)

End(Not run)

sink_ipc Stream output to an IPC file

Description

This function allows to stream a LazyFrame that is larger than RAM directly to an IPC file without
collecting it in the R session, thus preventing crashes because of too small memory.

Usage

sink_ipc(
.data,
path,
...,
compression = "zstd",
maintain_order = TRUE,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
no_optimization = FALSE

)

50 sink_ndjson

Arguments

.data A Polars LazyFrame.

path Output file.

... Ignored.

compression NULL or a character of the compression method, "uncompressed" or "lz4" or
"zstd". NULL is equivalent to "uncompressed". Choose "zstd" for good com-
pression performance. Choose "lz4" for fast compression/decompression.

maintain_order Whether maintain the order the data was processed (default is TRUE). Setting this
to FALSE will be slightly faster.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).
projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).
simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

Value

The input LazyFrame.

sink_ndjson Stream output to a NDJSON file

Description

This writes the output of a query directly to a NDJSON file without collecting it in the R session
first. This is useful if the output of the query is still larger than RAM as it would crash the R session
if it was collected into R.

Usage

sink_ndjson(
.data,
path,
...,
maintain_order = TRUE,

sink_parquet 51

type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
no_optimization = FALSE

)

Arguments

.data A Polars LazyFrame.

path Output file.

... Ignored.

maintain_order Whether maintain the order the data was processed (default is TRUE). Setting this
to FALSE will be slightly faster.

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).

projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).

simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

Value

The input LazyFrame.

sink_parquet Stream output to a parquet file

Description

This function allows to stream a LazyFrame that is larger than RAM directly to a .parquet file
without collecting it in the R session, thus preventing crashes because of too small memory.

52 sink_parquet

Usage

sink_parquet(
.data,
path,
...,
compression = "zstd",
compression_level = 3,
statistics = FALSE,
row_group_size = NULL,
data_page_size = NULL,
maintain_order = TRUE,
type_coercion = TRUE,
predicate_pushdown = TRUE,
projection_pushdown = TRUE,
simplify_expression = TRUE,
slice_pushdown = TRUE,
no_optimization = FALSE

)

Arguments

.data A Polars LazyFrame.

path Output file (must be a .parquet file).

... Ignored.

compression The compression method. One of :

• "uncompressed"
• "zstd" (default): good compression performance
• "lz4": fast compression / decompression
• "snappy": more backwards compatibility guarantees when you deal with

older parquet readers.
• "gzip", "lzo", "brotli"

compression_level

The level of compression to use (default is 3). Only used if compression is one
of "gzip", "brotli", or "zstd". Higher compression means smaller files on disk.

• "gzip" : min-level = 0, max-level = 10
• "brotli" : min-level = 0, max-level = 11
• "zstd" : min-level = 1, max-level = 22.

statistics Whether to compute and write column statistics (default is FALSE). This requires
more computations.

row_group_size Size of the row groups in number of rows. If NULL (default), the chunks of the
DataFrame are used. Writing in smaller chunks may reduce memory pressure
and improve writing speeds.

data_page_size If NULL (default), the limit will be around 1MB.

maintain_order Whether maintain the order the data was processed (default is TRUE). Setting this
to FALSE will be slightly faster.

sink_parquet 53

type_coercion Coerce types such that operations succeed and run on minimal required memory
(default is TRUE).

predicate_pushdown

Applies filters as early as possible at scan level (default is TRUE).

projection_pushdown

Select only the columns that are needed at the scan level (default is TRUE).

simplify_expression

Various optimizations, such as constant folding and replacing expensive opera-
tions with faster alternatives (default is TRUE).

slice_pushdown Only load the required slice from the scan. Don’t materialize sliced outputs
level. Don’t materialize sliced outputs (default is TRUE).

no_optimization

Sets the following optimizations to FALSE: predicate_pushdown, projection_pushdown,
slice_pushdown, simplify_expression. Default is FALSE.

Value

The input LazyFrame.

Examples

Not run:
This is an example workflow where sink_parquet() is not very useful because
the data would fit in memory. It simply is an example of using it at the
end of a piped workflow.

Create files for the CSV input and the Parquet output:
file_csv <- tempfile(fileext = ".csv")
file_parquet <- tempfile(fileext = ".parquet")

Write some data in a CSV file
fake_data <- do.call("rbind", rep(list(mtcars), 1000))
write.csv(fake_data, file = file_csv, row.names = FALSE)

In a new R session, we could read this file as a LazyFrame, do some operations,
and write it to a parquet file without ever collecting it in the R session:
scan_csv_polars(file_csv) |>

filter(cyl %in% c(4, 6), mpg > 22) |>
mutate(
hp_gear_ratio = hp / gear

) |>
sink_parquet(path = file_parquet)

End(Not run)

54 slice_tail.RPolarsDataFrame

slice_tail.RPolarsDataFrame

Subset rows of a Data/LazyFrame

Description

Subset rows of a Data/LazyFrame

Usage

S3 method for class 'RPolarsDataFrame'
slice_tail(.data, ..., n, by = NULL)

S3 method for class 'RPolarsLazyFrame'
slice_tail(.data, ..., n, by = NULL)

S3 method for class 'RPolarsDataFrame'
slice_head(.data, ..., n, by = NULL)

S3 method for class 'RPolarsLazyFrame'
slice_head(.data, ..., n, by = NULL)

S3 method for class 'RPolarsDataFrame'
slice_sample(.data, ..., n = NULL, prop = NULL, replace = FALSE, by = NULL)

Arguments

.data A Polars Data/LazyFrame

... Not used.

n The number of rows to select from the start or the end of the data. Cannot be
used with prop.

by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

prop Proportion of rows to select. Cannot be used with n.

replace Perform the sampling with replacement (TRUE) or without (FALSE).

Examples

pl_test <- polars::pl$DataFrame(iris)
slice_head(pl_test, n = 3)
slice_tail(pl_test, n = 3)
slice_sample(pl_test, n = 5)
slice_sample(pl_test, prop = 0.1)

summarize.RPolarsDataFrame 55

summarize.RPolarsDataFrame

Summarize each group down to one row

Description

summarize() returns one row for each combination of grouping variables (one difference with
dplyr::summarize() is that summarize() only accepts grouped data). It will contain one col-
umn for each grouping variable and one column for each of the summary statistics that you have
specified.

Usage

S3 method for class 'RPolarsDataFrame'
summarize(.data, ..., .by = NULL)

S3 method for class 'RPolarsDataFrame'
summarise(.data, ..., .by = NULL)

S3 method for class 'RPolarsLazyFrame'
summarize(.data, ..., .by = NULL)

S3 method for class 'RPolarsLazyFrame'
summarise(.data, ..., .by = NULL)

Arguments

.data A Polars Data/LazyFrame

... Name-value pairs. The name gives the name of the column in the output. The
value can be:

• A vector the same length as the current group (or the whole data frame if
ungrouped).

• NULL, to remove the column.

across() is mostly supported, except in a few cases. In particular, if the .cols
argument is where(...), it will not select variables that were created before
across(). Other select helpers are supported. See the examples.

.by Optionally, a selection of columns to group by for just this operation, function-
ing as an alternative to group_by(). The group order is not maintained, use
group_by() if you want more control over it.

Examples

mtcars |>
as_polars_df() |>
group_by(cyl) |>
summarize(m_gear = mean(gear), sd_gear = sd(gear))

56 tidypolars-options

an alternative syntax is to use `.by`
mtcars |>

as_polars_df() |>
summarize(m_gear = mean(gear), sd_gear = sd(gear), .by = cyl)

summary.RPolarsDataFrame

Summary statistics for a Polars DataFrame

Description

Summary statistics for a Polars DataFrame

Usage

S3 method for class 'RPolarsDataFrame'
summary(object, percentiles = c(0.25, 0.75), ...)

Arguments

object A Polars DataFrame.

percentiles One or more percentiles to include in the summary statistics. All values must be
between 0 and 1 (NULL are ignored).

... Ignored.

Examples

mtcars |>
as_polars_df() |>
summary(percentiles = c(0.2, 0.4, 0.6, 0.8))

tidypolars-options tidypolars global options

Description

There is currently one global option:

• tidypolars_unknown_args controls what happens when some arguments passed in an ex-
pression are unknown, e.g the argument prob in sample(). The default ("warn") only warns
the user that some arguments are ignored by tidypolars. The only other accepted value is
"error" to throw an error when this happens.

uncount.RPolarsDataFrame 57

Examples

options(tidypolars_unknown_args = "warn")
test <- polars::pl$DataFrame(x = c(2, 1, 5, 3, 1))

The default is to warn the user
mutate(test, x2 = sample(x, prob = 0.5))

But one can make this stricter and throw an error when this happens
options(tidypolars_unknown_args = "error")
try(mutate(test, x2 = sample(x, prob = 0.5)))

options(tidypolars_unknown_args = "warn")

uncount.RPolarsDataFrame

Uncount a Data/LazyFrame

Description

This duplicates rows according to a weighting variable (or expression). This is the opposite of
count().

Usage

S3 method for class 'RPolarsDataFrame'
uncount(data, weights, ..., .remove = TRUE, .id = NULL)

S3 method for class 'RPolarsLazyFrame'
uncount(data, weights, ..., .remove = TRUE, .id = NULL)

Arguments

data A Polars Data/LazyFrame

weights A vector of weights. Evaluated in the context of data.

... Not used.

.remove If TRUE, and weights is the name of a column in data, then this column is re-
moved.

.id Supply a string to create a new variable which gives a unique identifier for each
created row.

Examples

test <- polars::pl$DataFrame(x = c("a", "b"), y = 100:101, n = c(1, 2))
test

uncount(test, n)

58 unite.RPolarsDataFrame

uncount(test, n, .id = "id")

using constants
uncount(test, 2)

using expressions
uncount(test, 2 / n)

unite.RPolarsDataFrame

Unite multiple columns into one by pasting strings together

Description

Unite multiple columns into one by pasting strings together

Usage

S3 method for class 'RPolarsDataFrame'
unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

S3 method for class 'RPolarsLazyFrame'
unite(data, col, ..., sep = "_", remove = TRUE, na.rm = FALSE)

Arguments

data A Polars Data/LazyFrame

col The name of the new column, as a string or symbol.

... Any expression accepted by dplyr::select(): variable names, column num-
bers, select helpers, etc.

sep Separator to use between values.

remove If TRUE, remove input columns from the output Data/LazyFrame.

na.rm If TRUE, missing values will be replaced with an empty string prior to uniting
each value.

Examples

test <- polars::pl$DataFrame(
year = 2009:2011,
month = 10:12,
day = c(11L, 22L, 28L),
name_day = c("Monday", "Thursday", "Wednesday")

)

By default, united columns are dropped

write_csv_polars 59

unite(test, col = "full_date", year, month, day, sep = "-")
unite(test, col = "full_date", year, month, day, sep = "-", remove = FALSE)

test2 <- polars::pl$DataFrame(
name = c("John", "Jack", "Thomas"),
middlename = c("T.", NA, "F."),
surname = c("Smith", "Thompson", "Jones")

)

By default, NA values are kept in the character output
unite(test2, col = "full_name", everything(), sep = " ")
unite(test2, col = "full_name", everything(), sep = " ", na.rm = TRUE)

write_csv_polars Export data to CSV file(s)

Description

Export data to CSV file(s)

Usage

write_csv_polars(
.data,
file,
...,
include_bom = FALSE,
include_header = TRUE,
separator = ",",
line_terminator = "\n",
quote = "\"",
batch_size = 1024,
datetime_format = NULL,
date_format = NULL,
time_format = NULL,
float_precision = NULL,
null_values = "",
quote_style = "necessary"

)

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

... Ignored.

include_bom Whether to include UTF-8 BOM (byte order mark) in the CSV output.

60 write_csv_polars

include_header Whether to include header in the CSV output.

separator Separate CSV fields with this symbol.

line_terminator

String used to end each row.

quote Byte to use as quoting character.

batch_size Number of rows that will be processed per thread.

datetime_format

A format string, with the specifiers defined by the chrono Rust crate. If no format
specified, the default fractional-second precision is inferred from the maximum
timeunit found in the frame’s Datetime cols (if any).

date_format A format string, with the specifiers defined by the chrono Rust crate.

time_format A format string, with the specifiers defined by the chrono Rust crate.

float_precision

Number of decimal places to write, applied to both Float32 and Float64 datatypes.

null_values A string representing null values (defaulting to the empty string).

quote_style Determines the quoting strategy used.

• "necessary" (default): This puts quotes around fields only when neces-
sary. They are necessary when fields contain a quote, delimiter or record
terminator. Quotes are also necessary when writing an empty record (which
is indistinguishable from a record with one empty field). This is the default.

• "always": This puts quotes around every field.

• "non_numeric": This puts quotes around all fields that are non-numeric.
Namely, when writing a field that does not parse as a valid float or integer,
then quotes will be used even if they aren‘t strictly necessary.

• "never": This never puts quotes around fields, even if that results in invalid
CSV data (e.g. by not quoting strings containing the separator).

Value

The input DataFrame.

Examples

dest <- tempfile(fileext = ".csv")
mtcars |>

as_polars_df() |>
write_csv_polars(dest)

read.csv(dest)

write_ipc_polars 61

write_ipc_polars Export data to IPC file(s)

Description

Export data to IPC file(s)

Usage

write_ipc_polars(
.data,
file,
compression = "uncompressed",
...,
future = FALSE

)

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

compression NULL or a character of the compression method, "uncompressed" or "lz4" or
"zstd". NULL is equivalent to "uncompressed". Choose "zstd" for good com-
pression performance. Choose "lz4" for fast compression/decompression.

... Ignored.

future Setting this to TRUE will write Polars’ internal data structures that might not be
available by other Arrow implementations.

Value

The input DataFrame.

write_json_polars Export data to JSON file(s)

Description

Export data to JSON file(s)

Usage

write_json_polars(.data, file, ..., pretty = FALSE, row_oriented = FALSE)

62 write_ndjson_polars

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

... Ignored.

pretty Pretty serialize JSON.

row_oriented Write to row-oriented JSON. This is slower, but more common.

Value

The input DataFrame.

Examples

dest <- tempfile(fileext = ".json")
mtcars |>

as_polars_df() |>
write_json_polars(dest)

jsonlite::fromJSON(dest)

write_ndjson_polars Export data to NDJSON file(s)

Description

Export data to NDJSON file(s)

Usage

write_ndjson_polars(.data, file)

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

Value

The input DataFrame.

write_parquet_polars 63

Examples

dest <- tempfile(fileext = ".ndjson")
mtcars |>

as_polars_df() |>
write_ndjson_polars(dest)

jsonlite::stream_in(file(dest), verbose = FALSE)

write_parquet_polars Export data to Parquet file(s)

Description

Export data to Parquet file(s)

Usage

write_parquet_polars(
.data,
file,
...,
compression = "zstd",
compression_level = 3,
statistics = TRUE,
row_group_size = NULL,
data_page_size = NULL,
partition_by = NULL,
partition_chunk_size_bytes = 4294967296

)

Arguments

.data A Polars DataFrame.

file File path to which the result should be written.

... Ignored.

compression The compression method. One of :

• "uncompressed"
• "zstd" (default): good compression performance
• "lz4": fast compression / decompression
• "snappy": more backwards compatibility guarantees when you deal with

older parquet readers.
• "gzip", "lzo", "brotli"

compression_level

The level of compression to use (default is 3). Only used if compression is one
of "gzip", "brotli", or "zstd". Higher compression means smaller files on disk.

64 write_parquet_polars

• "gzip" : min-level = 0, max-level = 10
• "brotli" : min-level = 0, max-level = 11
• "zstd" : min-level = 1, max-level = 22.

statistics Whether to compute and write column statistics (default is FALSE). This requires
more computations.

row_group_size Size of the row groups in number of rows. If NULL (default), the chunks of the
DataFrame are used. Writing in smaller chunks may reduce memory pressure
and improve writing speeds.

data_page_size If NULL (default), the limit will be around 1MB.

partition_by Column(s) to partition by. A partitioned dataset will be written if this is speci-
fied.

partition_chunk_size_bytes

Approximate size to split DataFrames within a single partition when writing.
Note this is calculated using the size of the DataFrame in memory - the size of
the output file may differ depending on the file format / compression.

Value

The input DataFrame.

Examples

dest <- tempfile(fileext = ".parquet")
mtcars |>

as_polars_df() |>
write_parquet_polars(dest)

nanoparquet::read_parquet(dest)

Index

add_count.RPolarsDataFrame
(count.RPolarsDataFrame), 9

add_count.RPolarsLazyFrame
(count.RPolarsDataFrame), 9

anti_join.RPolarsDataFrame
(semi_join.RPolarsDataFrame),
44

anti_join.RPolarsLazyFrame
(semi_join.RPolarsDataFrame),
44

arrange.RPolarsDataFrame, 3
as_tibble.tidypolars, 4

bind_cols_polars, 4
bind_rows_polars, 5

collect(), 16
collect.RPolarsLazyFrame

(compute.RPolarsLazyFrame), 7
complete.RPolarsDataFrame, 6
complete.RPolarsLazyFrame

(complete.RPolarsDataFrame), 6
compute.RPolarsLazyFrame, 7
count.RPolarsDataFrame, 9
count.RPolarsLazyFrame

(count.RPolarsDataFrame), 9
cross_join.RPolarsDataFrame, 10
cross_join.RPolarsLazyFrame

(cross_join.RPolarsDataFrame),
10

data.frame, 7
DataFrame, 4
describe, 11
describe_optimized_plan

(describe_plan), 12
describe_plan, 12
distinct.RPolarsDataFrame, 12
distinct.RPolarsLazyFrame

(distinct.RPolarsDataFrame), 12

dplyr::join_by(), 31, 45
drop_na.RPolarsDataFrame, 13
drop_na.RPolarsLazyFrame

(drop_na.RPolarsDataFrame), 13
duplicated_rows

(distinct.RPolarsDataFrame), 12

explain.RPolarsLazyFrame, 14

fetch, 15
fetch(), 9
fill.RPolarsDataFrame, 16
filter.RPolarsDataFrame, 17
filter.RPolarsLazyFrame

(filter.RPolarsDataFrame), 17
from_csv, 18
from_ipc, 21
from_ndjson, 23
from_parquet, 24
full_join.RPolarsDataFrame

(left_join.RPolarsDataFrame),
29

full_join.RPolarsLazyFrame
(left_join.RPolarsDataFrame),
29

group_by.RPolarsDataFrame, 26
group_by.RPolarsLazyFrame

(group_by.RPolarsDataFrame), 26
group_keys.RPolarsDataFrame

(group_vars.RPolarsDataFrame),
28

group_keys.RPolarsLazyFrame
(group_vars.RPolarsDataFrame),
28

group_split.RPolarsDataFrame, 27
group_vars.RPolarsDataFrame, 28
group_vars.RPolarsLazyFrame

(group_vars.RPolarsDataFrame),
28

65

66 INDEX

inner_join.RPolarsDataFrame
(left_join.RPolarsDataFrame),
29

inner_join.RPolarsLazyFrame
(left_join.RPolarsDataFrame),
29

LazyFrame, 4
left_join.RPolarsDataFrame, 29
left_join.RPolarsLazyFrame

(left_join.RPolarsDataFrame),
29

make_unique_id, 33
mutate.RPolarsDataFrame, 34
mutate.RPolarsLazyFrame

(mutate.RPolarsDataFrame), 34

pivot_longer.RPolarsDataFrame, 36
pivot_longer.RPolarsLazyFrame

(pivot_longer.RPolarsDataFrame),
36

pivot_wider.RPolarsDataFrame, 37
Polars DataFrame, 7
polars::as.data.frame.RPolarsDataFrame,

4
pull.RPolarsDataFrame, 39
pull.RPolarsLazyFrame

(pull.RPolarsDataFrame), 39

read_csv_polars (from_csv), 18
read_ipc_polars (from_ipc), 21
read_ndjson_polars (from_ndjson), 23
read_parquet_polars (from_parquet), 24
relocate.RPolarsDataFrame, 40
relocate.RPolarsLazyFrame

(relocate.RPolarsDataFrame), 40
rename.RPolarsDataFrame, 41
rename.RPolarsLazyFrame

(rename.RPolarsDataFrame), 41
rename_with.RPolarsDataFrame

(rename.RPolarsDataFrame), 41
rename_with.RPolarsLazyFrame

(rename.RPolarsDataFrame), 41
replace_na.RPolarsDataFrame, 42
replace_na.RPolarsLazyFrame

(replace_na.RPolarsDataFrame),
42

right_join.RPolarsDataFrame
(left_join.RPolarsDataFrame),
29

right_join.RPolarsLazyFrame
(left_join.RPolarsDataFrame),
29

rowwise.RPolarsDataFrame, 43
rowwise.RPolarsLazyFrame

(rowwise.RPolarsDataFrame), 43

scan_csv_polars (from_csv), 18
scan_ipc_polars (from_ipc), 21
scan_ndjson_polars (from_ndjson), 23
scan_parquet_polars (from_parquet), 24
select.RPolarsDataFrame, 44
select.RPolarsLazyFrame

(select.RPolarsDataFrame), 44
semi_join.RPolarsDataFrame, 44
semi_join.RPolarsLazyFrame

(semi_join.RPolarsDataFrame),
44

separate.RPolarsDataFrame, 46
separate.RPolarsLazyFrame

(separate.RPolarsDataFrame), 46
sink_csv, 47
sink_ipc, 49
sink_ndjson, 50
sink_parquet, 51
slice_head.RPolarsDataFrame

(slice_tail.RPolarsDataFrame),
54

slice_head.RPolarsLazyFrame
(slice_tail.RPolarsDataFrame),
54

slice_sample.RPolarsDataFrame
(slice_tail.RPolarsDataFrame),
54

slice_tail.RPolarsDataFrame, 54
slice_tail.RPolarsLazyFrame

(slice_tail.RPolarsDataFrame),
54

summarise.RPolarsDataFrame
(summarize.RPolarsDataFrame),
55

summarise.RPolarsLazyFrame
(summarize.RPolarsDataFrame),
55

summarize.RPolarsDataFrame, 55

INDEX 67

summarize.RPolarsLazyFrame
(summarize.RPolarsDataFrame),
55

summary.RPolarsDataFrame, 56

tibble, 4
tidypolars-options, 56

uncount.RPolarsDataFrame, 57
uncount.RPolarsLazyFrame

(uncount.RPolarsDataFrame), 57
ungroup.RPolarsDataFrame

(group_by.RPolarsDataFrame), 26
ungroup.RPolarsLazyFrame

(group_by.RPolarsDataFrame), 26
unite.RPolarsDataFrame, 58
unite.RPolarsLazyFrame

(unite.RPolarsDataFrame), 58

vctrs::vec_as_names(), 5

write_csv_polars, 59
write_ipc_polars, 61
write_json_polars, 61
write_ndjson_polars, 62
write_parquet_polars, 63

	arrange.RPolarsDataFrame
	as_tibble.tidypolars
	bind_cols_polars
	bind_rows_polars
	complete.RPolarsDataFrame
	compute.RPolarsLazyFrame
	count.RPolarsDataFrame
	cross_join.RPolarsDataFrame
	describe
	describe_plan
	distinct.RPolarsDataFrame
	drop_na.RPolarsDataFrame
	explain.RPolarsLazyFrame
	fetch
	fill.RPolarsDataFrame
	filter.RPolarsDataFrame
	from_csv
	from_ipc
	from_ndjson
	from_parquet
	group_by.RPolarsDataFrame
	group_split.RPolarsDataFrame
	group_vars.RPolarsDataFrame
	left_join.RPolarsDataFrame
	make_unique_id
	mutate.RPolarsDataFrame
	pivot_longer.RPolarsDataFrame
	pivot_wider.RPolarsDataFrame
	pull.RPolarsDataFrame
	relocate.RPolarsDataFrame
	rename.RPolarsDataFrame
	replace_na.RPolarsDataFrame
	rowwise.RPolarsDataFrame
	select.RPolarsDataFrame
	semi_join.RPolarsDataFrame
	separate.RPolarsDataFrame
	sink_csv
	sink_ipc
	sink_ndjson
	sink_parquet
	slice_tail.RPolarsDataFrame
	summarize.RPolarsDataFrame
	summary.RPolarsDataFrame
	tidypolars-options
	uncount.RPolarsDataFrame
	unite.RPolarsDataFrame
	write_csv_polars
	write_ipc_polars
	write_json_polars
	write_ndjson_polars
	write_parquet_polars
	Index

