Package: zstdlite (via r-universe)

February 7, 2026
Type Package

Title Fast Compression and Serialization with '"Zstandard' Algorithm
Version 0.2.6
Maintainer Mike Cheng <mikefc@coolbutuseless.com>

Description Fast, compressed serialization of R objects using the
'Zstandard' algorithm. R objects can be compressed and
decompressed quickly using the standard serialization mechanism
in R. Raw byte vectors and strings are also handled directly
for compatibility with compressed data created by other systems
and programs supporting 'Zstandard' compression. Dictionaries
are supported for more effective compression of small data, and
functions are provided for training these dictionaries. This
implementation is a wrapper around the 'Zstandard' 'C' library
which is available from <https://github.com/facebook/zstd>.

URL https://github.com/coolbutuseless/zstdlite

BugReports https://github.com/coolbutuseless/zstdlite/issues
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.1

Copyright This package includes code from the 'zstd' library owned by
Meta Platforms, Inc. and affiliates. and created by Yann
Collet. See file 'inst/COPYRIGHTS' for details.

Suggests knitr, rmarkdown, testthat, bench

Depends R (>=3.4.0)

VignetteBuilder knitr

Repository https://test.r-universe.dev

Date/Publication 2024-03-10 06:19:56 UTC

RemoteUrl https://github.com/coolbutuseless/zstdlite
RemoteRef v0.2.6

RemoteSha 585458ccbe36eaal 79d8b30f04f1e3a91dc6b993

https://github.com/facebook/zstd
https://github.com/coolbutuseless/zstdlite
https://github.com/coolbutuseless/zstdlite/issues

2 zstd_cctx

Contents
ZSEA_CCEX . . o o e e s 2
ZStA_CCEX_SELtNGS o o i e e e e e 3
ZSEA_COMPIESS v v o e ittt e e e e e e 3
zStd_dCtX e s 5
zstd_detx_Settings e e e e e e 5
zstd_dict_id L 6
zstd_serialize 7
zstd_train_diCt_compress e e e e e 8
zstd_train_dict_serialize e 9
ZStAd_VEISION 10

Index 11

zstd_cctx Initialise a ZSTD compression context
Description

Compression contexts can be re-used, meaning that they don’t have to be created each time a com-
pression function is called. This can make things faster when performing multiple compression
operations.

Usage

zstd_cctx(level = 3L, num_threads = 1L, include_checksum = FALSE, dict = NULL)

Arguments
level Compression level. Default: 3. Valid range is [-5, 22] with -5 representing the
mode with least compression and 22 representing the mode with most compres-
sion. Note level = @ corresponds to the default level and is equivalent to level
=3
num_threads Number of compression threads. Default 1. Using more threads can result in

faster compression, but the magnitude of this speed-up depends on lots of factors
e.g. cpu, drive speed, type of data compression level etc.

include_checksum
Include a checksum with the compressed data? Default: FALSE. If TRUE then
a 32-bit hash of the original uncompressed data will be appended to the com-
pressed data and checked for validity during decompression. See matching op-
tion for decompression in zstd_dctx () argument validate_checksum.

dict Dictionary. Default: NULL. Can either be a raw vector or a filename. This dic-
tionary can be created with zstd_train_dict_compress() ,zstd_train_dict_seriazlie()
or any other tool supporting zstd dictionary creation. Note: compressed data
created with a dictionary must be decompressed with the same dictionary.

zstd_cctx_settings 3

Value

External pointer to a ZSTD Compression Context which can be passed to zstd_serialize() and
zstd_compress()

Examples

cctx <- zstd_cctx(level = 4)

zstd_cctx_settings Get the configuration settings of a compression context

Description

Get the configuration settings of a compression context

Usage

zstd_cctx_settings(cctx)

Arguments

cctx ZSTD compression context, as created by zstd_cctx()

Value

named list of configuration options

Examples

cctx <- zstd_cctx()
zstd_cctx_settings(cctx)

zstd_compress Compress/Decompress raw vectors and character strings.

Description

This function is appropriate when handling data from other systems e.g. data compressed with the
zstd command-line, or other compression programs.

4 zstd_compress

Usage

zstd_compress(src, ..., file = NULL, cctx = NULL, use_file_streaming = FALSE)

zstd_decompress(

src,
type = "raw”,
dctx = NULL,
use_file_streaming = FALSE
)
Arguments
src Source data to be compressed. This may be a raw vector, or a character string
extra arguments passed to zstd_cctx() or zstd_dctx() context initializers.
Note: These argument are only used when cctx or dctx is NULL
file filename in which to serialize data. If NULL (the default), then serialize the
results to a raw vector
cctx ZSTD Compression Context created by zstd_cctx () or NULL. Default: NULL

will create a default compression context on-the-fly

use_file_streaming
Use the streaming interface when reading or writing to a file? This may reduce
memory allocations and make better use of mutlithreading. Default: FALSE

type Should data be returned as a ‘raw’ vector or as a ’string’? Default: ‘raw’

dctx ZSTD Decompression Context created by zstd_dctx () or NULL. Default: NULL
will create a default decompression context on-the-fly.

Value

Raw vector of compressed data, or NULL if file created with compressed data

Examples

dat <- sample(as.raw(1:10), 1000, replace = TRUE)
vec <- zstd_compress(dat)
zstd_decompress(vec)

tmp <- tempfile()
zstd_compress(dat, file = tmp)
zstd_decompress(tmp)

zstd_dctx 5

zstd_dctx Initialise a ZSTD decompression context

Description

Decompression contexts can be re-used, meaning that they don’t have to be created each time a
decompression function is called. This can make things faster when performing multiple decom-
pression operations.

Usage

zstd_dctx(validate_checksum = TRUE, dict = NULL)

Arguments

validate_checksum
If a checksum is present on the comrpessed data, should the checksum be vali-
dated? Default: TRUE. Set to FALSE to ignore the checksum, which may lead to
a minor speed improvement. If no checksum is present in the compressed data,
then this option has no effect.

dict Dictionary. Default: NULL. Can either be a raw vector or a filename. This dic-
tionary can be created with zstd_train_dict_compress() ,zstd_train_dict_seriazlie()
or any other tool supporting zstd dictionary creation. Note: compressed data
created with a dictionary must be decompressed with the same dictionary.

Value

External pointer to a ZSTD Decompression Context which can be passed to zstd_unserialize()
and zstd_decompress()

Examples

dctx <- zstd_dctx(validate_checksum = FALSE)

zstd_dctx_settings Get the configuration settings of a decompression context

Description

Get the configuration settings of a decompression context

Usage

zstd_dctx_settings(dctx)

6 zstd_dict_id

Arguments

dctx ZSTD decompression context, as created by zstd_dctx ()

Value

named list of configuration options

Examples

dctx <- zstd_dctx()
zstd_dctx_settings(dctx)

zstd_dict_id Get the Dictionary ID of a dictionary or a vector compressed data.

Description

Dictionary IDs are generated automatically when a dictionary is created. When using a dictionary
for compression, the same dictionary must be used during decompression. ZSTD internally does
this check for matching IDs when attempting to decompress. This function exposes the dictionary
ID to aid in handling and tracking dictionaries in R.

Usage

zstd_dict_id(dict)

Arguments
dict raw vector or filename. This object could contain either a zstd dictionary, or a
compressed object. If it is a compressed object, then it will return the dictionary
id which was used to compress it.
Value

Signed integer value representing the Dictionary ID. If data does not represent a dictionary, or data
which was compressed with a dictionary, then a value of 0 is returned.

Examples

dict_file <- system.file("sample_dict.raw”, package = "zstdlite", mustWork = TRUE)
dict <- readBin(dict_file, raw(), file.size(dict_file))

zstd_dict_id(dict)

compressed_mtcars <- zstd_serialize(mtcars, dict = dict)
zstd_dict_id(compressed_mtcars)

zstd_serialize 7

zstd_serialize Serialize/Unserialize arbitrary R objects to a compressed stream of
bytes using Zstandard

Description

Serialize/Unserialize arbitrary R objects to a compressed stream of bytes using Zstandard

Usage
zstd_serialize(robj, ..., file = NULL, cctx = NULL, use_file_streaming = FALSE)
zstd_unserialize(src, ..., dctx = NULL, use_file_streaming = FALSE)
Arguments
robj Any R object understood by base: :serialize()
extra arguments passed to zstd_cctx() or zstd_dctx() context initializers.
Note: These argument are only used when cctx or dctx is NULL
file filename in which to serialize data. If NULL (the default), then serialize the
results to a raw vector
cctx ZSTD Compression Context created by zstd_cctx () or NULL. Default: NULL

will create a default compression context on-the-fly

use_file_streaming
Use the streaming interface when reading or writing to a file? This may reduce
memory allocations and make better use of mutlithreading. Default: FALSE

src Raw vector or filename containing a ZSTD compressed serialized representation
of an R object
dctx ZSTD Decompression Context created by zstd_dctx () or NULL. Default: NULL

will create a default decompression context on-the-fly.

Value

Raw vector of compressed serialized data, or NULL if file created with compressed data

Examples

vec <- zstd_serialize(mtcars)
zstd_unserialize(vec)

tmp <- tempfile()
zstd_serialize(mtcars, file = tmp)
zstd_unserialize(tmp)

8 zstd_train_dict_compress

zstd_train_dict_compress
Train a dictionary for use with zstd_compress() and
zstd_decompress()

Description

This function requires multiple samples representative of the expected data to train a dictionary for
use during compression.

Usage

zstd_train_dict_compress(
samples,
size = let0@5,
optim = FALSE,
optim_shrink_allow = 0

)
Arguments
samples list of raw vectors, or length-1 character vectors. Each raw vector or string,
should be a complete example of something to be compressed with zstd_compress()
size Maximum size of dictionary in bytes. Default: 112640 (110 kB) matches the

default size set by the command line version of zstd. Actual dictionary created
may be smaller than this if (1) there was not enough training data to make use of
this size (2) optim_shrink_allow was set and a smaller dictionary was found
to be almost as useful.
optim optimize the dictionary. Default FALSE. If TRUE, then ZSTD will spend time
optimizing the dictionary. This can be a very length operation.
optim_shrink_allow
integer value representing a percentage. If non-zero, then a search will be car-
ried out for dictionaries of a smaller size which are up to optim_shrink_allow
percent worse than the maximum sized dictionary. Default: 0 means that no
shrinking will be done.

Value

raw vector containing a ZSTD dictionary

Examples

This example shows the mechanics of creating and training a dictionary but
may not be a great example of when a dictionary might be useful

cars <- rownames(mtcars)

samples <- lapply(seq_len(1000), \(x) serialize(sample(cars), NULL))
zstd_train_dict_compress(samples, size = 5000)

zstd_train_dict_serialize 9

zstd_train_dict_serialize

Train a dictionary for use with zstd_serialize() and
zstd_unserialize()

Description

Train a dictionary for use with zstd_serialize() and zstd_unserialize()

Usage

zstd_train_dict_serialize(

samples,
size = let0@5,

optim = FALSE,
optim_shrink_allow = 0

)

Arguments

samples

size

optim

list of example R objects to train a dictionary to be used with zstd_serialize()

Maximum size of dictionary in bytes. Default: 112640 (110 kB) matches the
default size set by the command line version of zstd. Actual dictionary created
may be smaller than this if (1) there was not enough training data to make use of
this size (2) optim_shrink_allow was set and a smaller dictionary was found
to be almost as useful.

optimize the dictionary. Default FALSE. If TRUE, then ZSTD will spend time
optimizing the dictionary. This can be a very length operation.

optim_shrink_allow

Value

integer value representing a percentage. If non-zero, then a search will be car-
ried out for dictionaries of a smaller size which are up to optim_shrink_allow
percent worse than the maximum sized dictionary. Default: 0 means that no
shrinking will be done.

raw vector containing a ZSTD dictionary

Examples

This example shows the mechanics of creating and training a dictionary but
may not be a great example of when a dictionary might be useful

cars <- rownames(mtcars)

samples <- lapply(seq_len(1000), \(x) sample(cars))
zstd_train_dict_serialize(samples, size = 5000)

10 zstd_version

zstd_version Get version string of zstd C library

Description

Get version string of zstd C library

Usage

zstd_version()

Value

String containing version number of zstd C library

Examples

zstd_version()

Index

zstd_cctx, 2
zstd_cctx_settings, 3
zstd_compress, 3

zstd_dctx, 5

zstd_dctx_settings, 5
zstd_decompress (zstd_compress), 3
zstd_dict_id, 6

zstd_serialize, 7
zstd_train_dict_compress, 8
zstd_train_dict_serialize, 9
zstd_unserialize (zstd_serialize), 7
zstd_version, 10

11

	zstd_cctx
	zstd_cctx_settings
	zstd_compress
	zstd_dctx
	zstd_dctx_settings
	zstd_dict_id
	zstd_serialize
	zstd_train_dict_compress
	zstd_train_dict_serialize
	zstd_version
	Index

